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Modelling 3D semi-deformable tubes in real time
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Abstract

Numerical simulation of deformable objects is an important problem in biomechanical engineering and computational
science. A significant class of problems in this area requires that the simulation results are presented both haptically and
graphically in real time (an example being a medical training simulator based on virtual reality). In such cases various types
of trade-offs between accuracy and efficiency are implemented. Numerical procedures for modelling deformable objects,
with respect to their efficiency, mainly belong to the following two classes: interactive methods (that are fast but have mod-
erate accuracy), and continuum mechanics based methods (that are accurate, but generally not fully interactive). In this
paper we present a numerical method based on oriented splines for the numerical simulation of semi-deformable tubes.
The numerical results demonstrate both the accuracy and the interactivity of the proposed method, making it a suitable
component of complex systems for interactive virtual reality simulations of biomechanical systems.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Accurate numerical modelling and simulation of deformable objects is an important problem in mechanical
engineering. When such models represent a constitutive part of complex interactive virtual reality systems (for
example in medical training simulators [1,2,4,19,22]), in addition to the accuracy requirement, they must be
capable of responding in real time to the operator constraints, both in graphics and in haptics [22]. This
requirement is formalised as the minimisation of end-to-end lag time [24]. End-to-end lag time represents
the delay between user’s actions and the display of the results of these actions. Obviously, the lag time is appli-
cation dependent, but some common contributions can be identified, numerical simulation time being one of
them.

In this paper we are interested in numerical modelling of flexible tubes. There exists a host of applications in
mechanical and biomechanical engineering where such models occur (the examples include common bile duct
exploration [1], and simulations of various biological tissues such as intestines [7], blood vessels [8,10], and
bronchioles [9]). The conventional numerical modelling techniques for simulation of elastic tubes can be
0096-3003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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broadly classified into the following two categories: physically based models and interactive (or real-time)
models. The first category includes the accurate continuum mechanics-based techniques, such as the finite ele-
ment method (FEM) [27], and the boundary element method (BEM) [17]. The methods from the second cat-
egory are also known as interactive models. In these models speed and latency are important, at the cost of low
physical accuracy. Typical examples include mass-spring models [1] and deformable spline-based models
[7,20].

The FEM can facilitate problems defined on complex domain geometries and which involve different mate-
rial properties, and produces the numerical solution to an arbitrary degree of accuracy. However, due to large
discrete problem sizes, it cannot achieve the necessary performance which enables update rates needed for
interactive graphical rendering (20–30 Hz) and interactive haptics force feedback (200–1000 Hz) [2]. More
recently a considerable amount of research effort has been invested in adapting the classical FEM for real-
time simulations in biomechanical engineering. Some modifications include precomputation of some data
[1,2] (this approach works in the case of small deformations and fixed meshes), problem condensation [3]
(‘‘calculate what you need’’ principle), replacement of large deformations and/or non-linear anisotropic
behaviour of living tissue by static deformations and/or isotropic models [1,22], modal (frequency) analysis
of the solution (computing only the dominant Fourier modes of the solution) [1] (for a similar approach
see [13]).

An alternative physically based method for simulation of deformable objects is the BEM [12]. The BEM is
naturally confined to compute the updates on a surface. Thus, the method should be fast, providing that only
a few boundary conditions change. The method’s interactivity still depends on pre-processing, which involves
precomputing of a number of different system responses (Green’s functions), followed by a low-rank update
solution reconstruction [12]. However, boundary nature of the BEM makes modelling of material properties,
such as anisotropy, difficult.

Particle based techniques represent the continuum by a finite set of masses interconnected by springs and
dampers. Such models are relatively simple to implement and computationally less expensive. However, these
models have problems with numerical accuracy and numerical stiffness and often depend upon a number of
parameters that are difficult to tune. Moreover, human tissues have complex anatomies and exhibit complex
material properties (anisotropy, creep, visco-elasticity), making particle models less suitable in this context.
Particle-based techniques exhibit good efficiency in simulating interactions between the objects and non-
organic material bodies (such as the surgical instruments, catethers [1], sutures [2]). Finally, numerical
methods based on splines are generally non-physical and are used to primarily achieve more realistic graphical
rendering (e.g. NURBS [18]).

In this paper we introduce a numerical method for simulation of tube dynamics based on oriented
splines. The method represents a trade-off between the physically based and interactive modelling. The
key idea is to use two conventional splines in the context of the Lagrange equations (for an overview of
different types of splines that can be used in this context see [20]). Material properties (such as mass dis-
tribution) are associated to each spline segment. A linear visco-elastic tube is discretised with respect to
the spatial variables using oriented splines, yielding a system of ordinary differential equations in time.
Numerical solution of this system is obtained by the simultaneous application of the Newmark method
(the position and the rotation unknowns are decoupled and the appropriate equations can be treated
independently).

The paper is organised as follows. Section 2 covers the details of the mathematical model. In Section 3 we
present the implementation details, and Section 4 presents the simulation results in terms of accuracy, execu-
tion time and memory cost. The results confirm the effectiveness and interactivity of the proposed model.
Finally, Section 5 is a discussion of some possible extensions and improvements of the model.

2. Mathematical model of an elastic tube

We want to model a semi-deformable tube in 3D. The tube geometry is defined by extruding a non-deform-
able ring in 2D (Fig. 1, right) along a deformable oriented spline curve in space (Fig. 1, left). A simplified ver-
sion of this approach was introduced in [7,20]. We first give a brief overview of the spline functions used in this
context. For further details see [5].



Fig. 1. A deformable oriented spline curve in space (left) and a non-deformable 2D ring (right).
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2.1. The splines and the tube geometry

A spline curve in a 3D space ~E is a piecewise polynomial function ~f : R!~E such that for all z 2 R
1 Th
~f ðzÞ ¼
~f iðzÞ if 9i 2 ½0; n� 2� such that z 2 ½zi; ziþ1�;
~0 otherwise:

(
ð1Þ
In (1) z0 < z1 < � � � < zn�1 are n knots1 which define n � 1 segments. On each of these segments (i = 0, . . . ,
n � 2) the corresponding spline can be written [5]
~f iðzÞ ¼ u0 z0 þ
z� zi

ziþ1 � zi
ðz1 � z0Þ

� �T

ni þ u1 z0 þ
z� zi

ziþ1 � zi
ðz1 � z0Þ

� �T

niþ1: ð2Þ
In Eq. (2) each node n0; n1; . . . ; nn�1 2 Rp gathers p scalar parameters and u0ðzÞ;u1ðzÞ 2 R½z�p;3 are the basis
polynomial matrices which degree corresponds to that of the spline. If we assume the uniform knots zi = i,
the spline segments defined by (2) simplify to become
~f iðzÞ ¼ u0ðz� iÞTni þ u1ðz� iÞTniþ1: ð3Þ

In (3) we assume that u0(0) = u1(1) and u0(1) = u1(0) = 0. If we introduce the notation
bzc½a;b� ¼
a if z < a;

b if z > b;

bzc otherwise

8><>: ð4Þ
for z 2 R, where bÆc is the standard ‘‘floor’’ function, we can rewrite (1) on [0,n � 1] as
~f ðzÞ ¼ uðzÞTn: ð5Þ

In (5) the nodes are represented by n 2 ðRpÞn, while the shape function uðzÞ 2 ðR½z�p;3Þn is such that
uiðzÞ ¼ dbzc½0;n�2� ;i � u0 z� bzc½0;n�2�

� �
þ dbzc½0;n�2�þ1;i � u1 z� bzc½0;n�2�

� �
ð6Þ
for i = 0, . . . ,n � 1, where di,j is the Kronecker delta function.
The linear tube geometry is described by an ordered pair of splines, that are referred to as an oriented

spline. Then the tube is represented by an extrusion of generalised cylindrical frames with parameters
(r,h,z) along the oriented spline (Fig. 1). The frames along the axis are generated using one spline curve
for their position vector and another one for their rotation vector. The position spline models the axis, while
the rotation spline completes its virtual skeleton. This approach should give more accurate representation of
e term ‘‘knot’’ is standard in NURBS [18].
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the tube than the approaches used in [7,20] that are based only on spline approximation of the position vec-
tors. Similar approach (approximation of both the translation and the rotation degrees of freedom) in the con-
text of FEM is presented in [1].

For each of the nodes ðn; gÞ 2 ðRpÞn � ðRqÞn of the oriented spline
ðuðzÞ;wðzÞÞ 2 ðR½z�p;3Þn � ðR½z�q;3Þn; ð7Þ

the mappings
n 7! ½OOz
��!�B ¼ uðzÞTn; g 7! ½HHz

��!� ¼ wðzÞTg; ð8Þ

define the translation vector OOz

��!
and the rotation vector HHz

��!
from a Galilean referential RðO;BÞ to the solid

Rz ¼ ðOz;BzÞ with parametric abscissa z 2 [0, n � 1] (see Fig. 1). This specification can be represented by the
following homogeneous transition matrices
½Rz�R ¼
½Bz�B ½OOz

��!�B
~0 1

 !
; ð9Þ
where the rotation matrix ½Bz�B from B to Bz is given by the Rodrigues formula
½Bz�B ¼ ½cos xz�3 þ sin xz � buz þ ð1� cos xzÞuzu
T
z : ð10Þ
In (10), xz ¼ kHHz
��!k, uz ¼ ½HHz

��!�=xz if xz 5 0 and 0 otherwise, and buz is the pre cross-product matrix of uz.
If u = (u0 u1 u2)T, then
u0

u1

u2

0B@
1CA
^

¼
0 �u2 u1

u2 0 �u0

�u1 u0 0

0B@
1CA: ð11Þ
Then, full geometry of the system ½Rr;h;z�R ¼ ½Rz�R½Rr;h;z�Rz
can be obtained from the state vectors (n,g) with

regards to the polar coordinates (r,h) 2 [a,b] · [0,2p], 0 < a < b in Rz. The matrix ½Rr;h;z�Rz
defines the cylin-

drical frame as (see Fig. 1)
½Rr;h;z�Rz
¼

cos h � sin h 0 r cos h

sin h cos h 0 r sin h

0 0 1 0

0 0 0 1

0BBB@
1CCCA: ð12Þ
2.2. Kinetic study

The tube is given as a material solid RðtÞ in space and time with an uniform parametric mass distribution
l̂ > 0 (expressed in kg m�2 u�1, where u is the parametric unit along the axis). Note that, in general, mass dis-
tribution l ¼ l̂=ku0ðzÞTnk can be space/time dependent. The kinetic energy of a deformable tube with a gen-
eralised cylindrical geometry is
T ¼ 1

2

Z Z Z
M2RðtÞ

½ _
OM
��!�TB � ½ _

OM
��!�Bl̂dr � r � dh � dz: ð13Þ
In (13) OM
��!

is the position vector of any point of the tube, and B is the referential basis. Dot notation assumes
partial differentiation with respect to time ð _

OM
��! ¼ oðOM

��!Þ=otÞ. We consider the case of non-deformable mate-
rial slice (_r ¼ 0 and _h ¼ 0) of a circular shape. For this case the velocity field can be written as
½ _
OM
��!�B ¼ uðzÞT _nðtÞ � ½BzðtÞ�B

r cos h

r sin h

0

0B@
1CA
^

wðzÞT _gðtÞ: ð14Þ
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By substituting (14) into (13) we get the following expression for the kinetic energy:
T ¼ 1

2
l̂ _nðtÞT ~A _nðtÞ þ _gðtÞT ~B _gðtÞ þ _gðtÞT ~Cht; gi _nðtÞ
h i

: ð15Þ
For the definition formulas of the matrices ~A, ~B, and ~Cht; gi see [14]. In the parameter space, the matrix l̂~A is
the linear inertia matrix, l̂~B is the angular inertia matrix, and l̂~Cht; gi is a coupling matrix. In the case of a
fully closed circular ring (Fig. 1) we obtain
~A ¼ pðb2 � a2Þ
Z n�1

0

uðzÞuðzÞT dz;

~B ¼ p
4
ðb4 � a4Þ

Z n�1

0

wðzÞdiagð1; 1; 2ÞwðzÞT dz;

~Cht; gi ¼ 0;

ð16Þ
thus yielding the following symmetric positive definite (SPD) quadratic form for the kinetic energy:
T ¼ 1

2
_nðtÞT _gðtÞT
� � l̂~A 0

0 l̂~B

 !
_nðtÞ
_gðtÞ

 !
: ð17Þ
2.3. Static study

If we assume that the material spline is an isotropic, linear, elasto-static object [25], the finite displacements
along the axis are
DðOOzðtÞ
����!

Þ
h i

B
¼ uðzÞTDnðtÞ; DðHzðtÞ

���!
Þ

h i
¼ wðzÞTDgðtÞ: ð18Þ
In (18) Dx = x � xref, where xref is a reference state for x with respect to the referential R. Then, the deforma-
tion energy can be written [25]
U ¼ 1

2

Z n�1

0

k̂
o

oz
DOOzðtÞ
����!h i

B

� �2

dzþ 1

2

Z n�1

0

‘̂
o

oz
DHzðtÞ
���!h i� �2

dz ð19Þ
where k̂; ‘̂ > 0 are the uniform parametric stiffness constants (in N m�1 u�1 and N m�1 rad�1 u�1, respec-
tively). The first term in (19) represents the generalisation of the spring energy, and the second term is the gen-
eralisation of the bending energy of a beam. The expression (19) can be rewritten as the SPD quadratic form
U ¼ 1

2
DnðtÞT DgðtÞT
� � K 0

0 L

� �
DnðtÞ
DgðtÞ

� �
; ð20Þ
with K ¼ k̂D̂ and L ¼ ‘̂Ê being the linear and the angular stiffness matrices, respectively, and
D̂ ¼
Z n�1

0

u0ðzÞu0ðzÞT dz; Ê ¼
Z n�1

0

w0ðzÞw0ðzÞT dz: ð21Þ
From (21) it follows that both matrices D̂ and Ê are SPD.
We assume that the tube is subjected to both conservative and non-conservative mechanical actions. As

conservative external mechanical actions we consider volume forces and torques (that act in the interior of
the tube), and surface forces and torques that act on the tube boundaries. The virtual work of the conservative
external mechanical actions can be expressed as (see [14] for more details)
dW ¼ STdnðtÞ þMTdgðtÞ: ð22Þ

The only non-conservative volume mechanical action is the viscous friction slider defined as ~F �c ¼ �m

_
OM
��!

,
where m is the coefficient of viscous dissipation. The virtual work of the non-conservative mechanical actions
can be expressed as
dW � ¼ S�TdnðtÞ þM�TdgðtÞ; ð23Þ

with S� ¼ �m̂~A _n and M� ¼ �m̂~B _g, where m̂ is a uniform parametric viscosity (in N m�3 u�1 s).
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2.4. Dynamic study and the Lagrange equations

In the Introduction we emphasised that our approach uses splines in the context of the Lagrange equations.
The Lagrange equations are equations of motion which include the kinetic energy, the potential energy
and the dissipative action. When solved numerically, the approximate solution represents the nodal displace-
ments. The displacements are approximated by segregating the spatial and the time variables as Y(x,y,z, t) =
U(x,y,z)TX(t), where X(t) are the generalised unknown displacements and U(x,y,z) are the basis functions of
the spatial approximation. The general form of the Lagrange equations reads
o

ot
oT

o _X

� �
� oT

oX
þ oU

oX
¼ QþQ�: ð24Þ
In (24) T and U are the kinetic and the deformation energy defined by (17) and (20), while Q and Q* are the
generalised conservative and non-conservative action vectors expressed by dW = QTdX and dW* = Q*TdX.
By substituting (17) and (20) into (24), we finally get the Lagrange equations for motion of the linear tube
l̂~A
d2ðDnÞ

dt2
þ m̂~A

dðDnÞ
dt
þ KðDnÞ ¼ S; ð25Þ

l̂~B
d2ðDgÞ

dt2
þ m̂~B

dðDgÞ
dt
þ LðDgÞ ¼M: ð26Þ
If we introduce the notation
X ¼
Dn

Dg

� �
; ~Q ¼

S

M

� �
; ð27Þ
into (25), (26), we finally get
l̂
~A 0

0 ~B

 !
€Xþ m̂

~A 0

0 ~B

 !
_Xþ

K 0

0 L

� �
X ¼ ~Q: ð28Þ
Eq. (28) represents a linear system of second-order ordinary differential equations. The coefficient matrices in
(28) are positive definite. Note that the equations for the position and rotation unknowns in (28) are decoupled
and can be solved independently. This is in contrast with the FEM approach described in [1], where the cou-
pling between these unknowns introduces a significant computational overhead.

3. Implementation details

The tube model that we suggest is based on oriented splines. This means that we use two splines u(z) and
w(z) to define a position and an orientation within the ‘‘snake-space’’ (Fig. 1). In general, the splines u(z)
and w(z) can be different, but for the sake of simplicity we use a single interpolation function u(z) for both
the position and the orientation. In our implementation we use the Hermite interpolation splines at order 2
(thus, ui(z) 2 C2[zi,zi+1]) [5,6]. This choice represents a suitable trade-off between the numerical accuracy
and smoothness of the solution. For this choice good numerical accuracy can be achieved with relatively
few degrees of freedom, thus making the method interactive. The level of accuracy is also sufficient for
the haptics feedback. On the other hand, the spline choice guarantees the curvature continuity at every
node, which is helpful in adaptive tessellation, texturing and other visualisation issues, as well as in collision
detection.

The spline nodes are defined as follows:
niðtÞ ¼ ~nð0Þi ðtÞ
h iT

B

~nð1Þi ðtÞ
h iT

B

~nð2Þi ðtÞ
h iT

B

� �T

; ð29Þ

giðtÞ ¼ ~gð0Þi ðtÞ
h iT

B
~gð1Þi ðtÞ
h iT

B
~gð2Þi ðtÞ
h iT

B

� �T

; i ¼ 0; . . . ; n� 1: ð30Þ
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In (29), (30) ½~nðkÞi ðtÞ�B and ½~gðkÞi ðtÞ�B, k = 0,1,2 are 3 · 1 matrices of the kth derivative of the translation and
rotation vectors for the ith node, respectively, in the basis B, at time t. Thus, each node is described by 18
degrees of freedom. The shape functions from (6) are the Hermite splines at order 2 defined by2
2 Th
u0ðzÞ ¼
½�6z5 þ 15z4 � 10z3 þ 1�3
½�3z5 þ 8z4 � 6z3 þ z�3
� 1

2
z5 þ 3

2
z4 � 3

2
z3 þ 1

2
z2

	 

3

0B@
1CA; ð31Þ

u1ðzÞ ¼
½6z5 � 15z4 þ 10z3�3
½�3z5 þ 7z4 � 4z3�3

1
2
z5 � z4 þ 1

2
z3

	 

3

0B@
1CA: ð32Þ
With this choice of basis functions we need to assemble the coefficient matrices in (28) using the formulas (16)
and (21). Since the basis functions have only the local support (each spline segment corresponds to a single
tube element), the matrix assembly procedure is that of the FEM. Consequently, all the integrals of the basis
functions defined between 0 and n � 1 can be calculated elementwise. By using the isoparametric mapping we
can reduce the integration segment to [0, 1] in all cases. Then the integrals are calculated numerically using the
Gauss–Legendre quadrature rule. In our implementation we use the NAG routines D01BCF and D01EBF
[16] to accomplish this task. The order of the quadrature rule is selected optimally with respect to the degree
of the polynomial functions we need to integrate, thus computing the matrix elements within the machine
accuracy. We use Horner’s algorithm to evaluate basis polynomials (32) and their first derivatives. This en-
ables us to calculate all the matrices ~A, ~B, K, L in (28) simultaneously (see [14, Section 4.1.1] for full details).
Due to a local support of the basis set, the coefficient matrices are banded, with a constant bandwidth
depending on the number of parameters for each node, regardless of the number of tube elements. The band
itself is nearly dense. Thus we do not expect a substantial amount of fill-in when applying direct methods to
the solution of the linear system. Moreover, memory requirements for our model will scale linearly with the
problem size. These facts offer a prospect of having an optimal algorithm for the problem that we consider
here.

Numerical solution of the system of ordinary differential Eq. (28) is done by the simultaneous application of
the Newmark method [27] to the position and orientation equation with the appropriate boundary conditions
(BCs). The time variable is discretised uniformly with a time step dt > 0, and we assume the initial conditions
X0 and _X0 are known. We need to impose a suitable set of BCs, the simplest case being to impose known
dynamics to some nodes (e.g. the node fixed to the referential R gives nk = 0, _nk ¼ 0, €nk ¼ 0, gk = 0,
_gk ¼ 0, €gk ¼ 0). In order to take into account the BCs, the effect of the constrained nodes is added to the gen-
eralised actions in (28), and the rows and the columns of the matrices that correspond to the degrees of free-
dom associated with the constrained nodes are deleted. The (b1,b2)-Newmark scheme computes the unknown
values Xi+1, _Xiþ1, €Xiþ1 from the known values Xi, _Xi, €Xi by
l̂~A 0

0 l̂~B

 !
€Xiþ1 þ

m̂~A 0

0 m̂~B

 !
_Xiþ1 þ

K 0

0 L

 !
Xiþ1 ¼ ~Qiþ1; ð33Þ

_Xiþ1 ¼ _Xi þ dtðð1� b1Þ€Xi þ b1
€Xiþ1Þ; ð34Þ

Xiþ1 ¼ Xi þ dt _Xi þ
dt2

2
ðð1� b2Þ€Xi þ b2

€Xiþ1Þ: ð35Þ
If we substitute (34) and (35) into (33) we obtain two independent linear systems
F 0

0 G

� �
€Xiþ1 ¼ ~Qiþ1 �

m̂~A 0

0 m̂~B

 !
_X�iþ1 �

K 0

0 L

� �
X�iþ1; ð36Þ
e notation [x]3 used in (32) assumes a 3 · 3 diagonal matrix with x along the diagonal.
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where
_X�iþ1 ¼ _Xi þ dtð1� b1Þ€Xi; X�iþ1 ¼ Xi þ dt _Xi þ
dt2

2
ð1� b2Þ€Xi; ð37Þ

F ¼ ðl̂þ b1 � dt � m̂Þ~Aþ b2

dt2

2

� �
K; ð38Þ

G ¼ ðl̂þ b1 � dt � m̂Þ~Bþ b2

dt2

2

� �
L: ð39Þ
Then from (34) we get
_Xiþ1 ¼ _X�iþ1 þ b1 � dt � €Xiþ1; ð40Þ
and from (35)
Xiþ1 ¼ X�iþ1 þ b2

dt2

2
€Xiþ1: ð41Þ
Notice that the position and the orientation at time ti are given by
ni

gi

� �
¼

nref

gref

� �
þ Xi: ð42Þ
The choice b1 ¼ b2 ¼ 1
2

in (36)–(41) gives an unconditionally stable implicit scheme [27].
The matrices F and G in (36) are SPD. This means that the two independent linear systems in (36), which

solution is needed at each time step, can be solved effectively by computing a Cholesky factorisation of the
matrices F and G. This needs to be done only once before Newmark’s scheme, as (38), (39) indicates that
the matrices F and G remain unchanged throughout the time integration. The last property is a consequence
of the linear character of the system (28). During the time integration only two forward and backsubstitutions
are needed to compute (36) at each time step. In our implementation we use the Bunch–Kaufman variant of
the banded Cholesky factorisation from the NAG library [16] (it is an LDLT factorisation).

Our primary objective in this work was to develop an efficient numerical procedure for the simulation of
visco-elastic tubes in real time, rather than more challenging and complex task of developing a complete vir-
tual reality simulator with graphics and haptics feedback (although our model satisfies all preconditions to be
a part of such a system). However, in order to visualise our results, we use optimal drawing primitives from
OpenGL [26]. The drawing mode GL_TRIANGLE_STRIP is used to form a tube surface from a series of
conjoined triangles (see the graphical results in Section 4). In our implementation no attempt was made to
optimise the performance of graphical output. For some possibilities, see Section 5.

4. Numerical results

In this section we demonstrate the numerical accuracy and efficiency of our model. As a representative
example, we consider a straight tube which is initially deformed into a stressed position. The tube is fixed
at one boundary. When no gravity is taken into account, the tube returns to its reference configuration after
passing through a few damped oscillations around the equilibrium. Due to a specific set of initial and bound-
ary conditions, the tube motion in this example will be planar. However, this example represents a typical
benchmark in mechanical engineering which enables validation of the model. More complicated combinations
of initial and boundary conditions usually produce 3D motion of the tube, and our model can accommodate
such cases. The tube parameters in our experiment are a = 0.32 m, b = 0.4 m, L = 12 m, k̂ ¼ 1:2 N m�1 u�1,
l̂ ¼ 0:8 kg m�2 u�1, ‘̂ ¼ 1:0 N m rad�1 u�1, and m̂ ¼ 0:5 N m�3 u�1 s. We measure the execution time per one
Newmark step and the maximal relative errors in the positions and the orientations as functions of the prob-
lem size. In order to estimate the solution accuracy, we compare the solutions computed with various numbers
of tube elements Nelt with a reference solution obtained with Nelt = 128. Computations with larger number of
elements produce the solutions that are essentially the same as the one with 128 elements. The accuracy is esti-
mated during the transition period, well away from the equilibrium configuration. We adopted equidistant



Table 1
Efficiency and accuracy of the tube model based on oriented splines as a function of the problem size

Nelt Ndof T (ms) M (kB) eps eor

16 306 1.497 118 0.3487 0.1418
32 594 3.055 226 0.1493 0.1248
64 1170 6.640 442 0.0498 0.0693
96 1746 9.444 658 0.0166 0.0448

128 2322 13.124 874 – –

The execution time T is in ms per Newmark step, memory requirements M are in kB, and position (eps) and orientation (eor) relative errors
are recorded after 1000 time steps.
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time steps of dt = 0.005 s. With such time discretisation, the equilibrium for the problem under consideration
occurs after approximately 6000 time steps. Our error estimates are sampled after 1000 time steps. As the equi-
librium is approached, these errors asymptotically approach 0.

The model is implemented in C++. The code was compiled with MS Visual C++ 6.0 and was run under
Windows XP on a PC with a single Intel Pentium 4 CPU at 1.8 GHz and 512 MB of RAM. The results are
summarised in Table 1. In the table Nelt denotes the number of tube elements, and Ndof is the total number of
degrees of freedom. T is the CPU clock time (in ms) needed to do the computations within one Newmark iter-
ation, and M is the memory (in kB) used to store the data. Relative errors in position eps and in orientation eor

are computed as the maximum difference between the approximate solutions for the frames Ri of the 128-ele-
ment tube, and frames Rj of the Nelt tube, where j = i Æ Nelt/128. The position error is normalised with respect
to the tube length L, while the orientation error is normalised with respect to 2p.

From Table 1 it can be confirmed that the execution times and memory requirements scale linearly with the
problem size. Thus our method has optimal solver property. From the execution times it can be concluded that
the computation time per time step is sufficiently small to allow real-time simulations for problem sizes of
approximately 50 elements (Ndof = 918) if we require haptics feedback at 200 Hz, and for problem sizes of
approximately 500 elements (corresponding to Ndof = 9180) if we require only graphical output at 20 Hz.
For the case Nelt = 50 both position and orientation relative errors are approximately 5%, what is well within
the range of tolerances admissible for these types of models. Problem sizes that allow real-time modelling are
actually the upper limits, as the execution times from Table 1 do not include time spent to produce graphics or
haptics output. The execution times from Table 1 does not include the one-off cost of computing the LDLT

factorisation of the matrices F and G from (36). For the case Nelt = 128 the time needed to create the tube
object (which include memory allocations, assembly of the matrices, application of the BCs, and computation
of the LDLT factorisation) is 80 ms. Thus, the startup delay does not present a considerable overhead, and it
can be barely noticed by a human operating a simulator. This is in contrast with the FEM and the BEM for
the real-time simulations [1,12], that require a formidable off-line computation prior to the real-time
simulation.

Finally, in Fig. 2 we present the screen shots produced by OpenGL of 3 tubes obtained with different num-
ber of elements Nelt = 1,2,4, corresponding from bright (Nelt = 1) to dark (Nelt = 4) colour of the tube.
Fig. 2. Screen shots of the tubes with 1,2,4 elements (from bright to dark colour) at time steps t = 0 s, t = 2 s and t = 4 s (from left to
right).
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The screen shots are taken from the simulation of the model problem described in this section at the times
t = 0 s, t = 2 s, and t = 4 s (from left to right). From the figure it can be seen that the simulations match rel-
atively closely even for relatively small number of tube elements (the exception is 1 element, when the simu-
lation is fairly inaccurate).

5. Discussion and conclusions

In this paper we present a numerical method for simulation of semi-deformable tubes based on oriented
splines, which are applied in context of the Lagrange equations. This model is suitable for inclusion in complex
medical training simulators based on virtual reality, or other systems where numerical modelling in real time is
an essential requirement. Such choice of basis functions for spatial discretisation is motivated by the require-
ment to achieve sufficient accuracy in real time, and to enable realistic graphical output and haptics feedback.
Over the past years a substantial research effort was invested to upgrade standard physically based numerical
methods, such as the FEM and the BEM to work under the real-time constraints. The updates are usually
based on moving a considerable amount of computational work off-line [1,12]. This approach restricts consid-
erably the number of applications for which satisfactory results can be obtained. Our approach is similar to
that of the FEM in the sense that we subdivide a tube into a (moderate) number of elements. Then the position
and the orientation within each element is approximated by a Hermite spline at order 2. When this spatial
discretisation is used in context of the Lagrange equations, we obtain an uncoupled system of ODEs in posi-
tion and orientation variables. Time integration using Newmark’s method require the solution of two linear
systems at each step. The main advantage of our approach, comparing to the related FEM [1] is that the two
linear systems are decoupled and can be solved efficiently. Several modelling techniques for elastic objects
found in the literature [7,20] are based on splines. However, these techniques are based on approximation
of the position variables only. In our approach we consider both the position and the orientation as the
unknown degrees of freedom. This increases robustness and accuracy of our methodology (see Table 1), mak-
ing it comparable to that of the FEM. In addition, smoothness of the spline basis functions is beneficiary for
the graphical rendering issues. In our case the only off-line computation is related to the assembly of the tube
object and two LDLT factorisations of the matrices in (38), (39). As we have seen in Section 4, this cost is not
prohibitive.

At the end we give some potential modifications which can make the proposed model more efficient. First,
all the matrices in (28) can be assembled in a FEM fashion (elementwise). These computations are independent
and can be done in parallel. The two LDLT factorisations can be done independently and in parallel as well.
There is a host of efficient parallel library codes (see for example [11]) targeted for such applications. Replacing
the direct solver by an iterative Krylov method [21] preconditioned by the algebraic multigrid (AMG) [23] can
be an alternative. However, our experience in the context of FE modelling of linear elasticity problems is that
real benefits of an iterative solver become obvious when discrete problem size exceeds 104 degrees of freedom
[15]. Thus, direct solution methods seem to be optimal in this context. When this model is used as a part of a
more complex simulator, further parallelisation of the tasks is possible as suggested in [24]. For example,
numerical computation can be done on one group of computers, while graphics and haptics output can be
generated on the other group of machines, presumably with special graphical cards and optimised software
for graphical applications. Communication between the machines can be realised by the MPI. However, this
would incur communication delays, especially on shared networks.
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