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1 Introduction

The differential equations (DEs) are the most widespread way to formulate the
evolution of any given system in many scientific areas. Therefore, for the last three
centuries, much effort has been made in trying to solve them.

Broadly speaking, we may divide the approaches to solving ODEs in the ones
that classify the ODE and the ones that do not (classificatory and non-classificatory
methods). Up to the end of the nineteenth century, we only had many (unconnected)
classificatory methods to try to deal with the solving of ODEs. Sophus Lie then
introduced his method [1, 2, 3] that was meant to be general and try to solve any
ODE, i.e., non-classificatory. Despite this appeal, the Lie approach had a short-
coming: namely, in order to deal with the ODE, one has to know the symmetries
of the given ODE. Unfortunately, this part of the procedure was not algorithmic
(mind you that the classificatory approach is algorithmic by nature). So, for many
decades, the Lie method was not put to much “practical” use since to “guess” the
symmetries was considered to be as hard as guessing the solution to the ODE itself.
In [4, 5], an attempt was made to make this searching for the symmetries to the
ODE practical and, consequently, make the Lie method more used.

Even thought the attempt mentioned above was very successful, the procedures
applied to find the symmetries were heuristic. So, a non- classificatory algorithmic

approach was still missing. The first algorithmic approach applicable to solving
first order ordinary differential equations (FOODEs) was made by M. Prelle and
M. Singer [6]. The attractiveness of the PS method lies not only in its basis on
a totally different theoretical point of view but, also in the fact that, if the given
FOODE has a solution in terms of elementary functions, the method guarantees that
this solution will be found (though, in principle it can admittedly take an infinite
amount of time to do so). The original PS method was built around a system of
two autonomous FOODEs of the form ẋ = P (x, y), ẏ = P(x, y) with P and P in
C [x, y] or, equivalently, the form y′ = R(x, y), with R(x, y) a rational function of
its arguments.

The PS approach has its limitations, for instance, it deals only with rational

FOODEs. But, since it is so powerful in many respects, it has generated many
extensions [7, 8, 9, 10, 11, 12, 13, 14]

Nevertheless, all these extensions deal only with FOODEs. In particular, the
second order ordinary differential equations (SOODEs) play a very important role,
for instance, in the physical sciences. So, with this in mind, we have produced [17]
a PS-type approach to deal with SOODEs. This approach dealt with SOODEs that
presented elementary2 solutions (with two elementary first order invariants).

Here, we present a different approach that, besides dealing with a much broader
class of SOODEs (those with at least one elementary first order invariant), does not
depend on a conjecture about the general structure of the first order invariants.

In section 2, we present the state of the art up to the present paper. In the
following section, we introduce some important theoretical results for the building
of the algorithm to find the integrating factor. In section 4, we present the algorithm
for finding the integrating factor with examples of its application. Finally, we present
our conclusions and point out some directions to further our work.

2For a formal definition of elementary function, see [15].
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2 Earlier Results

In the paper [6], one can find an important result that, translated to the case of
SOODEs of the form

y′′ =
M(x, y, y′)

N(x, y, y′)
= φ(x, y, y′), (1)

where M and N are polynomials in (x, y, y′), can be stated as:

Theorem 1: If the SOODE (1) has a first order invariant that can be written
in terms of elementary functions, then it has one of the form:

I = w0 +
m∑

i

ci ln(wi), (2)

where m is an integer and the w′s are algebraic functions3 of (x, y, y′).

The integrating factor for a SOODE of the form (1) is defined by:

R(φ− y′′) =
dI(x, y, y′)

dx
(3)

where d
dx represents the total derivative with respect to x.

Bellow we will present some results and definitions (previously presented on [17])
that we will need. First let us remember that, on the solutions, dI = Ix dx+ Iy dy+
Iy′ dy

′ = 0. So, from equation (3), we have:

R(φdx− dy′) = Ix dx+ Iy dy + Iy′ dy
′ = dI = 0. (4)

Since y′ dx = dy, we have

R
[
(φ+ S y′) dx− S dy − dy′

]
= dI = 0, (5)

adding the null term S y′ dx−S dy, where S is a function of (x, y, y′). From equation
(5), we have:

Ix = R(φ+ Sy′),

Iy = −RS, (6)

Iy′ = −R,

that must satisfy the compatibility conditions. Thus, defining the differential oper-
ator D:

D ≡ ∂x + y′∂y + φ∂y′ , (7)

after a little algebra, that can be shown to be equivalent to:

D[R] = −R(S + φy′), (8)

D[RS] = −Rφy. (9)

3For a formal definition of algebraic function, see [15].
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3 New theoretical results concerning the func-

tion S

Let us start this section by stating a corollary to theorem 1 concerning S and R.

Corollary 1: If a SOODE of the form (1) has a first order elementary invariant
then the integrating factor R for such an SOODE and the function S defined in the
previous section can be written as algebraic functions of (x, y, y′).

Proof: Using the above mentioned result by Prelle and Singer, there is always
a first order invariant I = w0 +

∑m
i ci ln(wi) for the SOODE. So we have, using

equation (3),

R(
M

N
− y′′) = Ix + y′Iy + y′′Iy′ ⇒ R = −Iy′ (10)

where Iu ≡ ∂uI. From equation (2), we have:

Iy′ = w0y′ +
m∑

i

ci
wiy′

wi
. (11)

Then Iy′ is an algebraic function of (x, y, y′) and, by equation (10), so is R.
From equations (6), one can see that:

S =
Iy
Iy′

=
w0y +

∑m
i ci

wiy

wi

w0y′ +
∑m

i ci
wiy′

wi

. (12)

Therefore, S is also an algebraic function of (x, y, y′).✷

Besides that, working on equations (8) and (9), we get[17]:

D[S] = S2 + φy′ S − φy =
M
N , (13)

where M and N are given by

M ≡ (NS)2 + (NMy′ −MNy′)S − (NMy −MNy), (14)

N ≡ N2. (15)

Concerning eq.(13) we can demonstrate the following theorem:

Theorem 2: Consider the operator defined by DS ≡ M ∂S +N D. If P is an
eigenpolynomial of DS (i.e., DS [P ] = λP , where λ is a polynomial) that contains S,
then P = 0 defines a particular solution of eq.(13). Conversely, If P is a polynomial
that contains S, such that P = 0 defines a particular solution of eq.(13), then
P is either an eigenpolynomial of DS or P is an absolute invariant of the Lie
transformation group defined by DS.

Proof: In order to demonstrate theorem 2 we will, first, prove the following lema:
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Lema 1: If eq.(13) (D[S] = M/N ) has an algebraic solution defined by
∑

i aiS
i =

0, where the ai are polynomials in (x, y, y′), then

∑

i

(
ND[ai]S

i +MaiiS
i−1

)
= 0. (16)

Conversely, if
∑

i

(ND[ai]S
i +MaiiS

i−1
)
= 0 then

∑
i aiS

i = 0 defines an
algebraic function (S) as a particular solution of eq.(13).

Proof of Lema 1: We begin by proving the first part of the Lema. Let∑
i aiS

i = 0 define an algebraic particular solution of eq.(13). Applying the op-
erator D on

∑
i aiS

i = 0, one gets:

∑

i

(
D[ai]S

i + aiiS
i−1D[S]

)
= 0 ⇒

∑

i

(
D[ai]S

i + aiiS
i−1M

N

)
= 0.

Multiplying this by N we get eq.(16).
Let us now prove the converse. Consider that eq.(16) applies. Multiplying it by

N and remembering that S obeys D[S] = M/N , one gets:

∑

i

(
D[ai]S

i + aiiS
i−1M

N

)
= 0 ⇒ −

∑

i

(
D[ai]S

i
)
/
∑

i

(
aiiS

i−1
)
=

M
N (17)

However, note that, if we have an algebraic function (B) defined by
∑

i biB
i = 0,

then D[B] can be found as follows:

D

[
∑

i

biB
i

]
= 0 ⇒

∑

i

(
D[bi]B

i + biiB
i−1D[B]

)
= 0 ⇒

D[B] = −
∑

i

(
D[bi]B

i
)
/
∑

i

(
biiB

i−1
)

Therefore, one can see that eq.(17) can be put in the form:

D[S] =
M
N , (18)

where S is an algebraic function defined by
∑

i aiS
i = 0. ✷

Now, using Lema 1, we are going to demonstrate Theorem 2.
Consider that P is an eigenpolynomial of DS that contains S. By definition,

DS [P ] = λP , where λ is a polynomial. So, writing P =
∑

i aiS
i, where the ai’s are

polynomials in (x, y, y′), we have:

∑

i

(
ND[ai]S

i +MaiiS
i−1

)
= λP (19)

Over the algebraic function defined by P = 0, we get
∑

i

(ND[ai]S
i +MaiiS

i−1
)
=

0. This, using Lema 1, implies that
∑

i aiS
i = 0 defines a particular solution to

eq.(13).
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Conversely, consider that P is a polynomial that contains S, such that P =∑
i aiS

i = 0 defines a particular solution of eq.(13). Again, via Lema 1, we have
that: ∑

i

(
ND[ai]S

i +MaiiS
i−1

)
= 0. (20)

Consider now the following operator:

O = N2(x1, x2, x3)

(
∂x1

+ x3∂x2
+

M(x1, x2, x3)

N(x1, x2, x3)
∂x3

)
+M(x1, x2, x3, x4)∂x4

(21)

Applying O to a generic polynomial P =
∑

i cix
i
4, where the ci’s are polynomials in

(x1, x2, x3), one obtains:

O[P] =
∑

i

(
N2(x1, x2, x3)D[ci]x

i
4 +M(x1, x2, x3, x4)ciix

i−1
4

)
(22)

where D ≡
(
∂x1

+ x3∂x2
+ M(x1,x2,x3)

N(x1,x2,x3)
∂x3

)
.

Since the terms multiplying the partial derivatives are polynomials, applying O
to a polynomial will generate a polynomial. So, from eq.(22), we have:

∑

i

(
N2(x1, x2, x3)D[ci]x

i
4 +M(x1, x2, x3, x4)ciix

i−1
4

)
= Q (23)

where Q is a polynomial in (x1, x2, x3, x4).
Note that the left-hand side of equations (23) and (20) are formally equiva-

lent. Consider that the hypothesis of the theorem 2 apply, i.e., P =
∑

i cix
i
4 = 0

defines a algebraic function x4(x1, x2, x3) that is a particular solution of D[x4] =
M(x1, x2, x3, x4)/N (x1, x2, x3). Lema 1 implies then that, if we substitute the func-
tion x4 = RootOf(

∑
i cix

i
4) into eq.(23), we get 0 = Q. Therefore, P = 0 ⇒ Q =

0. Since both P and Q are polynomials we have two possibilities:

• Q is identically null - in that case, P is an absolute invariant of the Lie trans-
formation group defined by the operator O.

• P is a factor of Q - in that case, Q = λP, where λ is a polynomial in
(x1, x2, x3, x4) and Q is a relative invariant of the Lie transformation group
defined by the operator O.

This completes the proof of theorem 2.✷

From the results above we may finally conclude:

Corollary 2: If the SOODE (1) has an elementary first integral, then there
is a polynomial P (containing S) that is either an eigenpolynomial of DS or is an
absolute invariant of the Lie transformation group defined by DS .

Proof: From corollary 1, since eq.(1) has a first order elementary invariant,
there is an algebraic function S that satisfies eq.(13). So, by definition, there is a
polynomial P (that contains S) such that P = 0 defines S. From theorem 2, this
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implies that the polynomial P is either an eigenpolynomial of DS or is an absolute
invariant of the Lie transformation group defined by DS .✷

These theoretical results provide us an algorithm to find S. Briefly, in words,
what we have to do is the following:

• Find the eigenpolynomials of the DS operator containing S. Let us call them
Pi.

• In order to find S, we have to choose one of those Pi (let us call it P ) that
contains S and solve the equation P = 0 for S.

• If you succeed in doing the above steps, you would have found S for the
SOODE you are dealing with.

The importance of these results and the above sketched method is that, as we
shall briefly see, the finding of the algebraic function S will allow us to produce a
semi-algorithmic method to find the integrating factor (and, consequently, the first
order invariant) for SOODEs of the type described in eq.(1).

4 Finding the integrating factor and the first

integral

In what follows, we are going to demonstrate a result concerning the general struc-
ture of R, Let us state that result as a theorem.

Theorem 3: Consider a SOODE of the form (1), where M and N are poly-
nomials in (x, y, y′), that presents an elementary first order invariant I. Then the
integrating factor R for this SOODE can be written as:

R =
∏

i

fni

i (24)

where fi are irreducible polynomials in (x, y, y′, S), which are eigenpolynomials of
the operator D ≡ N D or are factors of N and ni are non-zero rational numbers.

Proof:

Suppose that the hypothesis of the theorem is satisfied. Re-writing equation (4):

R

N

[
(M + S N y′) dx− S N dy −N dy′

]
= dI = 0 (25)

For the sake of simplicity, let us establish some notation: M ≡ (M + y′N S),
N ≡ −(N S) and R ≡ (RN ). We can write Ix = RM and Iy = −RN and imposing
the compatibility condition Ixy = Iyx, we have ∂y(RM) = −∂x(RN). Expanding
this

Ry M +RxN = −R(M y +Nx) ⇒ D [R]

R
= −(M y +Nx) (26)

where D ≡ N∂x +M∂y.
SinceM and N are polynomials in (x, y, S)4, equation (26) is formally equivalent

to the equation which establish the conditions for the theorem by Prelle and Singer

4Note that M and N are polynomials in y′ as well.
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[6] with the extension by Shtokhamer [7]5. More formally, consider the FOODE
defined by:

y′ =
M̃

Ñ
(27)

where M̃ and Ñ are the polynomials obtained by replacing y′ by a constant k in
M and N respectively. Then we can write the solution for the FOODE (27) as
Ĩ = C, where Ĩ is defined by replacing y′ (by the constant k) on I. By hypothesis,
I is elementary and, consequently, Ĩ is also elementary. Therefore, by the Theorem
due to Prelle and Singer [6] and the Shtokhamer’s extension [7], the integrating
factor R̃ (defined by replacing y′ (by the constant k) on R) for equation (27) can
be written as

∏
i f̃

ni

i , where f̃i are irreducible polynomials in (x, y, S). We could
proceed analogously for the other two possible pairings of variables (i.e., (x, y′) and
(y, y′)). More explicitly, in the reasoning leading to equation (26), we could have
imposed the compatibility condition Ixy′ = Iy′x and, in the same fashion we did
above for the pairing (x, y), conclude that the integrating factor can be written
as a product of irreducible polynomials in (x, y′, S). The same can be done for
the pairing (y, y′). So, we can conclude that R can be written as a product of
irreducible polynomials in (x, y, y′, S). Since R ≡ (RN ), and N is a polynomial in
(x, y, y′), finally we have that R =

∏
i f

ni

i , where fi are irreducible polynomials in
(x, y, y′, S) and ni are non-zero rational numbers.

Let us now prove that the fi are eigenpolynomials of the operator D or factors
of N . From equation (8) and remembering that R ≡ (RN ), we have:

D[RN ]

RN
= −S − N My′ −M Ny′

N2
(28)

multiplying both sides of (28) by N2, we get

N2 D[R]

R
+N D[N ] = −N2 S − (N My′ −M Ny′) (29)

and finally,

N
D[R]

R
= −N D[N ]−N2 S − (N My′ −M Ny′). (30)

Since the right-hand side of (30) is a polynomial in (x, y, y′, S), so is N D[R]

R
. Using

(24) this implies that

N
D[R]

R
=

∑

i

niN
D[fi]

fi
. (31)

is a polynomial. Since fi are irreducible, independent polynomials, we may conclude
that: either fi|D[fi] or fi is a factor of N .✷

In order to obtain the integrating factor R, we are going to use eq.(8). Dividing
it by R, we get:

D[R]/R = −(S + φy′) = −(S +
NMy′ −MNy′

N2
) (32)

5Notice that, since S is an algebraic function of (x, y, y′), it is a root of a polynomial equation of
the form

∑
i piS

i = 0, where pi are polynomials in (x, y, y′). Therefore, its derivatives can be expressed
in terms of rational powers of itself. So, one may consider that would be dealing with a Shtokhamer
extension with U = S.

8



Multiplying both sides of the equation above by N2, one has:

N2D[R]/R = −(SN2+NMy′ −MNy′) ⇒ ND[R]/R = −(SN2 +NMy′ −MNy′)
(33)

Due to the results of theorem 3, the equation (33) above it can be solved in the
same manner as in the methods inspired on the Prelle- Singer Procedure. Once R
is found as a function of (x, y, y′, S), we can substitute the known S (see section 3)
and, finally, from eqs.(6), find the first order invariant via quadratures:

I(x, y, y′) =

∫
R

(
φ+ Sy ′

)
dx −

∫
[RS +

∂

∂y

∫
R

(
φ+ Sy ′

)
dx]dy −

∫ [
R+

∂

∂y ′

(∫
R

(
φ+ Sy ′

)
dx−

∫
[RS +

∂

∂y

∫
R

(
φ+ Sy ′

)
dx]dy

)]
dy ′. (34)

That concludes the presentation of our proposed approach which is a semi-
algorithm procedure to reduce soodes of the form of eq.(1).

4.1 Example

Here we are going to briefly introduce an example of a non-trivial6 SOODE that
illustrates the results displayed above.

Consider the SOODE:

y′′ = − (y′)2 + 2 (y′)3 − 1− 2 y′

−x− (y′)x− (y′)y − 1 + (y′)2
(35)

For this SOODE, the operator D becomes:

D =
(
y′2 + 2 y′3 − 1− 2 y′

)
∂y′ +

(
x+ y′ x+ y′ y + 1− y′2

)
y′ ∂y +

(
x+ y′ x+ y′ y + 1− y′2

)
∂x, (36)

and the operator DS is:
DS = N D +M ∂s (37)

where M = 2 s2xy′y + 2 s2y′2xy + 7 sy′2x+ 4 sy′3x + s2 + s2x2 + 2 s2x − 2 s2y′2 +
s2y′4 − sx+4 sy′2 − 2 sy′4 + sy+4 sy′3y− 2 s2y′2x+ s2y′2y2 − 2 s2y′3y+2 s2y′x2 +
2 sy′x− 2 s− y′ + s2y′2x2 − 2 s2y′3x+ 2 s2y′y − 2 y′2 + y′3 + 2 y′4 + sy′2y + 2 s2y′x.

The polynomial P =
(
x+ y′x+ y′y + 1− y′2

)
S + 1 − y′2 is a eigenpolynomial

of the DS operator. So, P = 0 defines S as:

S = − −1 + y′2

x+ y′x+ y′y + 1− y′2
(38)

In order to calculate the integrating factor R, we need (see equations 31 e 32)
to find the eigenpolynomials of the D operator. These are found to be (up to the
first degree):

f1 = 1 + y′

f2 = 1− y′

f3 = 1 + 2 y′

6For instance, the MAPLE package, release 7, could not reduce it.
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and, for this particular case, these are sufficient (together with N) to build the
integrating factor R. Combining equations 31 and 32 and solving for the ni’s we
have that {n1 = −3/2, n2 = −3/2, n3 = 0}. So, R is found to be7:

R =
x+ y′x+ y′y + 1− y′2

((y′ − 1) (1 + y′))3/2
(39)

This leads to the first order invariant given by:

I =
x+ y + y′x√

−1 + y′2
+ ln

(
y′ +

√
−1 + y′2

)
. (40)

5 Computational considerations

Here, we are going to introduce an alternative way of calculating the integrating
factor for a given SOODE. Why do we call this section computational considera-
tions? The reason is that the material contained in this section is not applicable
to all SOODEs8 of the form of eq.(1) and, indeed, we do not have a criteria of
applicability. But, on the other hand, the method we are about to present is “less
costly” computationally, therefore could be useful in practical applications. In the
following, we will be using some results from the Lie theory.

Let us show a relation between the function S and a symmetry of the SOODE
(1). Making the following transformation

S = −D[η]

η
(41)

eq.(13) becomes

D2[η] = φy′ D[η] + φy η. (42)

From Lie theory we can see that eq.(42) represents the condition for a SOODE
(1) to have a symmetry [0, η]. So, from (41) we can find a symmetry given by

η = e−
∫

S dx. (43)

Looking at eq.(5) we can infer that R is also an integrating factor for the auxiliary
FOODE defined by

dy′

dy
= S, (44)

where x is regarded as a parameter. Besides, for this FOODE, [η,D[η]] is a point
symmetry. So, R is given by

R =
1

η S +D[η]
. (45)

If in (45) we use η defined by (43) we would get a singular R. However, eq.(42)
has another solution independent from η given by

7Note that R is formed by the product fn1

1
fn2

2
fn3

3
N1 = f

−3/2
1

f
−3/2
2

N1.
8Note that the method presented on the previous section is a general semi-algorithmic approach to

deal with SOODEs of the form (1) that present an elementary first order invariant.
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η = η

∫
e
∫

φy′dx

η2
dx. (46)

Using this η in (45) we get R and, once this is done, we can calculate the first
integral I by using simple quadratures.

Actually, trying to solve eq.(43) could be complex. The operator
∫
S dx that

appears on equation (43) is meant to be the inverse of operator D (defined on
(13))9. As one might expect, actually finding η from (43) could be trick. Actually,
in general, it will be impossible to integrate (43) and that is the reason why this
shortcut is not applicable in general.

5.1 Example

Consider the SOODE

y′′ = − 2 y′2x2 − 2 y′2 − 2xy′y − y2x4 + 2 y2x2 − y2

2y (x2 − 1)
. (47)

Constructing the DS operator we get that

y2
(
x2 − 1

)
− S2y2 − y′

2
+ 2Sy′y (48)

is an eigenpolynomial of it. Then S is given by S = y′/y +
√
x2 − 1 and η, η are

respectively

η =

√
x+

√
x2 − 1

y e
x
√

x2−1

2

, η =

√
x+

√
x2 − 1

∫ √
x−1

√
x+1ex

√
x2−1

x+
√
x2−1

dx

y e
x
√

x2−1

2

. (49)

R can be written as

R =
y
√
x+

√
x2 − 1

√
x2 − 1e

x
√

x2−1

2

(50)

leading to the following first integral:

I =

√
x+

√
x2 − 1

(
2y′y +

√
x2 − 1y2

)

√
x2 − 1e

x
√

x2−1

2

. (51)

6 Conclusion

In [17], we have developed a method, based on a conjecture, to deal with SOODEs
that presented an elementary solution (possessing two elementary first order invari-
ants).

In that same paper, we have introduced a function S to transform the Pfaffian
equation related to the particular SOODE under consideration into a 1-form pro-
portional to differential of the first order differential invariant. That function S was
instrumental in finding the integrating factor for the SOODE.

9Actually, this meaning for the operator
∫
is true for the whole of the present section.
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Here, in the present paper, we introduce many theoretical results concerning
that function S and present an way to calculated it via a Darboux-type procedure.
Here also the function S is used to produce the integrating factor.

We then demonstrate general results about the structure of the integrating factor
R and that we can calculate it using a procedure very similar to the one inspired
by the original work by Prelle-Singer [6] (applicable for FOODEs). These results
assure that we have a semi- algorithmic procedure to deal with rational SOODEs,
presenting at least one elementary first order invariant, i.e., there is no need to
posses two such invariants and, consequently, we can cover a much broader class of
SOODEs than before [17].

In the above section, we introduce an alternative way to calculate R from the
knowledge of S for restricted cases. The motivation for that method is that, the
general method, sometimes, can be computationally very demanding and it may be
worth to have a go in the “shortcut” before embarking on long calculations (despite
the general case being the sure think).

We are searching for better algorithms for the many steps of the method pre-
sented here in order to make it computationally more efficient. We are also working
on a full computational implementation of the method as it stands today.
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