
Explicitly Solving Vectorial ODEs

B.Tasić, R.M.M.Mattheij
Department of Mathematics and Computing Science,

Eindhoven University of Technology,
PO Box 513, 5600 MB, The Netherlands

Abstract

This paper concerns a new method for finding numerical solutions of multivari-
ate ODE flows, where the flow field is not given explicitly. The method is based on
the existing implicit numerical methods, such as Euler Backward and the implicit
midpoint rule. The main aspect is that the method as such is explicit, but with the
similar accuracy and stability properties as the original (implicit) methods. A higher
dimensional analysis is given of both stability and accuracy. A couple of examples
illustrates this analysis.

Key words: ODE, flow, Euler Backward, implicit midpoint rule, inverse interpola-
tion, stability, implicit, explicit

1 Introduction

Solving ODEs (Ordinary Differential Equations) numerically is a well-studied problem
both in theory and in numerous practical applications. Examples can be found in al-
most all technical disciplines and many numerical methods are developed for the time
discretisation of an autonomous ODE

dx

dt
= u(x), x ∈ R

N (1.1)

Frequently the method of choice is some implicit method, like for stiff problems (see
e.g. [4, 8–10, 18, 23]) or problems where volume preservation is required (see e.g. [11]).
The drawback of these methods is that the time discretisation leads to a system of non-
linear equations which needs to be solved at every time-level. This is usually done by
some Newton type iterative method, which introduces additional computational costs
and numerical errors in finding the solution. Nevertheless this approach gives satis-
factory results in many applications and it became a “standard” way to (numerically)
implicitly solve certain ODEs. However, in problems where the velocity field u is not

1



given explicitly on the entire space domain of interest Γ ⊂ R
N, the use of an implicit

method is not straightforward. Here one need to approximate u and its Jacobian matrix
Du on Γ . This introduces new errors into the solution which cannot be neglected in the
general case. Examples of such ”implicit” problems are numerous. In problems from
fluid dynamics the velocity is often numerically computed from a PDE (Partial Differen-
tial Equation), i.e it is known at the vertices only. The position then follows from an ODE
given by (1.1). Often Γ is bounded, like a deforming material blob (see [11,14–17,24]). In
such a case only the boundary may be of interest to describe the evolution of this blob.
The velocity can also be the numerical solution of another ODE, like in BVP (Bound-
ary Value Problem), shown in [22], or when it is obtained experimentally. Examples
of experimentally obtained u can be found e.g. in electrical networks with nonlinear
elements, such as transistors, diodes, nonlinear resistors, etc. (see [5]).

In a previous paper (see [22]) we introduced a new method (the so-called flow
method), developed for solving the autonomous flow problem

{
dx
dt

= u(x), x ∈ R
N,

x(0) ∈ I(0),
(1.2)

where I(0) ⊆ Γ ⊂ R
N and the velocity is discretely given, i.e. it is given at some points

of Γ only. The method can be viewed as a modification of the Euler Backward method
(EB), where the autonomy of the problem is employed and the solution is obtained
by applying inverse interpolation. The result is a method which is explicit in a way,
but with the accuracy and the stability properties similar to EB. The main goal of this
paper is to extend the analysis given in [22], which was given for scalar case only, to
multivariate problems. Even though the method principle remains the same, a further
analysis is needed since multivariate inverse interpolation is more involved. We will
also extend the analysis of our method to the IMR (Implicit Midpoint Rule) method.
Since this method is closely related to EB (as we will show later), the implementation of
IMR into the flow method is straightforward. Since IMR is a symplectic integrator, this
allows us to employ our method in the applications where the volume preservation is
essential issue.

The paper is built up as follows. In Section 2, we first give an outline of the math-
ematical problem and describe the basic idea behind the method. We also briefly dis-
cuss the properties of the inverse interpolation, since it is an essential ingredient of the
method. The afore mentioned interpolation involves quite a complicated local error, jus-
tifying a separate error analysis, which is given in Section 3. In Section 4 it is shown that
we obtain a stability behaviour similar to that of EB, despite the fact that our method
is de facto explicit. We conclude the paper with some practical aspects of the method,
given in Section 5, where we illustrate the method by two examples for a given discrete
velocity field. The first example represents a problem where the velocity has to be found
experimentally and the second problem involves a numerical solution of a discretised
PDE.

2



2 Outline of the Method

Consider an autonomous flow problem (1.2) where x is a point of the flow and u(x) is
not given explicitly; however, we will assume that u(x) is Lipschitz continuous. Here
the flow, denoted by I(t), is meant to be the time evolution of a “continuum” of solu-
tions (see [6]). This means that, in order to track I(t) numerically in time, one needs to
properly discretise I(t) in space. Hence, we denote by {xj(t)}

q
j=1 ∈ I(t) a set of points

which gives a numerical spatial representation of the flow. Let us now assume that at a
particular time point, u(x) is obtained numerically (or experimentally) at some spatial
points, say {xk}

n
k=1 ∈ Γ , i.e. it is given by the set of values {uk}

n
k=1. Here Γ represents

a convex hull of the set {xk}
n
k=1. We distinguish {xk}

n
k=1 from {xj}

q
j=1 since u(x) can be

obtained not only at the flow points. Of course, I(t) ⊆ Γ should hold for all t to avoid
lack of information about the velocity. One very important application is where u(x) is
known only at the flow points ({xk}

n
k=1 = {xj}

q
j=1). The method’s main idea is inspired by

problems from fluid dynamics (see [11]) where the solution x is in fact the Eulerian posi-
tion of a deforming material blob. Here one needs to discretise the flow at the particular
time point to numerically obtain u, coming from PDE (in particular Stokes equation).
After this, information about u should be used to obtain the flow at the next time level.

To solve (1.2) we need a proper time discretisation. If the problem is stiff or the
volume preservation is required, the method of choice is most likely implicit. We will
restrict ourselves to the EB and IMR (with a fixed step size h), although the flow method
can be extended to any existing implicit method. For any point of the flow we denote
by xi

j the approximation of xj(t
i), at ti = i h. Then, by applying EB, the solution at the

next time-level follows from
xi+1

j = xi
j + h u(xi+1

j ). (2.1)

If we apply IMR then we have

xi+1
j = xi

j + h u

(

xi+1
j + xi

j

2

)

, (2.2)

which can be transformed into

x
i+1

2

j = xi
j +

h

2
u(x

i+1
2

j ), (2.3)

xi+1
j = 2 x

i+1
2

j − xi
j. (2.4)

Both (2.1) and (2.3) are systems of nonlinear equations which, in general, cannot be
solved directly. One possible way to solve them is to employ some Newton type itera-
tive method, but for that we need u(x) explicitly. The possible remedy is to find some
approximation, say ũ(x), from the available information (in particular by interpolation),
which can be used for iteration. Also the Newton iterative method requires the inverse
of the Jacobian matrix. Hence it must be approximated as well. All this can be expen-
sive computationally, especially if q is large. Also (theoretically more important) one

3



Figure 2.1: Flow method principle for 2-D (original) triangular grid.

would have to answer the obvious question how good these approximations should be
to guarantee the convergence of the iterative method, of course, if it converges at all.

We now come to our method. Let us first address the flow method based on EB. At
time level ti+1we define

x̂i+1
k := xk, (2.5)

and since (1.2) is autonomous, we clearly have

u(x̂i+1
k ) = u(xk) = uk. (2.6)

Taking x̂i+1
k now as the result of an EB step then this should correspond to a value x̂i

k

defined by
fk = x̂i

k := x̂i+1
k − h u(x̂i+1

k ) = xk − h uk. (2.7)

In Figure 2.1 a 2-D example is shown where the points {xk}
n
k=1are the vertices of a trian-

gular grid. Clearly there is a functional dependence between points at two consecutive
time-levels (which is, of course, analytically unknown). Nevertheless we can employ
this fact for finding approximate values for all points in Γ and thus for the solution
points. For the general point xi ∈ Γ we can rewrite (2.7) as

xi = xi+1− h u(xi+1) =: f(xi+1). (2.8)

If f(x) satisfies conditions of the inverse function theorem (see [1]), then there exists

g(x) = f−1(x), (2.9)

and we may write
xi+1 = g(xi). (2.10)

4



Since g is unknown in general, we can try to find an approximation, say p, by requiring
p(x̂i

k) = g(x̂i
k). An obvious choice is to interpolate points {(fk, xk)}

n
k=1 in 2N dimensional

space. Now the solution at the next time-level follows from

xi+1
j = p(xi

j). (2.11)

The choice of the interpolation method involved can be seen as arbitrary, but there
are some preferences which can help answering the question which method should be
used. Firstly, the interpolation should preferably be local to avoid big costs in com-
putations. Secondly, the additional (interpolation) error should be commensurate with
the local discretisation error to preserve the accuracy of EB. Finally, the interpolation
method should be applicable for irregular grids, since the new grid is obtained from the
original (possibly regular) grid by the nonlinear mapping f : R

N → R
N, defined by (2.8).

This mapping of the grid is probably the most crucial part of the method and will be
addressed separately.

If we use IMR, the method goes essentially similar. Indeed, it can be seen, from (2.3)
and (2.4), that IMR is just an EB step on a half-interval followed by an (explicit) algebraic
evaluation. This means that we can apply the flow method with a step-size h

2
and obtain

the solution at the half-interval by

x
i+1

2

j = p(xi
j). (2.12)

Now by using (2.12) in (2.4) we obtain the desired solution at the next time level.
The nonlinear system (2.8) is equivalent to a well-studied problem

F(x) = 0. (2.13)

The literature about this problem is rich (see e.g. [13]) and in the last decade a num-
ber of papers addressed the particular case arising from the use of implicit numerical
methods for solving ODEs. Conditions for existence and uniqueness of the solution
of (2.13) as well as a time step constraints for which these conditions are guaranteed
are given in [27] and [25]. Hence we will assume that the solution exists and that it is
unique. Our main interest here is to analyse the influence of the nonlinear mapping f
(under the influence of u) on our interpolation technique. Also we will assume that f is
a diffeomorphism (see [1]).

Let us assume that Γ (i.e I(ti) where all interpolation points are the flow points)
is discretised in space, i.e. the grid which covers Γ is defined by points {xk}

n
k=1 and

adequate elements: For example, one can think of a triangular grid in 2-D. For our
algorithm, the grid needs to be mapped into a new grid defined by points {fk}

n
k=1 and

elements of the same type. The diffeomorphism f can cause a change in the orientation
of the grid elements, causing an overlapping of elements in the new grid; this makes
interpolation difficult to handle or even highly ill-posed, which one should avoid of
course. It is known (see [3]) that the orientation of certain manifold mapped by f :

5



R
N → R

N is preserved if the Jacobian, say |Df|, of f is positive on that manifold. This
means that if

|Df| > 0, (2.14)

holds on a particular element in the original grid, the element in the new grid will have
the same orientation. Of course, this should hold for all elements, i.e. on the entire Γ .
Typically in stiff systems we have multiple time scales which are related to time-varying
eigenvalues of the Jacobian matrix of u, say λl(t), l = 1, . . . , N that are widely spread
(but with a significant gap between them) in the left half of the complex plane. In other
words all eigenvalues have negative real part. From (2.8) we see that the Jacobian matrix
of f reads

Df = IN − h Du, (2.15)

where IN is the identity matrix of order N. If we now express the Jacobian |Df| :=

det(Df) via the aforementioned eigenvalues of Du we have

|Df| =

N∏

l=1

[1 − h λl(t)]. (2.16)

From the characteristics of the stiff problems mentioned above, i.e. Re{λl(t)} < 0 and
(2.16), it is clear that (2.14) holds on the entire R

N. The condition (2.14) we therefore
define as a well-posedness of the method.

Throughout this section we have been concentrating on autonomous problems. We
remark that the method principle also holds for the class of the non-autonomous prob-
lems given by

ẋ = u(x) + w(t), (2.17)

where w is an explicitly given time dependent function. The interpolation is then done
only on the autonomous part of the velocity field and the solution at the next time-level
reads

xi+1
j = p(xi

j + h w(ti+1)). (2.18)

It can easily be shown (cf. [22]) that, for a case where the autonomous part is linear in x
and by applying (2.18) with p as the linear interpolation function, the result is identical
to one obtained by EB. For the general (non-autonomous) case the system

ẋ = u(t, x), (2.19)

can be transformed into an autonomous one, which will increase the system dimension
by one, i.e. by adding an equation

ṫ = 1, (2.20)

we have the autonomous problem.

6



3 Error Analysis

In [22] it was shown that for the univariate case the local error of the flow method
consists of two components: the local discretisation error of EB and the interpolation
error. Of course, the same also holds for the multivariate case. Assuming that u is
Lipschitz continuous and smooth enough, the local error of a particular point in the
flow can be expressed as

δ(xj(t
i+1), h) = d(xj(t

i+1), h) + r(xj(t
i), h) (3.1)

where d is the local discretisation error and r is the interpolation error. It is well known
(see e.g. [12]) that EB has consistency order 1 and IMR order 2, i.e. the error d is O(h)

and O(h2) respectively. The goal is thus to have the interpolation error commensurate
with the discretisation error. In the previous section we pointed out that the interpola-
tion method can be of arbitrary type if it satisfies all of three preferences noted there.
However, we will restrict ourselves to (piecewise) linear interpolation, i.e. the interpo-
lation by linear polynomials to function values at (N + 1) points in R

N, just for the ease
of argument. Also, this interpolation is local and it can be applied on irregular grids,
which means that the only requirement left is that of sufficient accuracy. The accuracy
of the linear interpolation is a well-studied problem in theory (for the error bounds for
various special cases see [2, 7, 20, 21]). We will use the result obtained in [26], where
a sharp pointwise L∞-error bound is obtained. But before applying this theory to our
problem, we remark that our interpolation domain, say Γ̂ , is actually a range of the
flow domain Γ . Therefore we denote all symbols related to Γ̂ by providing them with a
hat symbol above. Assume that Γ̂ is covered by a set of (nondegenerate) simplices, say
Γ̂m, m = 1, . . . , M. The simplex Γ̂m is defined by a set, say Ŝm, of affinely independent
N + 1 points in R

N. These points, which we denote by x̂m1, x̂m2, . . . , x̂m,N+1, are actually
the vertices of the new (mapped) grid simplex. Now, Γ̂m can be seen as a convex hull of
Ŝm, i.e.

Γ̂m := conv Ŝm, (3.2)

with diameter

â := diam Ŝm = max
x̂mr ,̂xms∈Ŝm

‖x̂mr− x̂ms‖ . (3.3)

The error bound is given for a scalar function g : R
N → R, while our problem

concerns a vectorial mapping g : R
N → R

N. However, all elements of the vector g, say
gl, l = 1, . . . , N, are defined on the same simplex Γ̂m, which allows us to do an element-
wise analysis first. For any gl we can define a linear interpolation map pl, l = 1, . . . , N,

defined on Γ̂m. One can show that (see [26])

|gl(x̂) − pl(x̂)| ≤ 1

2

(

R̂2 − ‖x̂ − ĉ‖2
)

∥

∥D2gl

∥

∥

∞,Γ̂m
, (3.4)

holds, where R̂ and ĉ are the radius and the center of the (unique) sphere containing
Ŝ. The norm ‖·‖ is the Euclidian norm and

∥

∥D2gl

∥

∥

∞,Γ̂m
represents the ∞−norm of the

7



second derivative D2gl on Γ̂m, defined as

∥

∥D2gl

∥

∥

∞,Γ̂m
:= sup

x̂∈Γ̂m

sup
ŷ∈RN

‖ŷ‖=1

∣

∣

∣
D2

ŷgl(x̂)
∣

∣

∣
. (3.5)

Here D ŷgl represents the derivative of gl in the direction ŷ.
Since all gl (and pl) are defined on the same simplex we have, by taking the ∞−norm

over |gl(x̂) − pl(x̂)| and
∥

∥D2gl

∥

∥

∞,Γ̂m
, l = 1, . . . , N

‖g(x) − p(x)‖∞,Γ̂m
:= max

l
|gl(x̂) − pl(x̂)| ≤ 1

2
(R̂2 − ‖x̂ − ĉ‖2

) max
l

∥

∥D2gl

∥

∥

∞,Γ̂m

=
1

2
(R̂2 − ‖x̂ − ĉ‖2

)
∥

∥D2g
∥

∥

∞,Γ̂m
(3.6)

The expression R̂2 − ‖x̂ − ĉ‖2 in Γ̂m has a maximum for the point x̂∗ ∈ Γ̂m, closest to ĉ.
Defining

d̂ := dist(ĉ, Γ̂m) = min
x̂∈Γ̂m

‖x̂ − ĉ‖ = ‖x̂∗ − ĉ‖ , (3.7)

we then find

r := ‖g − p‖L∞ (Γ̂m) ≤
1

2
(R̂2 − d̂2)

∥

∥D2g
∥

∥

∞,Γ̂m
. (3.8)

Now, we apply (3.8) to our analysis. This error bound is given, of course, for direct
interpolation. In our case it does not give explicit information since it still requires
knowledge of a second derivative of the unknown inverse function g and depends on
the geometry of the new grid. However, from (2.9), we find

Dg = [Df]−1,

D2g = −[Df]−1D2f [Df]−2, (3.9)

and, since Df = IN − h Du and D2f = −h D2u, we have

D2g = h [IN − h Du]−1D2u [IN − h Du]−2. (3.10)

Substituting (3.10) into (3.8), we can eliminate g, i.e the interpolation error bound reads

r(xi
j, h) ≤ h

2
(R̂2 − d̂2)

∥

∥[IN − h Du]−1D2u [IN − h Du]−2
∥

∥

∞,Γm
, (3.11)

where Γm is a simplex of the original grid, i.e the original of Γ̂m. Clearly, if ‖Du‖∞,Γm
is

large, which typically occurs in stiff problems (our problems of interest), then
∥

∥D2g
∥

∥

∞,Γ̂m

is not necessarily large due to the inversion of the matrix [IN − h Du].
The expression R̂2 − d̂2, present in the error bound, is strongly depending on the

diameter of the simplex Γ̂m and the geometry of the new grid. Hence, we will first relate
â to the diameter of the original grid, say a. By applying (2.7) in (3.3) we have

8



â = ‖x̂mq− x̂ms‖ = ‖xmq− xms− h (umq− ums)‖ . (3.12)

From the mean value theorem (see [1]), we have

u(xmq) − u(xms) = Du(x̃)(xmq− xms), x̃ ∈ Γm, (3.13)

Substituting (3.13) into (3.12) we obtain an estimate of â, i.e.

â = ‖(IN − h Du(x̃)) (xmq− xms)‖ ≤ ‖xmq− xms‖ ‖IN − h Du(x̃)‖ ≤ a ‖IN − h Du(x̃)‖ .

(3.14)
Note that ‖xmq− xms‖ ≤ a, since the diameter of the original grid is not necessarily
attached to the corresponding points with the same indexes of the new grid.

One cannot give a simple relation between R̂ − d̂ and â (i.e. a) in R
N in general.

Hence, we will access some important special cases by the following examples.
Example 1. For ĉ ∈ Γ̂m it can be shown (cf. [26]) that

sup

{
R̂2

â2
: ĉ ∈ Γ̂m

}

=
N

2(N + 1)
, (3.15)

which allows us to estimate

R̂2 ≤ N

2(N + 1)
a2 ‖IN − h Du(x̃)‖2. (3.16)

By using (3.16) and the fact that d̂ = 0, i.e. R̂2 − d̂2 = R̂2, the interpolation error bound
for a particular point in the flow reads

r
(

xi
j, h
)

≤ h

4

N

N + 1
a2 ‖IN − h Du(x̃)‖2

∥

∥[IN − h Du]−1D2u [IN − h Du]−2
∥

∥

∞,Γm
. �

(3.17)
Example 2. For the bivariate case (N = 2) we can also give the error bound if ĉ /∈ Γ̂m.

Here we have that x̂∗is exactly in the middle of the facet of length â, see Figure 3.1. Since
the line segment from ĉ to x̂∗ is orthogonal to the facet, Pythagoras’ theorem gives

R̂2 − d̂2 =
1

4
â2. (3.18)

This leads to the error bound

r
(

xi
j, h
)

≤ h

8
a2 ‖IN − h Du(x̃)‖2

∥

∥[IN − h Du]−1D2u [IN − h Du]−2
∥

∥

∞,Γm
. � (3.19)

For ĉ /∈ Γ̂m and N > 2 the relation (3.18) does not hold in general. Here we have an
interval of possible values for R̂ − d̂ depending on the geometry of Ŝ. We analyse this
for the case of interest N = 3 by the following example.

9



Figure 3.1: The circumscribed sphere of an obtuse triangle

Example 3. For N = 3 and ĉ /∈ Γ̂m, the point x̂∗ ∈ Γ̂m lies on a facet closest to ĉ. Since
the facet is a triangle, it can be acute or obtuse angled. This means that R̂ − d̂ may vary
between 1

3
â2 (in case of equilateral triangle) and 1

4
â2 (obtuse angled triangle). Hence,

by taking

R̂2 − d̂2 ≤ 1

3
â2, (3.20)

we have the error bound

r
(

xi
j, h
)

≤ h

6
a2 ‖IN − h Du(x̃)‖2

∥

∥[IN − h Du]−1D2u [IN − h Du]−2
∥

∥

∞,Γm
. � (3.21)

From (3.17), (3.19) and (3.21) it follows that the interpolation error is O(a2), meaning
that the local error of the flow method is order O(hs)+ O(a2), where s = 1, 2 for EB and
IMR respectively. Clearly this means that the original grid simplex size (defined by a)
should be as such that both local error components are of the same order. If a is larger,
then the interpolation error can become a dominant source of error, i.e. the accuracy of
the original implicit method may be lost. On the other hand by doing the interpolation
more accurately than needed, the error will not decrease below the error of the original
implicit method.

4 Stability

Numerical stability properties of the flow method should be similar to those of the im-
plicit method involved. In particular we will analyse EB for stiff problems, by studying

10



first variations. Let zi
j|j fixeddenote a small perturbation of the solution xi

j|j fixedof (2.11),

such that xi
j + zi

j|j fixed also satisfies (2.11) to first order. Now we have

xi+1
j + zi+1

j = p(xi
j + zi

j)
.
= p(xi

j) + Dp(xi
j) zi

j. (4.1)

By neglecting higher order terms we have

zi+1
j = Dp(xi

j) zi
j. (4.2)

For stability in a nonlinear situation it is sufficient to prove that the contractivity condi-
tion of the discrete equation (4.2) is satisfied (see e.g. [12]), i.e.

‖Dp(xi
j)‖ < 1. (4.3)

Before continuing we would like to relate (4.3) to the equivalent condition for EB, which
reads

‖[Df]−1‖ = ‖[IN − h Du]−1‖ < 1. (4.4)

Since Dp
.
= Dg = [Df]−1 one should expect that (4.3) and (4.4) are equivalent in a way.

Indeed, this can be shown as follows. Again for the ease of argument, we will stick to
the case where the interpolation (vectorial) polynomial is the piecewise linear function
w.r.t. x, i.e. p(x) on a certain simplex reads

p(x) = Ax + b. (4.5)

Clearly A = Dp
.
= Dg, which means that the matrix A−1 should be an approximation

of Df. To find A let us choose the simplex Γm from the original grid with vertices xk =

[x1k, x2k, . . . , xN,k]
T, k = 1, . . . , N + 1, and corresponding Γ̂m from the new grid with

vertices fk = [f1k, f2k, . . . , fN,k]
T, k = 1, . . . , N + 1, defined by (2.7). By applying this to

(4.5), we have
A = B C−1, (4.6)

where

B =











x12 − x11 x13 − x11 . . . x1,N+1− x11

x22 − x21 x23 − x21 x2,N+1− x21

...
xN,2− xN,1 xN,3− xN,1 xN,N+1− xN,1











, (4.7)

C =











f12 − f11 f13 − f11 . . . f1,N+1− f11

f22 − f21 f23 − f21 f2,N+1− f21

...
fN,2− fN,1 fN,3− fN,1 fN,N+1− fN,1











. (4.8)

For ease of argument we will choose vertices of Γm with coordinates

xlk = xl1 + δl+1,k∆xl, l = 1, . . . , N, k = 1, . . . , N + 1, (4.9)

11



Figure 4.1: 3-D example of the original grid simplex.

where δl+1,k is the Kronecker delta. This gives the (original) simplex where all vertices
are at the axes of the orthogonal coordinate system with the origin at x1 and ∆xl, l =

1, . . . , N are the lengths of edges connecting vertices x2, . . . , xN+1 with the origin x1. As
a 3-D illustration one should think of a tetrahedron which has three edges parallel to
x, y and z axes respectively, see Figure 4.1. By substituting (4.9) into (4.7) we have

B = diag[∆x1, ∆x2, . . . , ∆xN]. (4.10)

On the other hand, for elements in C, we have

fl,k+1− fl1 = ∆xk

(

δl,k− h
∂ul(x11, x21, . . . , ck, . . . , xN,1)

∂xk

)

, l, k = 1, . . . , N, (4.11)

where xk1 ≤ ck ≤ xk1 + ∆xk, i.e. ck ∈ Γm.
We can now use (4.10) and (4.11) to obtain A−1. From (4.6) we have

A−1 = C B−1 =

{

δl,k− h
∂ul(x11, x21, . . . , ck, . . . , xN,1)

∂xl

}N

k,j=1

. (4.12)

Clearly we have that A−1 is close to Df(xi+1
j ) = IN − Du(xi+1

j ) since xi+1
j ∈ Γm. This

means that the contractivity condition ‖A‖ < 1 of the flow method is equivalent to one
of EB, given by (4.4). Of course, this holds only if the well-posedness condition (2.14)
is satisfied; otherwise the interpolation can become ill-posed. In particular obtaining A
can represent a problem if C is ill-conditioned. However, as mentioned before, that is
typically not the case for stiff problems of interest.

5 Practical Aspects

In the previous sections we introduced our method and gave an error and stability anal-
ysis. In this section we will apply the flow method to two examples, where typically the

12



velocity field is not known explicitly. The first one concerns the situation where the
velocity is obtained experimentally. In particular we will solve a stiff problem coming
from electrical networks with nonlinear elements. Hence we apply the flow method
based on EB, showing that it has the desirable accuracy and stability properties. The
second example concerns a problem where the velocity is a numerical solution of the
divergence free velocity field, coming from boundary problem, that is part of a PDE.
The resulting ODE can be related to a Hamiltonian form, which means that the vol-
ume, defined by the flow, should be preserved during the time integration. A typical
symplectic numerical method, which has this property, is IMR (see [19]). Hence we
will apply the flow method based on IMR and show that a sufficient accuracy can be
achieved even for relatively long time integration intervals.

5.1 An Electrical Network

Consider an electrical network with two DC motors, power-supplied by the same source
and current protected by a nonlinear resistor, see Figure 5.1a. The most severe situation
is when both motor shafts (i.e. rotors) are blocked. Then currents are largest and the
equivalent electrical circuit is shown in Figure 5.1b. Here both motors are modeled as
serial connections of a resistor (Rk, k = 1, 2) and an inductor (Lk) and since both Rk and
Lk are relatively small all currents tend to increase under the influence of the relatively
large input voltage.

(a) Principle scheme (b) Electrical scheme with rotors blocked

Figure 5.1: DC motors supplied from the same power source

The task of the nonlinear resistor is to prevent currents not to increase (motors cur-
rent protection) under the high voltage at the input, here ug = ug(t). According to this
the transfer function (U-I characteristic) of the nonlinear resistor X is very steep, making
the problem stiff. Moreover, this characteristic is not known in closed form and usually
given by some tabular values. The mathematical model of the system follows from the

13



second Kirchhoff’s law, i.e

L1

di1

dt
= − u(i1 + i2) − R1i1 + ug(t),

L2

di2

dt
= − u(i1 + i2) − R2i2 + ug(t), (5.1)

where ik = ik(t) are the currents in the motors loops and u(i) is the voltage on the
nonlinear resistor. The system (5.1) can be rewritten as

ẋ = v(x) + w(t), (5.2)

where

x = [ i1, i2 ]T, w(t) = ug(t)[
1
L1

, 1
L2

]T,

v(x) = [ − 1
L1

(u(x1 + x2) + R1x1) , − 1
L2

(u(x1 + x2) + R2x2) ]T. (5.3)

Here we take ug(t) = V cos ωt and as typical parameters values R1 = 2Ω, R2 = 1Ω,
L1 = 10−2H, L2 = 10−4H, V = 220V and ω = 1 rad/s. The U-I transfer function u(x) is
obtained experimentally (at n points {yk}

n

k=1), see Table 5.1 and Figure 5.2.

y -10.0 -9.75 . . . -0.25 0.0 0.25 . . . 10.0

u(y) -1.0e+7 -8.376e+6 . . . -6.1e-5 0.0 6.1e-5 . . . 1.0e+7

Table 5.1: Discrete U-I transfer function of the nonlinear transistor

-15 -10 -5 0 5 10 15
-1

-0.5

0

0.5

1
x 10

7

i

u(i)

Figure 5.2: Discrete U-I transfer function of the nonlinear transistor

Of course, this set can be used both partially and totally. Hence we will assume that
n ≤ 81. Since we know u only for the given set {yk}

n

k=1 we can create a 2-D triangular

14



-20 -10 0 10 20
-10

-5

0

5

10

Figure 5.3: Triangular 2-D grid

grid with points xk,l = (x1,k,l, x2,k,l), l = 1, . . . , M, where the coordinates of all grid
points satisfy yk = x1,k,l+x2,k,l. Of course, the number of points M is arbitrary. But since
we would like to keep our original grid as good as possible, we keep the symmetry of
the grid, meaning that the distances between neighbouring points in both directions, say
∆x1 and ∆x2, are equal to ∆x, which is determined by the experimentally obtained data.
Hence we take M = n. Now we have a set of n2 points which can be triangularised,
obtaining 2-D grid (see Figure 5.3 where n = 6), for which v(x) is known in all vertices.

To show the influence of the interpolation error we do the following numerical ex-

periment. For fixed h = 0.01 and the flow points initial values I(0) =
{

[1.0, 0.0]
T
, [0.5, 0.5]

T
}

,

we compute the solutions up to the final time of computation Tf = 3.5. The compu-
tation is performed by using different numbers of the given tabular points, i.e. n =

11, 21, 41, 81, which correspond to the spatial step sizes ∆x = 2.0, 1.0, 0.5, 0.25 re-
spectively. Of course for a triangularisation as shown in Figure 5.3, the diameter of

all simplices reads a =
√

2∆x. To assess the accuracy of the flow method we compare
results with the EB solutions with a much smaller time step h∗ = 0.0001. By taking the
∞−norm of the global error at Tf over all flow points (and their both coordinates) we
obtain the dependance between the error and the diameter of the original grid simplex.
According to (3.19) this dependance should be quadratic (up to the constant), which can
be seen in Figure 5.4. Here the solid line represents the error of the flow method and the
dashed line a quadratic function q(a) = Ca2. Of course, such a behaviour of the global
error is due to the fact that the time step is much smaller than the simplex diameter,
making the interpolation error the dominant error source.

As the final remark we note that the flow method is numerically stable, i.e. there are
no time step constraints even for the highly stiff problems as this one.

15



0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

a

||
e|

|
∞

q(a)  = 0.1a2

Figure 5.4: Global error of the flow method as a function of the original grid diameter

5.2 A Boundary Problem

Consider the following problem

∇2 · u = F(x), x ∈ Γ, (5.4)

defined on some domain Γ with the boundary ∂Γ . Here x represents the point in Γ with
the velocity u = u(x). By describing Dirichlet boundary conditions (BC) for u, we have
a boundary value problem. To obtain the exact solution of such problem is in general
impossible. However, there is a variety of different numerical schemes, such as e.g.
finite elements or finite differences which give an approximation of the solution (up to
a certain accuracy) on a discrete (finite dimensional) subdomain, say Γ∗ ⊂ Γ . Actually
Γ ∗ represents the set of nodes of the grid which covers Γ . To solve the flow problem
(1.2) defined by such velocity and the initial condition I(0) ⊆ Γ , one needs to solve an
autonomous ODE with discretely given u.

Let us consider the problem (5.4), where x = [x, y]T is the point in Cartesian coordi-

nates, u = [ux(x, y), uy(x, y)]
T and

F(x, y) = − cos y − x sin y. (5.5)

The domain is a rectangle (see Figure 5.5a) defined by

Γ := {(x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 3 } . (5.6)

Let the boundary conditions be given by

u(x) |∂Γ =






[0, 0]
T
, x = 0,

[

−1
2
x2, 0

]T
, y = 0,

[

−9
2

cos y, 3 sin y
]T

, x = 3,
[

− cos 3
2

x2, x sin 3
]T

, y = 3.

(5.7)

16



0 3
0

3

x

y

Γ 

(a) The domain Γ

0  0.5 1  1.5 2  2.5 3  
0  

0.5

1  

1.5

2  

2.5

3  

x

y

Γ 

(b) The triangular grid

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

x

y

Γ 

I(0) 

(c) The flow initial condi-
tion

Figure 5.5: The boundary problem domain

To obtain the numerical solution of this problem one needs to discretise (5.4). To avoid
a discussion on error contamination due to this discretisation we will use the exact so-
lution of the boundary value problem, which we happen to know in this case. Indeed,
we find a solution of (5.4), (5.5), (5.6) and (5.7)

[

ux

uy

]

=

[

−1
2
x2 cos y

x sin y

]

. (5.8)

We will assume this to be known at a set of grid points {xk}
n

k=1 ∈ Γ ∗ only. Now, let us
define the flow problem

[

dx
dt
dy

dt

]

=

[

ux

uy

]

, (5.9)

with initial condition x(0) ∈ I(0), where I(0) is a quarter of an ellipse defined by

I(0) =

{

(x, y)

∣

∣

∣

∣

x2

4
+ y2 ≤ 1, x, y ≥ 0

}

. (5.10)

Clearly I(0) ⊂ Γ as shown in Figure 5.5c and it is discretised (as pointed out in Section 2)
by a set of points {xj}

q

j=1
. Assuming well-posedness these points can be placed at the

boundary of the flow only. Now we apply the flow method, defined by (2.4) and (2.12),
and compute the flow evolution in time, see Figure 5.6. Here we take h = 0.01, q = 10

and Tf = 2.0. To compare the results we also compute the solution of the ”standard”
IMR method with the same time step size. By taking the ∞−norm of the vector of differ-
ences between results for both coordinates we have the measure of the additional error
(coming from interpolation) introduced by the flow method. We perform the numerical
experiment by taking n = 6 × 6, 11 × 11, 21 × 21, 41 × 41, 81 × 81, for which we have
the corresponding spatial step (for both coordinates) ∆x = 0.6, 0.3, 0.15, 0.075, 0.0375

17



0 1 2 3
0

0.5

1

1.5

2

2.5

3

x

y

Figure 5.6: Quarter of ellipse time evolution

and a =
√

2∆x. Now we can observe how the interpolation error behaves in time, de-
pending on the size of the spatial step used, see Figure 5.7a. Here, the ticker the line
the smaller the grid step size. Note that even for a relatively large spatial step size
(∆x ≤ 0.3), the order of the error is smaller then O(h2), which is the order of IMR, even
for the relatively long time scale introduced here. This means that we can compute the
flow evolution relatively cheaply (without using extreme number of grid points) and
yet keep the interpolation error negligible comparing to the local discretisation error for
a large number of time steps. The interpolation error is again quadratically dependent
on the diameter of the simplex, which can be shown by computing the error at the end
of the computational time for different values of a. Again we obtain the relation, which
is close to quadratic function q(a) = Ca2, see Figure 5.7b (where C = 0.00075). For the
volume preservation results one should see [11], where this example was introduced.

Acknowledgment: The authors would like to thank H. G. ter Morsche for his valuable
advice on the interpolation error subject.

References

[1] T. Aubin. A Course in Differential Geometry. American Mathematical Society, 2001.

[2] O. Axelsson and V. A. Barker. Finite Element Solution of Boundary Value Problems.
Academic Press, Inc., 1984.

[3] W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry.
Academic Press, Inc., 1975.

18



0 0.5 1 1.5 2 2.5
10

-8

10
-6

10
-4

10
-2

t

||
e|

|
∞

(a) Error in time (ticker line - smaller ∆x)

0 0.2 0.4 0.6 0.8 1
0

2

4

6
x 10

-4

a

||
e|

|
∞

q(a)=Ca 2

(b) Error-diameter dependence

Figure 5.7: Error in time and as a function of the diameter

[4] G.D. Byrne and A.C. Hindmarsh. Stiff ODE solvers: A review of current and com-
ing attractions. Journal of Computational Physics, 70:1–62, 1987.

[5] P.R. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer. Analysis and design of analog
integrated circuits. John Wiley & Sons, 4th edition, 2001.

[6] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bi-
furcations of Vector Fields. Springer-Verlag, 1997.

[7] D. C. Handscomb. Errors of linear interpolation on a triangle. Technical Report
Research Report NA-95/09, Oxford University, 1995.

[8] A.C. Hindmarsh and L.R. Petzold. Algorithms and software for Ordinary Differ-
ential Equations and Differential-Algebraic Equations, Part I: Euler methods and
error estimation. Computers in Physics, 9:34–41, 1995.

[9] K. Laevsky and R.M.M. Mattheij. Determining the velocity as a kinematic bound-
ary condition in a glass pressing problem. Technical Report RANA 01-09, Eind-
hoven University Of Technology, 2001.

[10] D. Lanser, J.G Blom, and J.G. Verwer. Time integration of the shallow water equa-
tions in spherical geometry. Journal of Computational Physics, 171:373–393, 2001.

[11] R.M.M. Mattheij and K. Laevsky. Numerical volume preservation of a divergence
free fluid under symmetry. Technical Report RANA 01-11, Eindhoven University
Of Technology, 2001.

19



[12] R.M.M. Mattheij and J. Molenaar. Ordinary differential equations in theory and practice.
John Wiley & Sons, 1996.

[13] J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, Inc., 1970.

[14] S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: al-
gorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics,
79(1):12–49, 1988.

[15] D. Ramsden and G. Holloway. Evolution of vesicles subject to adhesion. Journal of
Computational Physics, 95:101–116, 1991.

[16] S.W. Rienstra and T.D. Chandra. Analytical approximations to the viscous glass
flow problem in the mould-plunger pressing process, including an investigation of
boundary conditions. Journal of Engineering Mathematics, 39:241–259, 2001.

[17] R. Rosso, A.M. Sonnet, and E.G. Virga. Evolution of vesicles subject to adhesion.
R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456:1523–1545, 2000.

[18] A. Sandu, F.A. Potra, V. Damian-Iordache, and G.R. Carmichael. Efficient imple-
mentation of fully implicit methods for atmospheric chemistry. Journal of Computa-
tional Physics, 129:101–110, 1996.

[19] J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian Problems. Chapman &
Hall, 1994.

[20] Yu. N. Subbotin. Dependence of estimates of a multidimensional piecewise poly-
nomial approximation on the geometric characteristics of the triangulation. Proc.
Steklov Inst. Math., 189:135–159, 1990.

[21] Yu. N. Subbotin. Error of the approximation by interpolation polynomials of small
degrees on n-simplices. Math. Notes, 48:1030–1037, 1990.

[22] B. Tasic and R.M.M.Mattheij. An explicit method for solving flows of ode. To appear
in Applied Mathematics and Computation.

[23] R.P. Tewarson, H. Wang, J.L. Stephenson, and J.F. Jen. Efficient solution of differ-
ential equations for kidneyconcentrating mechanism analyses. Appl. Math. Lett.,
4:69–72, 1991.

[24] G.A.L. van de Vorst. Numerical simulation of axisymmetric viscous sintering. En-
gineering Analysis with Boundary Elements, 14:193–207, 1995.

[25] J. L. M. van Dorsselaer and M. N. Spijker. The error committed by stopping the
Newton iteration in the numerical solution of stiff initial value problem. IMA Jour-
nal of Numerical Analysis, 14:183–209, 1994.

20



[26] S. Waldron. The error in linear interpolation at the vertices of a simplex. SIAM
Journal on Numerical Analysis, 35:1191–1200, 1998.

[27] J. Williams. Existence and uniqueness of solutions of the algebraic equations in the
bdf methods. Technical Report Numerical Analysis Report No. 272, University Of
Manchester, 1995.

21


