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Abstract

Derived from the Markov character only, the master equation of

chemical reactions is an accurate stochastic description of quite general

systems in chemistry. Exact solutions of this equation are rare and

the most frequently used approximative solution method is to write

down the corresponding set of reaction rate equations. In many cases

this approximation is not valid, or only partially so, as stochastic

effects caused by the natural noise present in the full description of

the problem are poorly captured. In this paper it is shown how a

certain set of higher order equations can be derived. It is shown by

theory and example that stochastic effects are better captured using

this technique while still maintaining the computational advantages

of the reaction rate approach.
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1 Introduction

Under fairly mild assumptions on the character of chemical reactions, all
reacting systems obey the master equation. For D reacting species this is a
differential-difference equation in D dimensions governing the behavior of the
probability distribution of the systems different states. This equation suffers
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from the well-known ”curse of dimensionality”; — each species adds one
dimension to the problem leading to a computational complexity that grows
exponentially. As is to be expected, this equation is only rarely analytically
solvable and numerical methods for solving it are of interest both in research
and practice.

One classical approach to simulate chemical reactions is to derive, under
suitable assumptions, deterministic or reaction rate equations which is a set
of D ODEs governing some kind of average value of the unknowns, e.g. the
expected value of the total number of molecules of the various species present
in the system.

This typically works well when the number of molecules is large and/or
when the system considered is in a state reasonably well separated from the
critical points in phase-space. These conditions are typically always met in
test-tubes containing large samples of, say, 1012 molecules, especially when
the system is driven towards near equilibrium positions or even to steady-
state.

The situation is clearly different when biological systems inside living cells
are considered. Here, the number of molecules is frequently less than 102[8]
and the system is often driven towards critical points for biological reasons.
It is intuitively clear that under such circumstances the inherent stochasticity
of the system plays a vital role. Close to a critical point, for instance, the
inherent small fluctuation present in one variable produces a loss of mass in
a direction that clearly can affect the rest of the system (and in some cases
rather drastically so).

A second classical approach is to simulate the system by a stochastic
method of some kind. Gillespie’s method[7], or versions of it[6], are the
methods in most frequent usage. Such methods share in common that they
are exact (in a statistical sense) and that simulating one trajectory is per-
formed at a relatively low computational cost. However, such methods still
have a drawback for systems near unstable points or for large reaction rate
constants since small time-steps are taken[3] and since many trajectories need
to be simulated in order to compute statistical parameters accurately.

A third approach is to represent the full probability space in some way and
”perform all possible reactions” in the same time. This approach must clearly
always exhibit an exponential complexity growth, no matter the details. For
a sufficiently low number of dimensions, however, carefully tuned variants
may be quite effective[5].

There exist other approaches still, van Kampen’s Ω-expansion[9] being the
theoretically most well-founded method. While being accurate and effective,
this method has the drawbacks that information about the system to be
solved is required a priori and that analytical work needs to be done for
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each new system.
In this paper we will examine a generalization of the deterministic equa-

tion which we shall refer to as the method of moments. That is, we shall
formulate and analyze equations for the central moments of order n for any
chemical system. The main advantage of such an approach is efficiency: in
general, the equations of order n can be solved in Dn time, where D is the
number of reacting species. By only solving for the statistical parameters
that one really is interested in, problems of rather high dimensionality can
be solved.

The rest of the paper is organized as follows: in Section 2 we review
the master equation and present some model problems. The equations for
the various moments are given and analyzed to a certain extent providing
us with some insight into how the method can be expected to work. In
Section 3 we look a two quite different numerical examples and discuss some
additional analysis of a somewhat more heuristic character. One example
models the production of two metabolites controlled by two enzymes and
the other example models a circadian clock where the stochastic noise is
important for the clock to be periodic. We conclude by a short discussion on
the various aspects of the method.

2 Equations and analysis

In this section we start by defining the master equation for a chemical system
consisting of D reacting species along with a discussion of some simple model
problems. By approximating the probability distribution of the system with a
point-mass we recover the deterministic equation, a set of D ODEs governing
the expected value of each species. The traditional approach of reaction rate
equations can be motivated in the same way, but using concentrations instead
of number of molecules as our unknowns. It is seen by an analysis of a model
problem that this approximation can be expected to work well when the
reaction rate constant is small in a certain sense, but that the approximation
deteriorates when this condition is violated. We then examine the possibility
of deriving equations governing the covariance matrix of the system, that is,
a set of ”second order” equations is derived and analyzed. These equations
consist of an additional set of D · (D + 1)/2 ODEs for the new unknowns.
It is found that the problem with large reaction rate constants still persists
but that the impact on the quality of the solution is somewhat relaxed when
using these equations instead. We finally consider the generalization of this
approach and give a general set of equations for central moments of arbitrary
order. The section is closed by a discussion of the quality of the solution
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obtained using this approach.

2.1 The master equation

We consider a chemical system of D different species along with R prescribed
reactions. Let p(x, t) describe the probability distribution of the states x ∈
ZD+ = {0, 1, 2, . . .}D at time t. That is, p simply describes the probability
that a certain number of molecules is present at each time.

The reactions are specified as ”moves” defined over the states x according
to the reaction propensities wr : ZD+ −→ R. These describe the probability
for moving from the state xr to x per unit time,

xr = x + nr
wr(xr)−−−−→ x, (2.1)

where nr ∈ ZD describe the transition step.
The master equation[9] is then given by

∂p(x, t)

∂t
=

R
∑

r=1
x+n−

r ≥0

wr(x + nr)p(x + nr, t) −
R
∑

r=1
x−n+

r ≥0

wr(x)p(x, t)

=: Mp, (2.2)

where the transition steps are decomposed into positive and negative parts
as nr = n+

r + n−
r .

As indicated, the summations are to be performed over feasible reactions
only. In what follows, we shall only consider what we call ”proper” formula-
tions where wr(x) = 0 whenever x 6≥ n+

r (note that x 6≥ n+
r is not the same

thing as x < n+
r since the variables are vectors). This is reasonable since

otherwise the propensity defines a loss of mass for a state where no such
loss can occur. A convenient formulation for the master equation under this
assumption is

Mp =

R
∑

r=1

[x ≥ −n−
r ]wr(x + nr)p(x + nr, t) − wr(x)p(x, t), (2.3)

where the notation [f ] with f being a logical expression is used according to
[f ] ≡ 1 if f and ≡ 0 otherwise.

In the following sections we let X = [X1, . . . , XD] be the D-dimensional
stochastic variable for which p is the probability density function. We think of
p and X as being two representations of the same thing and we will formulate
the results using the representation that seems the most appropriate.

4



As a very simple example in one dimension only, consider the reactions

∅ k−→ x

x
µx−→ ∅

}

, (2.4)

that is, x-molecules are created at constant rate and simultaneously destroyed
at a rate proportional to the total number of molecules. In the previously
used notation we have n1 = −1 with w1(x) = k and n2 = 1 with w2(x) = µx
(so that the formulation indeed is proper thanks to the single zero of w2 at
x = 0). The master equation for this system thus becomes

∂p(x, t)

∂t
= [x ≥ 1]kp(x − 1, t) − kp(x, t)+

+ µ(x + 1)p(x + 1, t) − µxp(x, t). (2.5)

If an initial solution is given in the form of a Poisson distribution of expec-
tation a0,

p(x, 0) =
ax

0

x!
e−a0 , (2.6)

then it can readily be verified that the full dynamic solution is given by

p(x, t) =
a(t)x

x!
e−a(t), (2.7)

where a(t) = a0 exp(−µt)+k/µ · (1−exp(−µt)). Independently of the initial
solution, p approaches a Poisson distribution of expectation k/µ. By linear-
ity, an initial distribution which is a superposition of Poisson distributions
can be treated along the same lines.

As we shall see later (cf. Proposition 2.10), the example (2.4) above is
essentially too simple for doing any convincing analysis of a numerical method
and is therefore not a good model problem. A better set of reactions is

∅ k1−→ x

∅ k2−→ y

x
µx−→ ∅

y
µy−→ ∅

x + y
νxy−−→ ∅































, (2.8)
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that is, an interacting problem in two dimensions. However, the complica-
tions of the analysis due to the two dimensions seem unnecessary. Under the
symmetric assumption, k1 = k2 and p(x, y, 0) = p(y, x, 0), the reactions (2.8)
are almost the same as

∅ k−→ x

x
µx−→ ∅

x + x
νx(x−1)−−−−→ ∅











. (2.9)

We say almost since the formulation (2.9) is proper; the final propensity has
zeros at x ∈ {0, 1}; — this may be thought of as a reflection of the fact
that no molecule can react with itself. Simplifying even further, we drop the
proportional loss of mass and consider only the reactions

∅ k−→ x

x + x
νx(x−1)−−−−→ ∅

}

, (2.10)

with the corresponding master equation

∂p(x, t)

∂t
= [x ≥ 1]kp(x − 1, t) − kp(x, t)+

+ ν(x + 2)(x + 1)p(x + 2, t) − νx(x − 1)p(x, t). (2.11)

The usual way of solving equations like (2.11) is to introduce the probability
generating function F ,

F (z, t) =
∑

x≥0

zxp(x, t). (2.12)

After multiplying (2.11) by zx and summing over x ≥ 0 one is left with the
partial differential equation (PDE)

∂F

∂t
= −k(1 − z)F + ν(1 − z2)F ′′, (2.13)

with the boundary conditions F (1, t) = 1 and that F (ε, t) stays bounded for
small ε. Apparently, the time-dependent PDE (2.13) has no simple solution,
but the corresponding steady-state problem can be solved ([9], X.2). The
solution is

F (z,∞) = C−1(1 + z)1/2I1

(

2a(1 + z)1/2
)

, (2.14)
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where a =
√

k/ν, C =
√

2I1(2
√

2a) and where I1 denotes a modified Bessel
function. From this one can deduce that

p(x,∞) = C−1ax

x!
Ix−1(2a) (2.15)

is the exact stationary solution to (2.10). We are interested in finding the first
few moments of this distribution. The expectation value m can be computed
according to the formula m(t) = F ′(1, t) and there are similar rules for the
variance v and the third central moment (temporarily named s). By using
some standard asymptotics[1] we get

m(∞) =
1

4
+

2
√

2a

4

I ′
1

I1
(2
√

2a)

∼
√

k

2ν
+

1

8
+

3

27

√

k
2ν

+ O (ν/k) , (2.16)

v(∞) =
k

2ν
− m(∞)2 + m(∞)

∼ 3

4

√

k

2ν
+

1

16
+

3

29

√

k
2ν

+ O
(

(ν/k)3/2
)

, (2.17)

s(∞) ∼ 7

16

√

k

2ν
− 15

211

√

k
2ν

+ O (ν/k) , (2.18)

where we keep one term below O (1) as an estimate of the error. In most
applications we have that ν � k but we are interested in the cases when ν . k
as well. Nevertheless, the asymptotic formulas above remain valid with an
error of about 5% even when ν = k and we shall therefore continue to use
them for these cases as well. Since m ≈ 3/4 · v, we note that this time the
steady-state distribution is somewhat narrower than a Poisson distribution.

2.2 Equations for the expectation

In order to derive equations for the time derivative of the various moments,
we shall frequently need the following Lemma.

Lemma 2.1 Let p satisfy a proper formulation of the master equation (2.2).
Then as long as both sides make sense,

∑

x≥0

T (x)
∂p(x, t)

∂t
=

R
∑

r=1

E [(T (X − nr) − T (X))wr(X)] . (2.19)
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where T : ZD+ −→ R is any suitable test-function (see below).

Proof. Multiply both sides of (2.2) by T (x) and sum over all x ≥ 0 (that is,
over all x ∈ ZD+). One readily gets

∑

x≥0

T (x)
∂p(x, t)

∂t
=

R
∑

r=1

∑

x≥0

[x ≥ n−
r ]T (x)wr(x + nr)p(x + nr, t)−

−
R
∑

r=1

∑

x≥0

T (x)wr(x)p(x, t).

Substituting y = x + nr in the left sum produces

R
∑

r=1

∑

y≥nr

[y ≥ n+
r ]T (y − nr)wr(y)p(y, t)−

R
∑

r=1

∑

x≥0

T (x)wr(x)p(x, t).

Now, write the first sum as a sum over y ≥ 0 by inserting the factor [y ≥ nr].
In total we get the product [y ≥ nr] · [y ≥ n+

r ] which equals [y ≥ n+
r ] by

inspection. Since the formulation is assumed to be proper, we have that
wr(y) = 0 whenever [y 6≥ n+

r ] and (2.19) follows. �

The manipulations performed on infinite sums are justified under absolute
convergence and since we shall only use Lemma 2.1 with T (x) a polynomial,
this is the case as long as sufficiently many moments of p exists.

We now need the following notation; let mi = E[Xi] denote the expected
value of Xi and let ni

r be the ith element of nr. By taking T (x) = xi as our
test-function we immediately recover the following result from Lemma 2.1.

Proposition 2.2

dmi

dt
= −

R
∑

r=1

ni
rE[wr(X)]. (2.20)

Note that (2.20) is an exact result valid as long as the corresponding
master equation is properly formulated. Due to the presence of an unknown
expectation, however, Proposition 2.2 can clearly not be used in general. For
linear propensities one easily sees that the unknown expectation E[wr(X)]
can be expressed in terms of the expectation m but this is not true in gen-
eral. Assuming that the dimensions involved with nonlinear propensities can
be approximated by a point-mass with vanishing higher moments evidently
produces the following result.
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Proposition 2.3 Divide the integers {1, . . . , R} into two disjoint sets R1

and R2 such that ∀r ∈ R1 : wr is linear and ∀r ∈ R2 : wr depends on
dimensions with vanishing higher moments. Then

dmi

dt
= −

R
∑

r=1

ni
rwr(m). (2.21)

Clearly, the set R2 cannot in general be guaranteed to exist and we must
then regard (2.21) as an approximation rather than an exact identity. We
refer to this approximation as the deterministic equation which is just about
the same thing as the customary reaction rate equations. The only difference
is that what we call the deterministic equation is written with the unknowns
being the number of molecules instead of concentrations.

As an example we apply the deterministic equation (2.21) to the model
problem (2.10). This results in the ODE

dm̃

dt
= k − 2νm̃(m̃ − 1), (2.22)

which is separable. The solution is given by

m̃(t) =
1

2
+

√

1

4
+

k

2ν
× 1 + exp

(

−
√

4ν2 + 8kνt
)

C

1 − exp
(

−
√

4ν2 + 8kνt
)

C
, (2.23)

where C is to be determined from the initial value of m. In order to analyze
the quality of this solution, we note that the exact ODE (2.20) becomes

dm

dt
= k − 2νE[X(X − 1)] = k − 2νm(m − 1) − 2νv. (2.24)

Put m̃(∞) = m(∞) + δ, where m̃(∞) is the steady-state of (2.22), m(∞)
the exact steady-state of (2.24) and where δ is the error. Expanding (2.22)
around m(∞) yields, since m(∞) satisfies (2.24),

0 = −2ν(2m(∞) − 1)δ + 2νv(∞) + O
(

δ2
)

, (2.25)

so that δ = v(∞)/(2m(∞)−1) ∼ 3/8 to first order. Since the exact solution
is available this can also be seen directly by comparing (2.23) with (2.16) but
the current approach works also when higher order equations are analyzed.
We now let m̃(t) = m̃(∞) + ε̃(t) and m(t) = m(∞) + ε(t). Expanding (2.22)
and (2.24) produces

dε̃

dt
= −2ν(2m̃(∞) − 1)ε̃ + O

(

ε̃2
)

, (2.26)

dε

dt
= −2ν(2m(∞) − 1)ε + O

(

ε2
)

, (2.27)
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that is, both solutions decay exponentially but at slightly different speed.
Close to the steady-state solution the difference in the exponents is about
−2ν(2m̃(∞) − 2m(∞)) ∼ −3ν/2. We note that this last part of the anal-
ysis is only an approximation; we have assumed that the expectation value
m is perturbed, but the induced perturbation on the variance v has been
neglected.

To summarize, we have shown that the approximative equation (2.22)
yields a slightly larger steady-state solution than the exact equation (2.24)
and that the speed with which the steady-state is approached is slightly
higher. For ν � k it is fair to say that (2.23) will produce a reasonably
accurate value of the expectation value and we shall later see that this holds
true also when higher moments are used. However, one also sees that for
the cases when ν approaches k, the approximation (2.22) deteriorates. This
effect will be seen to improve to a certain extent when higher order moments
are used.

2.3 Equations for the covariance

Since the approximation in Proposition 2.3 does not capture the effects of
higher order moments, a natural idea is to try to formulate equations for those
as well. In this section we therefore give equations for the time-derivative of
the covariance matrix Cij = E[(Xi − mi)(Xj − mj)].

As before, there is an exact result that we now state and for this purpose
we will use the notation n

[i,j]
r = ni

rn
j
r.

Proposition 2.4

dCij

dt
= −

R
∑

r=1

(

ni
rE[(Xj − mj)wr(X)] + nj

rE[(Xi − mi)wr(X)]
)

+

+

R
∑

r=1

n[i,j]
r E[wr(X)]. (2.28)

Proof. This is found by taking T (x) = (xi −mi)(xj − mj) in Lemma 2.1. In
Section 2.4 a general proof is given. �

Again, we are interested in an approximative version of (2.28). Assume
that all propensities are at most quadratic so that the Taylor series of wr
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around the expected value x = m becomes an identity,

wr(x) = wr(m) +
∑

k

∂wr(m)

∂xk

(xk − mk)+

+
∑

k,l

∂2wr(m)

∂xk∂xl

(xk − mk)(xl − ml)

2!
, (2.29)

where the sums run through all D dimensions independently. Comparing
the unknown expectations in (2.28) with the series representation (2.29) it is
clearly straightforward to evaluate the former. Note, however, that this will
produce a third order central moment which is unaccounted for and we there-
fore do not formulate our next result in a fashion similar to Proposition 2.3,
that is, there is no point in dividing the integers {1, . . . , R} according to
whether the corresponding propensities are at most quadratic or depend on
dimensions with vanishing higher moments.

Proposition 2.5 If all propensities wr are at most quadratic and if the third
central moments may be neglected, then

dmi

dt
= −

R
∑

r=1

ni
r

(

wr(m) +
∑

k,l

∂2wr(m)

∂xk∂xl

Ckl

2!

)

, (2.30)

dCij

dt
= −

R
∑

r=1

(

ni
r

∑

k

∂wr(m)

∂xk

Ckj

1!
+ nj

r

∑

l

∂wr(m)

∂xl

Cil

1!

)

+

+
R
∑

r=1

n[i,j]
r

(

wr(m) +
∑

k,l

∂2wr(m)

∂xk∂xl

Ckl

2!

)

. (2.31)

Again, we consider the model problem (2.10). The exact equations cor-
responding to Proposition 2.4 becomes

dm

dt
= k − 2νm(m − 1) − 2νv, (2.32)

dv

dt
= k + 4νm(m − 1) + 4νv − 4νv(2m − 1) − 4νs, (2.33)
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where s denotes the third central moment. The approximative version is
obtained by setting s = 0 and we now attempt to analyze the error induced
by this truncation. We use the linearization technique from the previous
section and set m̃(∞) = m(∞) + δ1 and ṽ(∞) = v(∞) + δ2, where as before
m(∞) and v(∞) denote the exact steady-state moments and where the tilded
versions are their corresponding approximations. By linearizing we find

0 = −2ν(2m − 1)δ1 − 2νδ2, (2.34)

0 = 4ν(2m − 1)δ1 + 4νδ2 − 8νvδ1 − 4ν(2m − 1)δ2 + 4νs, (2.35)

where for brevity we dropped the argument ∞. The solution to this linear
system is

δ1 =
s(∞)

2v(∞) − (2m(∞) − 1)2
∼ − 7

64
√

k
2ν

, (2.36)

δ2 = −(2m(∞) − 1)δ1 ∼ − 7

32
, (2.37)

where the asymptotical behavior for k � ν has been indicated. We thus
see that for sufficiently large reaction rate ratio k/ν, this new approxima-
tion is indeed ”one order more accurate” than the previous approximation
(2.22). Interestingly, there is also the possibility that the Jacobian is sin-
gular suggesting that very large errors may occur. This happens when
2v(∞) = (2m(∞) − 1)2, or approximately when k/ν = 1.8862 and can be
observed in practice; either as an ill-posed nonlinear steady-state problem or
as a dynamic solution which diverges to infinity for no physical reasons.

As before, it is possible to approximately analyze the dynamic behavior
close to t = ∞ by studying the effect of a small perturbation added to the
steady-state solution. This is somewhat involved and will not be performed
in detail here although we note that it still remains true that, close to the
steady-state, the time-dependent difference between the approximative and
the true solution depends on the error in the steady-state solution itself —
which is now one order more accurate in the region away from the point
k ∼ ν where the approximation deteriorates.

2.4 Higher order approximations

We now turn our attention to the obvious generalization of the results found
in the two previous sections. Since the master equation is an equation in D
dimensions and since higher order moments in general are tensors we shall
need to make use of a multi-index notation which we therefore first review.
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An I-index is written using the capitals I, J , K and so on. If I =
[i1, . . . , in] we put |I| = n and write

xI = xi1 · · ·xin , (2.38)

where the empty product is ≡ 1. Permuting these multi-indices does not
affect the operation defined above so that xPI = xI for all permutations P .

An α-index is written using small Greek letters α, β, γ and so on. If
α = [α1, . . . , αn] we define |α| =

∑

i αi along with the following products

xα = xα1

1 · · ·xαn

n , (2.39)

α! = α1! · · ·αn!. (2.40)

Inequalities on α-index are defined element-wise so that, for example, α ≤ β
is true iff ∀i : αi ≤ βi. Note that 6< and ≥ are not equivalent; only the trivial
implication ¬(α < β) ⇐= α ≥ β is true.

We define the map # as the unique α-index corresponding to a certain
I-index. If α = #I, then clearly αj is the number of elements in the set
{i; Ii = j} and we note that this mapping conserves the norm, |I| = |#I|.

As before, we let X be the stochastic variable in D dimensions corre-
sponding to the probability density function p that satisfies the master equa-
tion (2.2), and we assume the formulation to be proper so that Lemma 2.1
is applicable. We have already used the notation m = E[X] for the expecta-
tion value of X and we shall use the following notation for the higher order
central moments:

M
|I|
I = E[(X − m)I ] =

∑

x≥0

(x − m)Ip(x), (2.41)

where |I| ≥ 2. For example, M2 = C, the covariance matrix and in addition
we set M1 = m. For brevity we keep only the exponent whenever the index
of the moment is irrelevant.

Proposition 2.6 For |I| > 2,

dM
|I|
I

dt
=
∑

x≥0

(x − m)I ∂p(x, t)

∂t
−

|I|
∑

j=1

m′
Ij

(t)M
|I|−1
I−{Ij}

. (2.42)

Proof. Take the time derivative of (2.41),

dM
|I|
I

dt
=

d

dt

∑

x≥0

(x − m)Ip(x, t) =

=
∑

x≥0

(x − m)I ∂p(x, t)

∂t
−

|I|
∑

j=1

m′
Ij

(t)
∑

x≥0

(x − m)I−{Ij}p(x, t),
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where we note that the last term vanishes for |I| = 2. �

At this point we need to introduce some further notation. Define the
combination set Qn

k as the set of all combinations of k objects taken without
respect to order from a collection of n objects. Obviously, we have that the
number of such combinations is given by |Qn

k | =
(

n
k

)

. If |I| = n it makes sense
to apply any combination Q ∈ Qn

k and we write J = QI for this operation.
Of course, the length of this new index is given by |J | = k. For a fixed
combination Q ∈ Qn

k we define the adjoint combination Q∗ ∈ Qn
n−k as the

unique combination that makes [Q, Q∗] a permutation. As an example of
this notation, consider the case n = 3 and k = 2. We evidently have that

Qn
k =

[

[1, 2], [2, 3], [1, 3]
]

,

and the ordered set of adjoint combinations becomes

(Qn
k)∗ =

[

[3], [1], [2]
]

.

As another example we note that (2.42) can be written

dM
|I|
I

dt
=
∑

x≥0

(x − m)I ∂p(x, t)

∂t
−
∑

Q∈Q
|I|
1

dM1
QI

dt
M

|I|−1
Q∗I . (2.43)

The following Lemma will allow us to switch notation from α-index to
I-index.

Lemma 2.7 The inequality #J ≤ #I has the solutions

J = QI with Q ∈ Q|I|
|J |. (2.44)

There are no other solutions. Furthermore, there are exactly
(

#I
#J

)

different

Q ∈ Q|I|
|J | that all produce the same solution J .

Proof. A solution J can be constructed from I by taking combinations in
the following way: if |J | = j is chosen beforehand then one solution is given
by taking j different indices from I. By construction such a solution is given
by QI for some Q ∈ Q|I|

|J |. A solution J ′ that cannot be constructed in this
way must consist of at least one index from I taken more than once which
clearly violates the given inequality #J ≤ #I. To show the last part, define
α = #I and β = #J , where J is any solution. By construction, there are α1

ones in I, so β will results iff β1 of those are taken. This can be done in
(

α1

β1

)
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different ways. Continuing this reasoning we find that in total there are
(

α
β

)

different combinations Q that all produce the same J . �

To state our major result we let EI
r be a convenient shorthand for E[(X−

m)Iwr(X)].

Lemma 2.8 Let the master operator M be defined by (2.3). Then, provided
the indicated moments exist,

∑

x≥0

(x − m)IMp(x, t) =

|I|
∑

j=1

(−1)j

R
∑

r=1

∑

Q∈Q
|I|
j

nQI
r EQ∗I

r . (2.45)

Proof. From Lemma 2.1 with T (x) = (x − m)α we get

∑

x≥0

(x − m)αMp(x, t) =
R
∑

r=1

E [((x − m − nr)
α − (x − m)α)wr(x)] .

By the binomial theorem in D dimensions we get using the notation men-
tioned above

=
R
∑

r=1

∑

0<β≤α

(−1)|β|nβ
r

(

α

β

)

Eα−β
r .

We now wish to switch back to I-index using Lemma 2.7. The inequality
β ≤ α is thus understood as J = QI with Q ∈ Q|I|

|J |, where α = #I and

β = #J . The remaining factor
(

α
β

)

is absorbed according to the final part of
Lemma 2.7 and we are left with

=
R
∑

r=1

|I|
∑

j=1

(−1)j
∑

Q∈Q
|I|
j

nQI
r EQ∗I

r ,

where one realizes that α − β = Q∗I. �

Theorem 2.9 Under the assumptions stated above,

dM
|I|
I

dt
=

|I|
∑

j=1

(−1)j
R
∑

r=1

∑

Q∈Q
|I|
j

nQI
r EQ∗I

r − [|I| ≥ 3] ×
∑

Q∈Q
|I|
1

dM1
QI

dt
M

|I|−1
Q∗I ,

(2.46)
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Proof. This follows from Proposition 2.2, 2.4, 2.6 and Lemma 2.8. �

This is the general exact formula for the time derivative of the central
moments. As before, we have the following result for linear propensities.

Proposition 2.10 If all propensities are linear, then Theorem 2.9 can be
written as a closed system of ODEs for the central moments. This set of
ODEs is exact.

Proof. Since wr is linear we see (in the notation of (2.46)) that

EQ∗I
r = E

[

(X − m)Q∗Iwr(X)
]

can be written as a combination of the moments Mn with n ≤ |Q∗I| + 1 ≤
|I|− j +1 ≤ |I|. Since no moment of higher order than |I| enters, the system
of ODEs is indeed closed. �

Theorem 2.9 can not be directly applied to the model problem (2.10) due
to the quadratic propensity but a truncated version can as before easily be
formed. It is awkward to fully analyze the behavior of this approximation al-
though the effects can easily be found experimentally. In Table 2.4 the errors
in the first two moments for the steady-state solution are given for different
order of the highest moment (n = max |I| in the notation of Theorem 2.9).

In the left part of the table the parameters are [k, ν] = [1, 10−3] and
apparently, the result converges quite rapidly with increasing order of the
highest order moment. Evidently, there is a kind of ”pairwise convergence”
in the sense that, for example, the 4th and the 5th order equations yield an
error of about the same magnitude. That is, the error seems to decrease by
some factor for every new set of even order equations. This behavior is visible
also in the right part of the table where the parameters are [k, ν] = [1, 10−2]
although the rate of convergence clearly slows down towards the end.

To motivate, although not rigorously prove this observation we reason as
follows. From the exact solution (2.14) one can find empirically using a com-
puter algebra system that the nth central moment behaves asymptotically as
(k/ν)bn/2c/2 (except when n = 1, the expectation value). If the highest order
moment used is even, this means that the next odd order central moment is
neglected and an error of the order of the nth central moment itself times
the reaction rate constant ν is introduced in the last equation. This error
pollutes the rest of the equations via the couplings, but for every coupling to
a lower order moment the error is multiplied by the reaction rate constant ν.
Thus, in effect, the impact on the lowest order moment is reduced by this fac-
tor for every equation. The same reasoning for an odd order version explains
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n δm δv δm δv
1 3.80 · 10−1 - 3.89 · 10−1 -
2 5.15 · 10−3 2.26 · 10−1 1.84 · 10−2 2.46 · 10−1

3 1.00 · 10−2 4.41 · 10−1 3.58 · 10−2 4.82 · 10−1

4 4.49 · 10−4 1.97 · 10−2 5.55 · 10−3 7.43 · 10−2

5 4.65 · 10−4 2.05 · 10−2 6.65 · 10−3 8.91 · 10−2

6 4.37 · 10−5 1.92 · 10−3 2.15 · 10−3 2.88 · 10−2

7 3.22 · 10−5 1.42 · 10−3 2.11 · 10−3 2.82 · 10−2

8 5.09 · 10−6 2.24 · 10−4 1.12 · 10−3 1.50 · 10−2

9 3.09 · 10−6 1.36 · 10−4 1.07 · 10−3 1.43 · 10−2

Table 2.1: Absolute errors in the steady-state moments m and v. The pa-
rameters are k = 1 and ν = 10−3 (ν = 10−2) for the left (right) part of the
table.

why the error is not reduced this time; here the error from the last equation
is simply one order higher which equate the effect of the multiplication by
the reaction rate constant.

As noted before, there is still the possibility of introducing unphysical
instability due to the truncation. For the first nine central moments as tested
above, this happens approximately when k/ν ∼ 20 or when the expectation
value at steady-state is less than about 5.

Although obviously far from being a complete analysis of the method
developed thus far, the discussion above suggests that one can either ex-
pect close to geometric convergence in the moments or that the convergence
deteriorates when sufficiently high order moments are used. The analysis
clearly does not reveal anything of what can happen when systems without
a unique steady-state solution is solved, nor have higher order propensities
been discussed although the quadratic case is theoretically quite important.
As for the quality of the dynamic solution obtained this clearly depends on
the dynamics of the system itself. In the model problem discussed above
one expects the dynamic solution to be roughly as good as the steady-state
solution is but this is no longer to be expected for systems with different
dynamical properties.

3 Numerical experiments

In this section we present two numerical experiments. They differ from the
model problem we have analyzed so far in two different ways; the first ex-
ample investigates the behavior of the method of moments when used in
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problems with strongly nonlinear propensities. These have to be approx-
imated by a polynomial in order for the method to apply and we give a
simple suggestion of how to predict the behavior of this approximation. The
second example treats an example of a system which exhibits periodic behav-
ior and demonstrates how the method of moments may reproduce a solution
driven by stochastic noise.

3.1 Enzyme-control of metabolites

This example is taken from [4] and simulates the synthesis of two metabolites
x and y by two enzymes e1 and e2. The reactions are

∅ k1e1/(1+x/ki)−−−−−−−−→ x

x
µx−→ ∅

∅ k2e2/(1+y/ki)−−−−−−−−→ y

y
µy−→ ∅

x + y
kxy−−→ ∅































∅ k3/(1+x/kr)−−−−−−−→ e1

e1
µe1−−→ ∅

∅ k4/(1+y/kr)−−−−−−−→ e2

e2
µe2−−→ ∅























, (3.1)

where the parameters are k1 = k2 = 0.3, k3 = k4 = 0.02, k = 10−3, µ =
2 · 10−3, ki = 60 and kr = 30. We are interested in understanding how the
method of moments can be applied and if it can be expected to converge.

It is straightforward to write down the exact equations according to The-
orem 2.9 for this system. However, due to the nonlinear propensities, this
produces expectation values that cannot be directly evaluated. As a concrete
example we consider the lowest order equation which will contain the term

E

[

k1E1

1 + X/ki

]

,

which cannot be directly evaluated. Here X and E1 are the stochastic vari-
ables corresponding to x and e1 respectively. The easiest way to get an
approximation of this quantity has already been discussed in Section 2.3
and amounts to forming the Taylor series around the expectation values
mx = E[X] and me1

= E[E1],

k1E1

1 + X/ki
≈ k1E1

[

(1 + mx/ki)
−1 − (1 + mx/ki)

−2(X − mx)/ki + . . .
]

,

(3.2)

where the trivial shift in E1 has been suppressed. In this way any expectation
value may be approximated by a series containing central moments of the
variables.
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To be more general, suppose that f : RD −→ RD is well approximated
by a polynomial around m = E[X] (in multi-index),

f(x) ≈
K
∑

|J |=0

aJ(x − m)J , (3.3)

then,

E[f(X)] ≈ a0 +

K
∑

|J |=2

aJM
|J |
J , (3.4)

and the higher order versions present in Theorem 2.9 becomes

E[(X − m)if(x)] ≈
K
∑

|J |=1

aJM
1+|J |
[i,J ] , (3.5)

E[(X − m)If(x)] ≈
K
∑

|J |=0

aJM
|I|+|J |
[I,J ] , (3.6)

where |i| = 1 and |I| ≥ 2. This is the key to assembling Theorem 2.9 for
any set of propensities wr and, provided that moments with a degree higher
than the number of equations are removed, produces a closed set of ODEs
for the first n central moments. It is difficult to analyze the behavior of this
approximation a priori but we shall discuss the possibility of an analysis a
posteriori later.

With this setup we performed experiments on the reactions (3.1). In
Figure 3.1 the results are displayed and it is seen that the procedure seems to
converge with increasing order of the highest moment although the variance
of x behaves somewhat nervously. This observation is confirmed in Table 3.1
where the steady-state solutions for the two first moments are given. All
moments have settled to within less than one percent except for the variance
in x which still differ by about 2%.

Analyzing these results consists of two parts. Firstly, under the assump-
tion that the propensities can be approximated by polynomials, we must
show that the introduced ”artificial reaction rate constants” are small. If
this is the case, the error committed when setting certain moments to zero
in the higher order equations is repeatedly filtered through these constants.
Secondly, we must show that the approximation by a polynomial can be
expected to perform well.
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Figure 3.1: Dynamics of (3.1). The simulation starts at t = 0 with one x and
one y molecule. At t = 1500 the steady-state is approximately reached. Due
to symmetricity, the solutions of x (e1) and y (e2) are identical. Top/bottom
left: the expectation and variance of x, top/bottom right: the expectation
and variance of e1. Dotted: the result from 10000 Gillespie simulations. The
number of moments used in the computations can be found in Figure 3.1.

n mx vx me1
ve1

1 30.44 - 4.96 -
2 34.15 288.23 5.00 3.50
3 33.91 253.16 5.02 3.44
4 34.16 351.60 5.02 3.48
5 34.14 345.29 5.02 3.47

Table 3.1: Steady-state solutions of (3.1) for different order n of the highest
moment. With the exception of vx all values have stagnated to within less
than one percent at n = 5.
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Figure 3.2: A close-up of the situation in Figure 3.1. The numbers in the
figures indicate the number of moments used for producing each curve. Com-
paring the results with the Gillespie simulation, it is seen that the higher or-
der versions all produce better results than the lower order versions. Note in
particular the poor results in the variable x obtained from the deterministic
equation.
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Recall again the series expansion (3.2). The term corresponding to a
quadratic interaction is k1/ki · (1 + mx/ki)

−2 · e1x, or, at steady-state about
2 · 10−3e1x. From our experience with the model problem (cf. Table 2.4)
we expect this term to be sufficiently small that the method converges with
increasing order moments. The other nonlinear propensities can be inves-
tigated in the same manner and turns out to be associated with quadratic
terms of even smaller magnitude. We also note that the coefficients in front
of higher order terms will be smaller yet so that these should not present
problems either.

Turn now to the question of analyzing the validity of a series expansion
like (3.2). The geometric series around X = mx converges provided |X −
mx| < mx +ki but only rapidly so, say, when |X−mx| < (mx +ki)/2. Recall
the Chebyshev inequality [1],

P [|X − mx| ≥ t
√

vx] ≤
1

t2
, (3.7)

where
√

vx is the standard deviation. At steady-state, the probability for
slow convergence is therefore bounded by

P [|X − mx| ≥ (mx + ki)/2] ≤ 4vx

(mx + ki)2
≈ 15.6%, (3.8)

and the probability for divergence by

P [|X − mx| ≥ (mx + ki)] ≤
vx

(mx + ki)2
≈ 3.9%. (3.9)

Since (3.7) is pessimistic for probability distributions with a tail decaying
faster than an algebraic expression (which is to be expected), (3.8) and (3.9)
indicate that a series expansion will indeed produce an accurate approxi-
mation. The other nonlinear propensity can be analyzed in the same way
and, although the percentage bounds become slightly larger, the result also
indicates that a series expansion will behave well for the largest part of the
probability mass.

3.2 A circadian clock

In [2], a model for a circadian clock is given. A circadian clock is a set of
species reacting in such a way that the resulting system produces reliable
oscillations and may be used by an organism to e.g. keep track of time. This
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model is quite large and involves 9 species with 18 different reactions. Using
slightly altered parameter names, the proposed model is

D′
a

θaD′
a−−−→ Da

Da + A
γaDaA−−−−→ D′

a

D′
r

θrD′
r−−−→ Dr

Dr + A
γrDrA−−−−→ D′

r























∅ α′
aD′

a−−−→ Ma

∅ αaDa−−−→ Ma

Ma
δmaMa−−−−→ ∅











∅ βaMa−−−→ A

∅ θaD′
a−−−→ A

∅ θrD′
r−−−→ A

A
δaA−−→ ∅

A + R
γcAR−−−→ C



































∅ α′
rD′

r−−−→ Mr

∅ αrDr−−−→ Mr

Mr
δmrMr−−−−→ ∅











∅ βrMr−−−→ R

R
δrR−−→ ∅

C
δaC−−→ R











. (3.10)

The values of the various parameters are given in Table 3.2 where, as indi-
cated, the parameter δr will be varied with the experiment.

αa 50 βa 50 γa 1 δma 10 θa 50
α′

a 500 βr 5 γr 1 δmr 0.5 θr 100
αr 0.01 γc 2 δa 1
α′

r 50 δr -

Table 3.2: Parameters of the circadian clock (3.10). The parameter δr is
varied in the experiments.

The reactions (3.10) can be solved by the method of moments in the usual
way; all reactions but three are linear and will thus be captured exactly. In
comparison with the rest of the parameters, the reaction constants associated
with the quadratic reactions are quite small and so one may hope that the
method of moment will perform reasonably well with increasing order. A
difficulty with the system of ODEs produced by the method is that it is
quite stiff and so an implicit ODE-solver is preferable — we used MATLABs
ode15s.

An interesting reduced version of the circadian clock is presented in [10];
by introducing various steady-state assumptions the model is reduced to 2
species only, coupled by a highly nonlinear reaction. The authors show that
this simple model produces very similar behavior as the full 9 dimensional
setup does while being much more easy to analyze. Certain choices of the pa-
rameters are shown to produce oscillating behavior using a stochastic method
such as Gillespie’s method, while the deterministic equation rapidly reaches
a steady-state solution. The inherent stochastic fluctuations in a biologi-
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cal system thus stabilizes the clock and makes it resistant to changes in the
surroundings.

In Figure 3.3, results from four different methods are plotted over time.
The methods are the deterministic equation, the second and the third order
method of moments as well as one sample Gillespie trajectory. With the
parameter δr = 0.2, all methods produce comparable results.
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Figure 3.3: Results from the experiments with the parameter δr set to 0.2.
The first three graphs shows the method of moments for the first, the second
and the third order central moments. Below is a comparison with a Gillespie
simulation. Solid: the number of R molecules, dashed: the number of C
molecules. With this choice of parameters all methods produce comparable
results although the deterministic equation seem to be slightly out of phase
by the end of the simulation.

We now lower the parameter δr and use the value 0.1 instead. This
produces the behavior shown in Figure 3.4 where one clearly sees that the
deterministic equation produces an incorrect result; the periodic pattern be-
comes irregular and does not seem to match the results from the stochastic
method.

As a final example we used the value δr = 0.08. This produces the plot in
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Figure 3.4: The parameter δr is set to 0.1 and the deterministic equation
shows a somewhat different behavior with periods varying irregularly that is
not present in the second and the third order methods. Comparing with the
Gillespie simulation reveals that this behavior is incorrect.
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Figure 3.5 where the deterministic solution rapidly reaches steady-state after
completing one period only. On the contrary, the second and third order
method produces reliable periodic oscillations which seem to match those
produced by the stochastic method fairly well. Note that, in all experiments,
we used one sample trajectory from the stochastic method only — gathering
enough samples to produce a smooth looking average path is a very expensive
computation indeed, since different samples easily lose phase with respect to
each other.
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Figure 3.5: Same as before but the parameter δr is now set to 0.08. The de-
terministic solution rapidly falls off to steady-state while the second and third
order methods produce oscillations similar to what the Gillespie simulation
does.

4 Conclusions

We have seen that the method of moments applied to the master equation
can be a useful approach to compute and analyze chemical reactions. The
main advantages of the method are that it is fairly easy to program, has
low computational complexity (polynomial in the number of species D) and
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frequently produces the output that one is really interested in. In many ap-
plications the precise form of the probability distribution is irrelevant while
on the other hand a few Gillespie trajectories are not sufficient to accu-
rately compute a suitable average path. A general code for any given set
of propensities has been developed by the author and is available through
email communication. Yet another advantage of the method that has not
been discussed is the simplicity with which time dependent propensities are
treated; stochastic simulations are usually quite difficult to adapt for such
situations.

On the other hand, the disadvantages of the method are that it is difficult
to analyze a priori and that the produced system of ODEs can become very
stiff as higher order moments enter the computation. The former issue can
sometimes be solved by comparing the solutions obtained using an increasing
number of moments but this procedure is obviously quite difficult to justify
on theoretical grounds.

We also mention two possible improvements over the method as presented
this far. Most importantly, when encountering ’problematic’ dimensions a
good idea could be to use a different and usually more expensive method
over these dimensions. This method can then be coupled with the method of
moments in order to reduce the complexity of the overall method. A second
improvement is to interpolate missing moments instead of merely truncating
them. The easiest way is probably to fit a normal distribution to the two
first moments and then derive the missing higher order moments from this
model. Evidently, this improvement is difficult to analyze but, on the other
hand, it is hard to imagine that such an approach could be worse than simply
setting the missing moments to zero.

In conclusion, we like to think of the method as a very useful complement
to the reaction rate/deterministic approach; — the deterministic equation
alone is frequently used without much justification at all. Thanks to the
simplicity of the method of moments, trying a few more moments is an
effective and very useful improvement.
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[5] L. Ferm, P. Lötstedt, and P. Sjöberg. Adaptive, conservative solution
of the Fokker–Planck equation in molecular biology. Technical Report
2004-054, Dept of Information Technology, Uppsala University, Uppsala,
Sweden, 2004.

[6] M. A. Gibson and J. Bruck. Efficient exact stochastic simulation of
chemical systems with many species and many channels. J. Phys. Chem.,
(104):1876–1889, 2000.

[7] D. T. Gillespie. A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions. J. Com-
put. Phys., (22):403–434, 1976.

[8] P. Guptasarama. Does replication-induced transcription regulate syn-
thesis of the myriad low copy number proteins of Escherichia coli?
Bioessays, (17):987–997, 1995.

[9] N. G. van Kampen. Stochastic processes in physics and chemistry. El-
sevier, 5th edition, 2004.

[10] J. M. G. Vilar, H. Y. Kueh, N. Barkai, and S. Leibler. Mechanism of
noise-resistance in genetic oscillators. Proc. Nat. Acad. Sci., (99):5988–
5992, 2002.

28


