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Abstract

In this paper, we study some degenerate parabolic equation with Cauchy-Dirichlet
boundary conditions. This problem is considered in little Holder spaces. The optimal
regularity of the solution v is obtained and is specified in terms of those of the second
member when some conditions upon the Holder exponent with respect to the degen-
eracy are satisfied. The proofs mainly use the sum theory of linear operators with or
without density of domains and the results of smoothness obtained in the study of some
abstract linear differential equations of elliptic type.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

This paper is devoted to the study of a degenerate parabolic problem in the
square Q =]0, 1[x]0, 1] described by the variables (¢,y)
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{ #*Dy(t,y) — D2o(t,y) = k(t, ), (1)
Vpo-r, = 0,

where I'y = {1}x]0,1[, o €]1/2,00[ and k is a function belonging to the fol-
lowing weighted subspace

hyo(Q) = {k € h5(Q) : P(1)k € hj(Q)}

of the little Holder space /§(£2), 0 < ¢ < 1, defined in Section 2. The weight @ is
defined by

(1) =" 7.

In this work, we give an alternative approach with respect to the results due
to Favini and Yagi [3]. These authors have studied some abstract problems of
parabolic type with a degenerate term in the time derivative. They have par-
ticularly used the notion of multivalued linear operators and construct fun-
damental solutions when the right-hand side has a Holder regularity with
respect to the time.

Our techniques are different and use the sum theory of linear operators in
two cases:

1. When the domains of these operators are dense.
2. When the operators are not necessarily densely defined.

On the other hand, in order to have some maximal regularities, we will use
the optimal results obtained in the study of some abstract linear differential
equations of elliptic type by Labbas [4] and El Haial-Labbas [5].

Problem (1) can be regarded as the principal part of the following diffusion
problem

{Dzu(nx) ~ D2u(t,x) = f(t.), @)
Upr-r, = 0,
set in the curvilinear triangle T’
T={(t,x) e R*: ¢t €]0,1[,0 < x < ¢* = (1)},
when we make the change of variables and function
(t,y) = (t,x/1"),
u(t,x) = v(t,y).

T is then transformed into Q.

This last problem represents Fick’s second law which modelizes, for in-
stance, the concentration (of atoms) u(¢,x) at time ¢ in a position x, (like the
carburization of steel) in a homogeneous system (pure metal or any alloy). It is
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also the modelization of the lateral diffusion of a polluant in a flow of river with
variable width.

We also mention that in the framework of the L7(T)-space, with 1 < p < oo,
a study is given in Labbas—Medeghri-Sadallah [7] for Problem (2) where it is
proved that the solution u has the optimal smoothness, that is

ue H)*(T) = {y € I/(T) : Dy, Dy € IX(T),j = 1,2},

provided that o €]1/2,p — 1] and f is in some L?(T)-weighted subspace.
In this paper our main results (which are the equivalent to those obtained in
the L7(T)-study mentioned above) are the following:

Theorem 1. For k belonging to the weighted space_hg,q,(ﬁ) with o > (1 +0)/2,
Problem (1) admits a unique strict solution v € h§(Q) such that
{Dﬁv € hg(ﬁ)L
*Dyv € h§(Q).

Moreover v satisfies the vector-valued weight regularities

v € hy(Q),
20 € hy([0, 1]; W, (0, 1))

for all g > 1.

2. On little Holder spaces
2.1. Preliminary results

In this section (X, || - ||) stands for a complex Banach space, Q is an open
set of R" (not necessarily bounded) and / € N. We denote by C;(Q;X) the
space of the vector-valued functions with continuous and bounded derivatives
up to the order / in Q. In the case X = C, one will simply write C,(Q) instead of
Cy(0; C).

For ¢ €]0, 1, the Banach space C°(Q;X) denotes the space of the bounded
and o-Holder continuous functions f : Q0 — X, such that

{supxeg I/ ()l < o0, (3)
AC>0:vx,y€Q, |If(x) =S O)lly <Clx =",

endowed with the norm

g = sp L7+ sup LTy 11

For simplicity, we shall write C°(Q) instead of C’(Q;C).
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It is well known that any function f € C°(Q;X), with ¢ €]0, 1], can be ex-
tended to a function of C?(Q;X). This is why we shall write in the sequel
C’(Q;X) or C°(Q;X), or briefly C7(X).

The little Holder Banach space 4°(Q; X) is defined by

hU(Q;X) — {f c CO’(Q;X) . llm sup Hf(x) _f(y)HX _ 0}7 (4)

020 0<fv—y) <o lx =yl
the norm || - [|» .y, is that inducted by || - [|cx (o). We can show that
1. for any € €]0,0[ and / € N*\ {1}, we have
Cy(0:X) C Cy(Q5X) C (05 X) C C7(Q;X) C h™(0;X) € C7(0; )
C GO X),

2. f € h°(Q;X) if and only if

=yl <= I/ (x) = SOl < CO)x =y (5)

V5 >0,3C(8) >0: Vx,y €0,
with lim(5*>0+ C(é) = 07

3. for all ¢ €]0, 1], every function of A°(Q; X) can be extended to a function of

h(Q: X).

One of the main results concerning the little Holder spaces is the following
density property (see Lunardi [8]).

Proposition 2. Let Q be an open set with regular boundary of R" or a (possibly
unbounded) interval of R. For every o €]0,1[ and | €]a, 400, the space h?(R"; X)
(resp. h°(Q; X)) is the closure of C'(R";X) (resp. C'(0;X)) in C°(R";X) (resp.
C°(0; X)).

We have obtained a similar result in the curvilinear triangle 7
T={(t,x) eR*:¢€]0,1[and 0 < x < * = @(£)}

(see [1]).
We will use the notations
h§(Q) = {v e h*(Q) : veor, = 0},
h5o([0,1]) = {¢ € ([0, 1]) : ¢(0) = §(1) = 0},
Ry ([0, 1;X) = {N € h°([0,1];X) : N(0) = 0}
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and

Go([0,1]) = {9 € C([0,1]) : $(0) = 0},

Coo([0,1]) = {¢ € C([0,1]) : ¢(0) = $(1) = 0},

Coo([0,1];.X) = {N € C°([0, 1];.X) : N(0) = N(1) = 0}.
The domains of closed linear operators defined in Lebesgue spaces are dense in
general. It is not the same in the framework of the spaces of Holder continuous

functions. For example, in the Banach space C§ ([0, 1]; X') and for the operator
C defined by

{D(C) — (N € ([0, 1);X) : N" € C°([0,1]: X) and N(0) = N(1) = 0},
C(N) = N",

the closure of D(C) in C§,([0, 1];X) is exactly
hio([0,1]:X) = {N € A°([0, 1];X) : N(0) = N(1) = 0}.

The little Holder spaces are therefore the good appropriated spaces if we want
to apply the sum theory of densely defined operators in the Holder space.

2.2. Anisotropic properties

One will need the following lemmas.

Lemma 3. Let h € hi(Q). Then the vector-valued function N defined by
N()(y) =h(t,y), t€]0,1]

is in the space
L7((0,1); g ([0, 11)) A ([0, 1]; Co, ([0, 1])).-

L>*((0,1);h5,([0,1])) denotes the space of the vector-valued functions N
strongly measurable such that N(¢) € hf,([0,1]) for a.e. ¢ € (0,1).

Proof. Let 7 € h3(Q).

1. The strong measurability of NV is obtained by an analogous argument as in
Najmi [9] (p. 95).
2. V6 > 0, 3C(9) such that for |[y — /| < d and ¢ € [0, 1], one has
IN(O) = N@OO = [h(t,y) = h(t, ) < CO)(Ey) = €2)I°
<CE)y -y

with lim, .+ C(6) = 0. So N(¢) € h§ ([0, 1]). Now for a.e. ¢ € (0,1) we get

|h(t7y) - h(tayl)‘
IOy = may )+ sup I ZHE

<l 5
0<[y—y'|<o ly— | h ()
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Thus N € L=((0, 1); ¢,([0, 1])) and

IV 2 (0,132 (0,1 < ||h||hg(§)'

0,0

3. Y6 > 0, 3C,(0) such that for ||# — 7|| < J one has

IN() = Nl eyo01) = ;ne[g”]‘] |h(t,y) — h(z,y)| < Ci(9)]t — <|”

with lims o+ C;(0) = 0. On the other hand
N(0)(») = h(0,y) =0.
Then N € h§([0, 1]; Cop([0,1])). O

It is not difficult to deduce the following lemma which specifies the relation
between global and anisotropic regularities in the above spaces.

Lemma 4. One has

h3(Q) = L((0, 1): /5 ([0, 1)) N A5 ([0, 1]; Coo([0, 1])).

3. Sums of linear operators

Let us now recall the essential of the sum theory we will have to apply.

Let A and B be two closed linear operators in a complex Banach E, with
domains D(4) and D(B). We assume that there exist positive constants Cy, Cj,
€4, € such that

(D.G.0) DUA) T D(B) — E,

(i) p(—A) > X, = {z € © : |arg(2)] < e}

Vz € X, 1A +2D) "l < Ca/ll,

(i) p(—B) 5 ¥, = {z € C : |arg(2)| < es}

vz € 3, 1B +20) " lyp < Ca/l,

(iil) €4 + € > m,

(iv) o(—4) Na(B) = 0,

(D.G.Z){ vée p(—jl),vn € /i(l—B), . .
A+ (B+nl) " = (B+nl) (4+cI) -,

(D.G.1)

where p(—4) and p(—B) are the resolvent sets of —4 and —B, ¢(—A) and o(B)
are the spectra of —4 and B.
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Due to Da Prato—Grisvard [2], we have the two following results.

Theorem 5. Assume (D.G.0), (D.G.1) and (D.G.2). Then for any A > 0, the sum
A+B+ A
is closable and 0 € p(4 + B+ AI).

The inverse of 4 + B + Al is given by the Dunford’s integral
-1

_ -l -1
=5 F(B zZI) A4zl + ) dz,

L;
where I' is a sectorial curve separating o(—A4) and o¢(B) and lying in
p(—A) N p(B). The function

w=ATB+ )" (f) = L.(f)
is called a strong solution of equation Aw + Bw + Aw = f.

Theorem 6. Assume (D.G.0), (D.G.1) and (D.G.2). Let F be a Banach subspace

containing D(A) and continuously imbedded in E such that there exists a constant
K satisfying, for some 0 €]0,1],

1-0 0
Vx e D), lxll < K(llxll + llxllg [l 4x]lg)-
Then D(A+B) C F.

When neither D(4), nor D(B) is dense in £, Labbas [6] has proved the fol-
lowing result.

Theorem 7. Assume (D.G.1) and (D.G.2). Then for any i >0, there exists a
closed extension A + B such that
Li=(A+B+)".

In this case 4 + B is closable and thus D(4 + B) C D(ATB)./B\E‘[ in [6], we can
find an example where D(4 + B) is strictly imbedded in D(4 + B).

4. Proof of Theorem 1
4.1. Writing Problem (1) in an operational form

Let us go back to our problem we started from

{ tzaDtU(tvy) - D}%U(t,y) = k(tvy)’
Vpo-r, = 0,
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where k € h{ ,(Q) and

OC>1—|—<7
7

Set

g(t,y) = k(1,y),
then

. -2

g € Eopo = {0 € B(Q) : " "y € H(@D).

Remark 8. Observe that if f (defined on the curvilinear triangle) is in the space
Eepr = {f € h5(T) :¢" "f € h(T)},

then the corresponding function g defined on the square Q by
glty)=f(tx), y=x/t"

belongs to Eeyp 0.

Let us set
P
{ w(t,y) = e TZo(t,y),
L 1=2z
h(t,y) = e "Tk(t, y),
where 1 is a fixed number in |0, 2a — 1[. Then w verifies
" Dw(t,y) — Diw(t,y) + w(t,y) = h(t,y)

and

) ,Aﬂ 1-20 , =24 5 (;ﬁ_l)tl—h 1-22 o
£7h(ty) =e e (et Tk (t,y)) = e (€ 7k(1,y))

)

= e (@)1, y)).

Hence, thanks to the fact that the function % defined by

() = el )

is in C} ([0, 1]) (since A €]0, 20 — 1[), we deduce that
th € h(Q).
Thus, for the resolution of Problem (1), it is sufficient to solve

{tzaDtW(tvy) _D)%W(tvy)""iw(tvy) :h(tvy)a (6)
Wpe-r; = 0,
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in the weighted Banach space
E={hehj(Q):t%hehi(Q)},
equipped with the norm
llz = 16> Al + Il
Now, let us define the following vector-valued functions
N:[0,1] = X510 = N(@);N(@0)(v) = h(t,p),
M :[0,1] — X510 — M(1); M(2)(y) = w(z, ),
Then we obtain the operational form of the previous problem, mainly

{ DM (t) + LM (t) + IM(t) = N(t), ()
M(0) =0,

where L is a linear operator with domain D(L) in some Banach space X which
will be specified later on.
Thanks to lemmas 3 and 4, the second member N is such that

{N € Lm((ov 1)ah80([07 1])) N hg([ov 1]7 COO([()? 1]))7
£2N € L((0, 1); ([0, 11)) N 45 ([0, 1]; Coo([0, 1]))-

4.2. First application of the sums

In this subsection we choose X = 4 ,([0, 1]). Our goal is to apply the results
of Section 3 to Problem (7) in the Banach space

E,.={N €L>((0,1);X): N € L*((0,1); X)},
equipped with the norm
INllz, = sup [IN()lly + sup [l N (1)l
te(0,1) te(0,1)

Let us define the following three operators L, 4 and B by

D(L) = {¢> € h 0([0,1]) = ¢', 0" € K5, ([0, 1])}, (8)
(L) () = —¢" (),
{ D(A) ={M € E,, M( ) eD(L), ae. te(0,1)}, 9)
(AM)(2) = L(M(1)), t€(0,1)
and
{D(B) ={M € E, : DM € E,,,M(0) = 0}, (10)
(BM)(t) = tzaDtM(t)v re (07 1)7
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keeping in mind that the derivative D,M understood in the context of deriva-
tion in the vector-valued distributions space

D'(10,1[; 5, ([0, 1)),
since

Ew € L¥((0,1);3,([0, 11)) € D'(10, 1[: ([0, 11)).
Problem (7) is then equivalent to

AM +BM + M = N.

The spectral properties of 4 and B are as follows.
Proposition 9. 4 and B satisfy Assumptions (D.G.1) and (D.G.2).

Proof

1. First, observe that the domains D(4) and D(B) are not dense in E,,. The
operator A has the same properties as its realization L. By direct computa-
tions, we prove, for each ¢, €]0, n], that

p(—L) > Zoyy = {z € C" : {Jarg(d)| < 7 — e}

and

1
-l
Vz € 2 qll(=L+A) [l <

= |z| cos (52)

Then
p(—A) 2 Zﬂ*fo

and

1
-1
VZ € Zn—eo“(A +Z) HL(EOC <

)= |z] cos (52)

Therefore A4 verifies (D.G.1) statement (i) with ¢, = m — €.
2. Now, concerning the operator B, we first verify that the domain D(B) is well
defined. Indeed, if M € D(B) one has

M e L>((0,1);X),
50 € L2((0,1);.X),

#°D,M € L=((0,1); X),

5 D,M) = DM € L>((0,1); X).

Moreover it is well known that if M and D,M belong to L*((0, 1); X) then M
admits a continuous representation on [0, 1], thus M(0) = 0 has a sense.
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3. Let us study the spectral equation
BM +:zM = h,

where h € E..
If Re(z) > 0, the solution of the problem

{ XM () + zM (1) = h(2),
M(0) =0

is given by

M(t) = /0 [ (’j;j o) “) dr.

On the other hand, one has, for a.e. ¢ € (0,1)

' "2 g
||M(t)||X</O (|h(r)||X12“e_Re(z)er d)dT

t L oy
< Hh”Eoc/ g R [T g
0

Ly Rl o i
<l [ e e
0

Re(2) 1-24 —Re(2) 1-24 ”h ”EOL

t
<||A||, e 2emrt U dr<
<l 5 [ < el

and
2 ! 2 2, 7Rezf’s’2“d\'
[ M (1) < / A e T T )de
0
t ‘L
_ / (t—21T2a|T—2ah(T)|XT—2;4 efRezftx 2 ds) dr
0

t
2a Rez [ ds 12|z
< HhHE%/O e eszs dr < F(z)'

Then M € E,, M(0) =0 and

- 1
H(B +Z) ||L(EOC) < RC(Z) .

Hence, for all ¢ €]0,7/2]
p(—=B) D Xrpp ={z€ C":|arg(z)|| < m/2 — € = €3}

Now, let us choose ¢, such that 7/2 — €; > ¢, then
eate=(n—e€)+ (1/2—€) >
Summing up we have (D.G.1).

821
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The assumption of commutativity (D.G.2) is checked by direct computa-
tions. [

Observe that, thanks to Theorem 7, 4 + B admits a closed extension A+B
and, for all 2 >0

(A+B+)" =1L,
which means that, for N € E, there exists a unique M € E,, such that

{M € D(4 + B),
(A+ B+ )M =N.

We then deduce the following result corresponding to w; defined by
wi(t,y) = M(1)(y).

Proposition 10. For h € E, there exists a unique wy € E., solution in the sense of
D'(10,1]; 75,([0, 1])) of the equation

*Dowi(t,.) — Dywy(t,.) + dwi (t,.) = h(z,.).

4.3. Second application of the sums

Now, set X = Cy([0,1]) and consider in the Banach space
Enot = {N € h§([0,1];X) : £ N € h}([0,1]; X)},
the operators L, A and B defined by

{D(L) = {d) € COO([Ov ”) N WZ,q(O’ 1)7q >1: d)/a d)” € CO,O([O’ 1])}7
(L)) = —¢"(v),

(11)
{D(A) ={M € Eyy : Yt € [0,1]M(t) € D(L)}, (12)
(AM)(1) = L(M (1)), t€][0,1]
and
{ D(B) = {M € Eno : Vt € (0,1)*D,;M € Eyi}, (13)
(BM)(t) = *D,M(t), te (0,1).
We have

Proposition 11. 4 and B satisfy (D.G.0), (D.G.1) and (D.G.2) in Epg.
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Proof. It is not difficult to prove that for each ¢, €]0, 7],
p(_A) ) Zﬂ*ﬂ)

and

- 1
Vz € Lo ll(d+2) g, < cos(=a)”
2
If M € D(B), then

M € hi([0,1];X),

M € hi([0,1];X),

2*D,M € h5([0,1];.X),

2(2*DM) = D,M € h5([0,1]; X).

Therefore the operator B is clearly well defined. It is enough to check the
spectral properties and the density. For the latter, one will use the density of
the space C2([0, 1];X) N Cy([0, 1];.X) in A5(]0, 1]; X) assuming that A5 (]0, 1];.X) is
equipped with the norm of the Holder space C°([0, 1];.X).

Let us show that the space

Epr = {4 1 € CH[0,1];X) N Co([0,1];X)}
is dense in Ey.. For this purpose we consider N € Ey,. Thus
N € h5([0,1];X) and ¢ **N € k([0,1];X).
Putting ~2*N = G, there exists a sequence
G, € C*([0,1];X) N Co([0, 1]; X)
such that
|G = Gulljo(xy = 0 asn— oo.
Now, let us define the sequence N, by N, = **G,. Then, for n — oo
IN = Nallye o,y = 167G = £*Gul o, yx) — 05
hence
IN = Null gy, = IN = Nallyo o) + 172N = £ Nallo 0,110
=N = Nullieo.pxy + 1G = Gallpoo, 1600 = 0-
On the other hand, &2 C D(B). Indeed if M € &, one has
M =y,
where € C*([0,1];X) N Cy([0, 1]; X). So
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{tzw € h([0,1};.X),
() = ¢ € h§([0,1];X)

and

D)) = 2o + 222Dy € ([0, 1]:X),
D)) = 207+ D € (0, 1]:.),

the function #—#**' belongs to A5([0,1];X) since a«> (1 +0)/2. Hence
&p. C D(B). We deduce the density of D(B) in Ep, and (D.G.0) follows.
Now, for i € Ey,, the spectral equation

M (t) + zM (t) = h(2),
{M(O) =0

for Re(z) > 0, admits a unique solution formally given by

M(t) = /0 t (hr(z? s “) dr.

Moreover, one has, for all r € (0,1)

[ ! 2
M)l < /0 (|h(r)||x1;2“eRe(Z)Ls d.v)dl_
t - ,
< Hh”Eho,/ 2 efRe(Z)ffS #ds 4.
0
! ( [A-22_g1-2
<l [ o g0
0

t
Hh” hdea 11 21/ ‘572“ Rezl ZxdT
0

_ il
= Re(z)

and

t L oy
el < [ (Pl e 0k
0
t
</ (““r“llr”h(r)ﬂ et )d
0
t W
< ||h||Ehol/ szae—Re(z)frg 2 deT
0

1|5,

= Re(z)
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We deduce from these estimates that M € Ey,, M(0) = 0 and

- 1
H(B +Z) ||L(Eh0]) < RC(Z).

Hence, for all ¢ €]0, /2]
p(=B) D Xippoe ={z € C",|Arg(z)| < m/2 — € = €g}.
Assumption (D.G.1) is then verified as above. This ends the proof of the

proposition. [

Using Theorem 5 for all ¢ > 1, we deduce that the operator (4 + B) is
closable, 4 + B + Al is invertible and its inverse coincides with the operator L;.
This leads to

Proposition 12. For h € Eyy, Problem (6) admits a unique strong solution wy such
that

{Wz € hy([0, 1]: X),
2w, € h5([0,1];X).

This result implies, that there exists a sequence (y,) € D(4) N D(B) such
that

% s Enol Wy,
tzaDth('? ) - Dan(v ) + an(7 ) —Fho h(a )

Then w;, is a distribution solution (i.e. w, € D'(]0, 1[; Co0([0, 1]))) of the equa-
tion

*Dow(t,.) — Diw(t,.) + dw(t,.) = h(1,.).

It is also a distribution solution in D'(]0, 1[; 2,([0,1])) and consequently
coincides with w;. We shall note w = w; = wy.

In order to prove that the convexity inequality of Theorem 6 is verified
with

F ={M € hg([0,1]; W, (0, 1)) : M € ([0, 1]; (0, 1))},

we need the following lemma.

Lemma 13. There exists a constant K > 0 (depending only on q) such that for all
function € W>4(0,1) N W, (0, 1), we have

110 < K47 1124 (14)
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Proof. Thanks to Poincaré’s inequality, we know that the norms ||¢||W1q and
[lW'|l,. are equivalent. Then it is enough to prove that

1/2 11/2
Il < KNI " 150

Fix a positive number p > 1. Using two integration by parts, we get for a.e.

€ (0,1), the identity

W) = / Gy, 2 (x) dx + / H(y.x)(x) d,

where
2 0<x <y,
G( ,x) = (1 x)““
o y<x<l
and
Hipx) _% 0<x <y,
Y, X) = ’_V“*I
Mol — y<x<l.

Let us set

(Ki) () = / Gy, X)W (x) dx,

then

1 Y ekt
sup / |G(y,x)|dx < sup / dx +
v Jo v o W

and

1
1
su G(y,x)|dy< ——.
pr\ (v,x)|dy 1

1 pt+1
(I —x) 1
-~ dx ;< ——
/y (1= p+2

Thanks to Schur interpolation lemma we obtain

1
”Kl ||L(L4,Lq) < ﬁ

By the same way, putting

(Kayp) (v / H(y,x
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we get
Kol gy < 2EED,
Therefore
91 < o 19D+ 20Dy,

For a fixed number vy > 0, put

then, for all u =1+ v

2u(p+1)

<20(u—1).
1 Clu—1)

Thus

2C
Yoo >0, Wl < ol + - 1l

2CHIWHL4
[

Wl <2V2VEIW' 2wl O

Now, for o =

we get

Lemma 14. There exists a constant K > 0, such that for all function w € D(A),
one has

1/2 1/2
il < Kllwll 2 14wl

Proof. Recall that
_ -2
[wll = ”Wth(%'-q(o,l)) + It g(W||hg(wo‘v'1(0_,1>)

and

{ D(4) = {w € Epo : Vte[ ,1w(t) € D(L)},
(Aw)(1) = L(w(1), 1€ [0,1].

Let w € D(4). Then

I9(6) —w(5) 0
. =ma , s _ .
g0y = M () oy + 58— —
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By virtue of Lemma 13, we have

1/2 1/2
(Ol 1001 < K@) 1D 012,

from which, we deduce that

12
2
0y < mix ot ||M) ( max |D3(w(0)], )

tel0,1] €[0,1]
1/2
<& (a0l ) ( ax () ||U,>
1/2 1/2 1/2 1/2
<Kl 4w iz ||w||,/ el 4¥littc,,
and
() = lygon _ ( (1) = w(s)ll ) v ( [(Aw)(0) = (Aw)(5)] ) v
=" =l o=l
1/2
< i sup 0 =965
N T
4 y 1/2
t) —
o [ sup 164w = Al |
i o=
Hence

1/2 1/2
[W}hg( lq) <K[ ]hé L9) [Aw]hé (L)

1/2 1/2 1/2 1/2
<K|\w||,,£ Lol Aw ||h£ 10 KWt ey 149 o

Thus, we obtain a part of the convexity inequality

1/2 1/2 1/2 1/2
1l a1 < KWl 1AWl o) < KWL 4wl

Using the same method for the term ||t~2*w|| e (whe(0.1))> WE can show that

_ — 1/2 — 1/2
2l oy < KNl vl

<K||f2“W||l/2 IIt‘Z“AWIII/2

Ehol Epor*

This completes the proof of the lemma. O

Finally, Theorem 6 leads to

Proposition 15. For h € E, Problem (6) admits a unique strong solution
w = wy = w, fulfilling the following regularity
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forall g > 1.

4.4. Other regularities

In this paragraph we analyze more regularities for the strong solution w by
inverting the variables ¢,y. We write the problem

{ *Dw(t,y) — Dyw(t,y) + Aw(t, ) = h(t,y),

Wiaa—r, = 0,
we have studied, in the form

tz‘“D,W(yJ) _DiW('y, t)—l—/lW()G f) :H(y7t)a (15)
VV‘@Q*}'] = 07

where
W(y,t) =w(t,y), H(y,t) = h(t,y)

and y, =]0, 1[x{1} in variables (y, ¢). By the anisotropy Lemma 4, we also have
H € hg(Q) = L£(0, 1;/5([0,1])) N A5 1[0, 1); Co ([0, 1]))

with respect to the variables (y,¢). Now, Problem (15) will be regarded as a
second order differential equation of elliptic type for which we can apply the
optimal results obtained in [4]. Let X = Cy([0, 1]), we then rewrite (15) in the
space X in the following abstract form

{DiW(y) +0(W(y) = —H(), (16)
w(0) =w(l) =0,

where we denote as usual W (y) = W(y,.). Here H € h{y([0, 1]; X).

4.4.1. First case
Define in X = Cy([0, 1]), the operator Q by

{D(Q) = Cl([O, leCO([Ovl])v (17)
Q) (1) = =Y/ (t) = (1), t€[0,1],

where as above, we assume that 1 is a fixed number in ]0, 2a — 1].
Now, for x € Cy([0, 1]), the spectral equation

O) =) =
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is equivalent to

{ EAY(e) + (1) + 2 (£) = —x(1),
%(0) = 0.

Thus for any z > 0, we have

e[ (o5

and
t 7( +")ft 721d
TOIE / (o) |e e L0 gy

t .
Sl [ e g
0

t N
<[nlly / o i g
0

t
(z+2) 1-24 _ —(z44) 1-24
< vl e / et dr
0

[l

this implies that the operator Q verifies

-1
(O —zI) ”L(X) < l_iz
In addition the two compatibility conditions

{—H(O) —0(0)=0€D(Q) =X,

{3c>0:vz>0 (O—z)"' € L(X) and

—H(1) - 0(1) =0 € D(Q) = X
are satisfied. Hence the results in [4,5] apply and give

Proposition 16. For H € h,([0, 1];.X), there exists a unique strict solution
W e C([0,1];X) N Coo([0, 1]; D(Q))

such that

() D2, QUF () € ([0, 1]:),

(i) sup ey ||D§W(J’)||DQ(G) < 0.

It is well known that the little real interpolation space Dy(c) cited in this
proposition (with respect to the variable ¢), coincides exactly with
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Do(a) = h5([0,1])

(See Lunardi [8]).
Applying the regularities in statement (i) to w with respect to the variables
(t,y) we deduce that

D2w e €((0, 1];47(10, 1)),
w € C'(]0,1]; h7([0, 1]).

The “double” regularity in statement (ii) means that
Dw e L*(0,1;4°([0,1])

(with respect to the variables (y,¢)), from which, and after going back to w, we
get

2 a .
D2w € 1 (10, 1]; ([0, 1)
(with respect to the variables (¢,y)).

4.4.2. Second case
In the same manner, Problem (16) can be considered in the space

L>*(0,1;X)
with the second member verifying

H € L*(0,1; A5 ([0, 1])) = L=(0, 1;Dg(0)),
and also the results in [5] apply to give

Proposition 17. For H € L>(0,1; Dy(0)

)
we w>(0,1;X)NL>(0,1;D(Q))
such that DiW, Oow(.) € L>(0,1;h°([0, 1])).

there exists a unique strict solution

One deduces that (with respect to the variables (z,y))

D2w e L2(0, 1 15((0, 1)),
Dow € L=(0,1; h5([0, 1]).

4.5. Back to v

Summarizing all the results on w obtained by the sum theory, we have
(i) we L>(0,1; g ([0, 1])),
(i) w € A3 ([0, 1]; Coo([(), 11)),
(iii) w € Ag([0, 1]; (0, 1),
(iv) > € L2(0, 1343, ([0, 1)),
( 0,1]; 7,4(0, 1))

v) 7w € hi([0,
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We recall that

olt.y) = w(r,y),
where 1 is a fixed number in 0, 2o — 1[.
Since the following functions

1’71 120

frelt [ e z”eAU )

are in C}([0, 1]), it is not difficult to obtain the above same regularities on o.
Then by virtue of Lemma 4 and the fact that J%,(0,1) is continuously
imbedded in Cy,([0, 1]), we deduce

v € h§(Q),

v € h§(Q),

v € 1 (10, 1 1,4(0, 1)), (18)
2 € hg([0,1]; W, (0, 1)).

Now using the regularities obtained by the approach given in [4,5], we have

D2 € ([0, 1]; h([0, 1]),

ve ([0, 1] k[0, 1)),

D2v e h*([0,1]; C([0,1]), (19)
D e L=(0,1;h([0,1]),

Dy e L0, 1;47(]0, 1])

from which we deduce by in virtue of Lemma 4 that

{Dzv € h(Q),
*Dy € h§(Q).

Summing up (18) and (19), we obtain Theorem 1.

Remark 18

1. Note that the first and second application of the sum theory was useful to
obtain the vector-valued weight regularities (with respect to 7).

2. The previous study can be extended in a natural way to the degenerate par-
abolic problems of general form

{ (1)’ Dio(t) + Lo(t) = k(z),
v(0) =0,

where L is an operator of general elliptic type with the fundamental
assumption: @¢’ is a Holder continuous function.
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