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In this paper, we have solved 1D special relativistic hydrodynamical equations

using different numerical method in computational gas dynamics. The numerical

solutions of these equations for smooth wave cases give better solution when we use

Non−TV D(Total Variable Diminishing) but solution of discontinuity wave produces

some oscillation behind the shock. On the other hand, TV D type schemes give good

approximation at discontinuity cases. Because TV D schemes completely remove the

oscillations, they reduce locally the accuracy of the solution around the extrema.
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I. INTRODUCTION

The invention of the digital computer and its introduction into the world of science

and technology has led to the development, and increased awareness, of the concept of

approximation. This concerns the theory of numerical approximation of a set of equations,

taken as a mathematical model of a physical system. However, it also concerns the notion

of approximation involved in the definition of this mathematical model with respect to

the complexity of physical world.We are concerned here with physical systems for which

is assumed that the basic equations describing their behavior is known theoretically but

for which no analytic solutions exist, and consequently an approximate numerical solution

will be sought instead.The approximation is relative to a given time and environment, and

these are being extended with the evolution of computer technology.We can state that a
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mathematical model for the behavior of a astrophysical system, and in particular the system

of fluid flows, can only be defined after consideration of the level of the approximation

required in order to achieve an acceptable accuracy on a defined set of dependent and

independent variables.For instance, evolution of relativistic hydrodynamical system can be

considered to depend on conserve and primitive variables.

Actually, physicists propose various levels of description of our physical world, ranging

from subatomic or molecular, microscopic or macroscopic up to the astronomical scale. So

fluid dynamics is essentially the study of the interactive motion and behavior of a large

number of individual elements. From this point of view we understand easily why concept

of fluid mechanics can be applied large number of interacting elements, such as astrophysical

phenomenon.

The astrophysical problems creates strong shocks region due to strong gravitational field.

An accurate description of relativistic cases with strong shocks is needed for study of im-

portant problems, such as accreting of compact objects, stellar collapse, and coalescing of

compact binaries. At this end, we have started testing different numerical methods to solve

the relativistic hydrodynamical equations.

In this paper, first we introduce the special relativistic hydrodynamical(SRH) equation

and their components. Second, we give detail discussion about numerical schemes we have

used here. Finally, we discuss numerical solution of SRH equation from different numerical

schemes when we applied them to the different test problems.

II. FORMULATION

The General Relativistic Hydrodynamic (GRH) equations in Refs. [1] and [2], written

in the standard covariant form, consist of the local conservation laws of the stress-energy

tensor T µν and the matter current density Jµ:

▽µ T
µν = 0, ▽µJ

µ = 0. (1)

Greek indices run from 0 to 3, Latin indices from 1 to 3, and units in which the speed of

light c = 1 are used.

Defining the characteristic waves of the general relativistic hydrodynamical equations
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is not trivial with imperfect fluid stress-energy tensor. We neglect the viscosity and heat

conduction effects. This defines the perfect fluid stress-energy tensor. We use this stress-

energy tensor to derive the hydrodynamical equations. With this perfect fluid stress-energy

tensor, we can solve some problems which are solved by the Newtonian hydrodynamics

with viscosity, such as those involving angular momentum transport and shock waves on an

accretion disk, etc. Entropy for perfect fluid is conserved along the fluid lines. The stress

energy tensor for a perfect fluid is given as

T µν = ρhuµuν + Pgµν. (2)

A perfect fluid is a fluid that moves through spacetime with a 4-velocity uµ which may vary

from event to event. It exhibits a density of mass ρ and isotropic pressure P in the rest

frame of each fluid element. h is the specific enthalpy, defined as

h = 1 + ǫ+
P

ρ
. (3)

Here ǫ is the specific internal energy. The equation of state might have the functional form

P = P (ρ, ǫ). The perfect gas equation of state,

P = (Γ− 1)ρǫ, (4)

is such a functional form.

The conservation laws in the form given in Eq.(1) are not suitable for the use in ad-

vanced numerical schemes. In order to carry out numerical hydrodynamic evolutions such

as those reported in [2], and to use high resolution shock capturing schemes, the hydrody-

namic equations after the 3+1 split must be written as a hyperbolic system of first order

flux conservative equations. We write Eq.(1) in terms of coordinate derivatives, using the

coordinates (x0 = t, x1, x2, x3). Eq.(1) is projected onto the basis {nµ, ( ∂
∂xi )

µ}, where nµ is

a unit timelike vector normal to a given hypersurface. After a straightforward calculation

and neglecting the GR part of equation we get in 1D (see ref.[2]),

∂t~U + ∂x ~F
x = 0, (5)

where ∂t = ∂/∂t and ∂x = ∂/∂x. This basic step serves to identify the set of unknowns,

the vector of conserved quantities ~U , and their corresponding fluxes ~F x(~U). With the equa-
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tions in conservation form, almost every high resolution method devised to solve hyperbolic

systems of conservation laws can be extended to GRH.

The evolved state vector ~U consists of the conservative variables (D,Sx, τ) which are

conserved variables for density, momentum and energy respectively; in terms of the primitive

variables (ρ, vx, ǫ), this becomes [2]

~U =











D

Sx

τ











=











√
γWρ

√
γρhW 2vx

√
γ(ρhW 2 − P −Wρ)











. (6)

Here γ is the determinant of the 3-metric γxj which is a unit matrix for special relativity, vx

is the fluid 3-velocity in x direction, and W is the Lorentz factor,

W = αu0 = (1− γxjv
xvj)−1/2. (7)

The flux vectors ~F x are given by [2]

~F x =











αvxD

α{vxSj +
√
γPδxj }

α{vxτ +
√
γvxP}











. (8)

The spatial components of the 4-velocity ux are related to the 3-velocity by the following

formula: ux = Wvx. α, which equals 1 for special relativistic case, is the lapse function of

the spacetime.

The use of HRSC scheme requires the spectral decomposition of the Jacobian matrix

of the system, ∂ ~F x/∂~U . The spectral decomposition of the Jacobian matrices of the SRH

equations with a general equation of state was reported in [2].

We started the solution by considering an equation of state in which the pressure P is a

function of ρ and ǫ, P = P (ρ, ǫ). The relativistic speed of sound in the fluid Cs is given by

[2]

C2
s =

∂P

∂E

∣

∣

∣

∣

S

. =
χ

h
+

Pκ

ρ2h
, (9)

where χ = ∂P/∂ρ|ǫ, κ = ∂P/∂ǫ|ρ, S is the entropy per particle, and E = ρ+ ρǫ is the total

rest energy density.
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In order to use numerical schemes to solve SRH equation, eigenvalues and left and right

eigenvector must be defined for the Jacobian matrix. A complete set of the right and left

eigenvectors [~ri] and corresponding eigenvalues λi along the x-direction is given in [3].

In any relativistic hydrodynamics code evolving the conserved quantities (D,S, τ) in

time, the primitive variables (P, ρ, v) have to be computed from the conserved quantities at

least once per time step. In our code, this is achieved using relations (4),(3),(6) and (7) to

construct the function [4]

f(P ) = (Γ− 1)ρ∗ǫ∗ − P, (10)

where Eq. (6) gives

ρ∗ =
D√
γW∗

(11)

and Eqs. (3) and (6) give

ǫ∗ =
τ +D(1−W∗) +

√
γ(1−W∗

2)P

DW∗

. (12)

Here

W∗ =
1√

1− v2
, (13)

and v2 = γjkvjvk = vjv
j.

From Eq.(6), the following relation between P , v, and the conserved quantities can be

derived:

vj =
Sj

τ +
√
γP +D

. (14)

From Eqs.(13) and (14), we get

W∗ =
1

√

1− Sj

τ+
√
γP+D

γjk Sk

τ+
√
γP+D

. (15)

Setting f(P ) = 0 in equation (10) gives a nonlinear implicit equation for P . It can be

solved using a root finding method; in this work, we are using the false-position method

[5]. The zero of f(P ) in the physically allowed domain Pmin < P < Pmax determines the

pressure, and the monotonicity of f(P ) in that domain ensures the uniqueness of the solution
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[4]. The lower bound of the physically allowed domain Pmin, defined by Pmin = |S− τ −D|,
is obtained from (14) by taking into account that (in our units) |v| ≤ 1, and Pmax can be

taken to have any sufficiently large value. Knowing P , Eq.(14) then directly gives v, while

the remaining state quantities are obtained in a straightforward manner from Eqs.(3), (6),

and (7).

III. NUMERICAL SCHEMES AND METHOD

The special relativistic hydrodynamical equations in 1D can be written in the form

∂~U

∂t
+

∂ ~F x

∂x
= 0, (16)

Discretization of the hydrodynamical equations (16) gives

∂~Ui

∂t
+

( ~f ∗)i+1/2 − ( ~f ∗)i−1/2

△x
= 0. (17)

where ( ~f ∗)i+1/2 is the numerical flux calculated at the interfaces i± 1/2 of spatial cell i.

In here, we will explain the numerical methods we use to solve the hydrodynamical equa-

tions. First, we will introduce the flux splitting method in which fluxes are defined depending

on the sign of eigenvalues of Jacobian matrix which is defined from SRH equations. Second,

we will explain the MUSCL-type schemes, in which the state variables at the interfaces are

obtained from an extrapolation between neighboring cell averages.

A. Flux Split Method

First, we consider the flux splitting method, in which the flux is decomposed into the

part contributing to the eigenfields with positive eigenvalues (fields moving to the right)

and the part with negative eigenvalues (fields moving to the left) [6, 7]. These fluxes are

then discretized with one-sided or upwind differences depending on the sign of the particular

eigenvalue. For example, the flux of material moving in the +x direction is differenced with

a backward spatial difference.
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For the flux split method, one assumes that [6, 7]

~F x(ζ ~U) = ζ ~F x(~U), (18)

for any constant ζ . This only holds for the fluxes of Eq.(8) if the equation of state has the

functional form P = P (ρ, ǫ) = ρf(ǫ), for some function f(ǫ). Therefore, we use the perfect

gas equation of state,

P = (Γ− 1)ρǫ, (19)

where Γ is the adiabatic index of the fluid. From the Eq.(18) , the flux vector ~F x can be

written

~F x = (
∂ ~F x

∂~U
)~U. (20)

Using the spectral decomposition, one can write the Jacobian matrix ∂ ~F x/∂~U in the form

[6, 7]

∂ ~F x

∂~U
= (Mx)Λx(Mx)−1, (21)

where Mx is the matrix whose columns are the right eigenvectors of the system in the x-

direction, and Λx is a diagonal matrix constructed from the corresponding eigenvalues which

are given in [3].

Next, we split the flux into the part that is moving to the right and the part that is

moving to the left. Using Eqs.(20) and (21) this gives [6, 7]

~F x = (~F x)+ + (~F x)− = {(Mx)(Λx)+(Mx)−1}~U +

{(Mx)(Λx)−(Mx)−1}~U, (22)

where (Λx)+ = 1
2
(Λx + |Λx|), and (Λx)− = 1

2
(Λx − |Λx|). If we use a first-order upwind flux,

we define

(~f ∗
i+1/2) = (~F x)+i + (~F x)−i+1, (23)

and
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(~f ∗
i−1/2) = (~F x)+i−1 + (~F x)−i . (24)

When these are substituted into Eq.(17), we get

~Un+1
i = ~Un

i − △t

△x
[(~F x)+i + (~F x)−i+1 − ((~F x)+i−1 + (~F x)−i )]

n. (25)

This scheme is first-order accurate in space and time.

Second order accurate flux-splitting method can also be constructed; see [8].

B. MUSCL-Type Methods

We introduce HRSC(High Resolution Shock Capturing) schemes which use slope limiters

to kill spurious oscillations, called MUSCL-type schemes. MUSCL stands for Monotone

Upstream-centered Scheme for Conservation Laws. The MUSCL-type scheme allows us

to construct higher order methods, fully discrete, semi-discrete and also implicit methods

[6, 7]. While higher order linear schemes produce spurious oscillations, the MUSCL-type

scheme achieves a high order of accuracy by data reconstruction, where the reconstruction

is constrained so as to avoid spurious oscillations.

The value of any quantity, un
i represents an integral average in cell [xi− 1

2

, xi+ 1

2

], given by

un
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

u(x, tn)dx. (26)

Local reconstruction of ui(x) from Fig.1 is

ui(x) = un
i +

(x− xi)

∆x
∆i, x ǫ [0,∆x]. (27)

where ∆i

∆x
is called the slope of ui(x) in cell i. Fig.1 shows the specific grid cell i. The center

of the cell xi in local coordinates is x = 1
2
∆x and ui(xi) = un

i . From Eq.(27), the values of

ui(xi) at the left and right edges of the cell play an important role in this reconstruction

scheme; they are given by
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uL
i = ui(0) = ui −

1

2
∆i

uR
i = ui(∆x) = ui +

1

2
∆i. (28)

These left and right states are called boundary extrapolated values. Note that the integral

of ui(x) in cell i is identical to that of un
i and thus the reconstruction process retains flux

conservation. This is a second-order accurate scheme, O(△x2).

If we assume the slopes are zero in Eq.(28), the MUSCL scheme becomes the first-order

accurate Godunov method.

C. Slope Functions

To avoid the appearance of oscillations around discontinuities in MUSCL-type schemes,

we will use slope limiters in the reconstruction stage [6, 7].

Fig.2 shows the piecewise linear reconstruction process applied to three successive cells.

In each cell, we use the slope function defined in Eq.(27) and (28). We will begin by writing

the slope function in the form [6]

∆i =
1

2
(1 + ω)∆ui− 1

2

+
1

2
(1− ω)∆ui+ 1

2

(29)

where

∆ui− 1

2

≡ un
i − un

i−1,

∆ui+ 1

2

≡ un
i+1 − un

i , (30)

and ω is a free parameter in the interval [−1, 1]. This produces second-order accurate

schemes. For ω = 0, ∆i is a central difference approximation, multiplied by ∆x. For

ω = −1, the MUSCL scheme becomes the Lax-Wendroff Method.

In general, schemes based on Eq.(29) still have spurious oscillations at discontinuities. To

remove these, we will use limiters that produce schemes which are total variation diminishing,

or TVD. A numerical scheme is said to be TVD if

TV (Un+1) ≤ TV (Un), (31)
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where the total variation

TV (Un) =
∑

i

| Ui+1 − Ui | . (32)

and i → [−∞ , ∞]. To apply this rule for any finite number of points on a grid, Ui can be

set to zero or a constant value outside the grid.

A common TVD limiter is based on the minmod function [6]. The standard minmod

slope provides the desired second-order accuracy for smooth solutions, while still satisfying

the TV D property. We write this as referring to Fig.2,

∆i = minmod(Ui − Ui−1,Ui+1 −Ui), (33)

where the minmod function of two arguments is defined by:

minmod(a, b) =



















a if |a| < |b| and ab > 0

b if |b| < |a| and ab > 0

0 if ab ≤ 0.

(34)

We have also used another TVD slope limiter which may give better solution at discon-

tinuities. This limiter is given by [6]

∆i =







max[0,min(β∆Ui− 1

2

,∆Ui+ 1

2

),min(∆Ui− 1

2

, β∆Ui+ 1

2

)], ∆Ui+ 1

2

> 0.0

min[0,max(β∆Ui− 1

2

,∆Ui+ 1

2

),max(∆Ui− 1

2

, β∆Ui+ 1

2

)], ∆Ui+ 1

2

< 0.0,
(35)

where 1 ≤ β ≤ 2. The value β = 1 reproduces the MINMOD or MINBEE slope limiter as

in Eq.(34). β = 2 is called the SUPERBEE flux limiter.

D. Marquina Fluxes

Approximate Riemann solver failures and their respective corrections (usually adding a

artificial dissipation) have been studied in the literature [9]. Motivated by the search for a

robust and accurate approximate Riemann solver that avoids these common failures, Shu

et al [10] have proposed a numerical flux formula for scalar equations. Marquina flux is

generalization of flux formula in Ref. [10]. In the scalar case and for characteristic wave
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speeds which do not change sign at the given numerical interface, Marquina’s flux formula

is identical to Roe’s flux [7]. Otherwise, scheme is more viscous, entropy satisfying local

Lax-Friedrichs scheme [10]. The combination of Roe and Lax-Friedrichs schemes is carried

out in each characteristic field after the local linearization and decoupling of the system of

equations. However, contrary to other schemes, the Marquina’s method is not based on any

averaged intermediate state.

We use Marquina fluxes with MUSCL left and right states to solve the 1-D relativistic

hydro equation. In Marquina’s scheme there are no Riemann solutions involved (exact or

approximate) and there are no artificial intermediate states constructed at each cell interface.

To compute the Marquina fluxes we first compute the sided local characteristic variables

and fluxes. For the left and right sides, the characteristic variables are

wp
l = Lp(Ul) · Ul, wp

r = Lp(Ur) · Ur (36)

and the characteristic fluxes are

Φp
l = Lp(Ul) · F (Ul), Φp

r = Lp(Ur) · F (Ur). (37)

where the number of conservative variables p = 1..5. Ul and Ur are conservative variables

at the left and right sides, respectively. Lp(Ul) and Lp(Ur) are the left eigenvectors of the

Jacobian matrices, ∂F i/∂U .

We define left and right fluxes depending on the velocities of the fluid for each specific

grid zone. The prescription given in Ref.[8] is as follows.

For all conserved variables p = 1, ..m

if λp(U) does not change sign in (if ( λp(UL) × λp(UR) ≥ 0)), then

if λp(Ul) > 0 then

Φp
+ = Φp

l

Φp
− = 0

else

Φp
+ = 0

Φp
− = Φp

r

end if

else
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αp = maxUǫΓ(Ul,Ur) |λp(U)|
Φp

+ = 0.5(Φp
l + αkw

p
l )

Φp
− = 0.5(Φp

r + αpw
p
r)

end if

where λp is an eigenvalue of the Jacobian matrix and,

αk = max{|λp(Ul)|, |λp(Ur)|}. (38)

The numerical flux that corresponds to the cell interface separating the states Ul and Ur is

then given by Ref.[8]:

FM(Ul, Ur) =
m
∑

p=1

(Φp
+r

p(Ul) + Φp
−r

p(Ur)). (39)

Marquina’s scheme can be interpreted as a characteristic-based scheme that avoids the use

of an averaged intermediate state to perform the transformation to the local characteristic

fields.

In carrying out Marquina’s scheme, we have to compute intermediate states and the

Jacobian matrix of the states at each cell interface. So we need to know the left and right

states, UL and UR, at each interface. To construct the second-order scheme, we use the

MUSCL left and right states given in Eq.(28).

IV. NUMERICAL RESULTS

Results of numerical solution of SRH equation are given. Before doing any further expla-

nation, we need to define boundary conditions. Boundary conditions are set by filling the

data in guard cells with appropriate values. In the numerical calculation boundary filling

plays an important role in the simulations. The computational grid is extended at both

sides of the physical domain to compute the fluxes at interfaces. These extra cells are also

called guard cells or ghost zones. There are different types of boundary conditions used in

the literature to solve physical problems in an appropriate way. In this paper we have used

several types of boundary conditions including periodic, inflow, outflow and analytically

prescribed boundary conditions. These boundary conditions have to be provided on each

time step for all primitive and conservative variables in the special relativistic hydro code.
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Here, we solve three different test problems to compare the results from different numerical

schemes.

A. Smooth Test Problems

First, we start testing the code with smooth hydrodynamical solutions using different

numerical schemes which are explained in III. Since we are concerned with special relativistic

flows, we choose cases with P ∼ ρ and v ∼ 1 in our units (c = 1). We focus on the case of

a varying density profile ρ = ρ(x, t) with constant, uniform pressure P = P0 and velocity

v = v0. When these functions are substituted into Eq. (5), we see that they form a

consistent solution for the advection of a density profile at constant velocity v0. These tests

are performed on the computational domain 0 ≤ x ≤ 1 with the ideal gas law Eq.(19), with

Γ = 5/3.

The first test in Table I consists of a stationary density pulse.In Table II we compute

the L1 norm errors and convergence rates, c, for the different numerical scheme for the

standing wave test problem in Table.I. All numerical schemes give a good convergence rate

for the standing wave problem, except the minmod schemes. However while TV D schemes

completely remove the oscillations, they reduce locally the accuracy of the solution around

the extrema. We also compare the numerical solutions of the standing wave, shown in the

left-hand panels and labeled with v = 0, with the analytic solutions using these schemes

in Figs. 3, 4 and 5. It is easy to see from these figures that the TV D schemes(minmod,

β = 1 and β = 2) reduce the accuracy of the solution around the extrema. From Fig. 4

with w = −1, the Lax-Wendroff scheme gives better solution for the smooth wave.

In Table III we compute the L1 norm errors and convergence rates,c, using the different

numerical schemes for the moving wave in Table I. We got good first-order convergence

rates for the flux splitting and Godunov methods. The Lax-Wendroff method gives good

convergence rates for second-order method. The convergence rates with TV D schemes are

not as good as for Lax-Wendroff, and they are not consistent because of the problems around

the extrema. In Figs. 3, 4 and 5, we plot the numerical solutions of the moving wave, shown

in the right-hand panels and label with v = 0.4, with the analytic solutions using different

schemes. Again, the TV D schemes reduce the accuracy of the solution around the extrema.
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B. Shock Tube Test Problem

Our next code test is the Riemann shock tube [6, 7]. In this problem, the fluid is initially

in two different thermodynamical states on either side of a membrane. The membrane is

then removed. Let us assume that the fluid initially has ρL > ρR, where the subscripts L

and R refer to the left and right sides of the membrane. Then, a rarefaction wave travels to

the left, and a shock wave and contact discontinuity travel to the right.The Riemann shock

tube is a useful test problem because it has an exact time-dependent solution and tests the

ability of the code to evolve both smooth and discontinuous flows. In the case considered

here, the velocities are special relativistic and the method of finding the exact solution differs

somewhat from the standard non-relativistic shock tube.

In Table V we compute the L1 norm errors and convergence rates using the different

numerical schemes for the special relativistic shock problem in Table IV. The convergence

rates should approach 1 when we use higher order methods. From the last three columns of

Table V, the first-order flux splitting and Godunov methods give good convergence rates,

but not the Lax-Wendroff scheme, which scheme produces spurious oscillation behind the

shock. This is seen clearly in Fig.8. The TV D schemes give good convergence rates for the

shock tube problem. From Table V the TV D schemes give better convergence rates than

the flux-splitting and Godunov schemes, because TV D schemes are second-order accurate.

Additionally, we plot the analytic and numerical solutions of the shock tube problem for

Godunov and TV D with β = 1 in Figs. 6 and 7. We did not compute the convergence rates

for β = 2. Because it produce some oscillation and it does not allow to us run the code

enough time to compute convergence rates.

V. CONCLUSION

Numerical solution of special relativistic hydrodynamical equation in 1D using first and

second order different numerical methods is explained in this paper. The numerical methods

are applied on cases which are stationary and unsteady flow situations. Results from different

method are compared to define better method for problems. It is seen from figures and

tables that while TV D type schemes gives good approximation for discontinuity solution,

the Non−TV D type schemes give better solution for smooth test problems. Because TV D
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schemes completely remove the oscillations, they reduce locally the accuracy of the solution

around the extrema. As a conclusion, TV D type schemes can use to solve astrophysical

problems which have strong shock region, especially around the compact objects.
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TABLE I: Initial data for smooth waves test problems.

Special Relativistic Smooth Wave Test Problems

Test ρ P v

1 sin(2πx) + 2.0 1.0 0.0

2 sin(2πx) + 2.0 1.0 0.4
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TABLE II: L1 norm errors and convergence rates for the standing wave test problem in Table I.

The different first and second-order schemes are used.

L1 norm errors and convergence rates for the standing wave

Type npts L1(ρ) L1(p) L1(v) c(ρ) c(p) c(v)

100 8.42E-2 1.56E-3 7.84E-4 1.92 1.88 1.84

Flux-splitting 200 4.36E-2 8.29E-4 4.25E-4 1.96 1.94 1.92

O(∆x,∆t) 400 2.22E-2 4.28E-4 2.21E-4 1.98 1.97 1.95

(non-TVD) 800 1.12 E-2 2.16E-4 1.13E-4 1.98 1.99 1.96

1600 5.64 E-3 1.09E-4 5.77E-5

100 8.38E-2 1.87E-3 5.67E-4 1.93 1.84 1.82

Godunov 200 4.33E-2 1.01E-3 3.10E-4 1.96 1.92 1.90

O(∆x,∆t) 400 2.20E-2 5.27E-4 1.62E-4 1.98 1.95 1.95

(non-TVD) 800 1.11E-2 2.69E-4 8.33E-5 1.99 1.97 1.97

1600 5.59E-3 1.36E-4 4.22E-5

w=-1 100 2.87E-3 7.06E-5 2.56E-5 3.99 3.99 4.00

(Lax-Wend.) 200 7.19E-4 1.76E-5 6.39E-6 3.99 3.999 4.00

O(∆x2,∆t2) 400 1.79E-4 4.41E-6 1.59E-6 3.999 3.999 3.91

(non-TVD) 800 4.49E-5 1.10E-6 4.07E-7

100 6.55E-3 4.37E-5 2.49E-5 3.67 3.58 3.67

β = 1 200 1.78E-3 1.22E-5 6.79E-6 3.65 3.68 3.68

O(∆x2,∆t2) 400 4.87E-4 3.32E-6 1.84E-6 3.76 3.79 3.77

(TVD) 800 1.29E-4 8.75E-7 4.89E-7 3.81 3.87 3.84

1600 3.39E-5 2.25E-7 1.27E-7

100 4.69 E-3 3.75E-5 1.59E-5 3.53 3.32 2.96

β = 2 200 1.32E-3 1.13E-5 5.37 E-6 3.77 3.53 3.36

O(∆x2,∆t2) 400 3.51E-4 3.19E-6 1.59E-6 3.88 3.72 3.56

(TVD) 800 9.04 E-5 8.58E-7 4.48E-7 3.94 3.84 3.72

1600 2.29 E-5 2.23E-7 1.20E-7

100 6.38E-3 5.47E-4 1.68E-4 3.56 1.80 1.64

minmod 200 1.79E-3 3.03E-4 1.02E-4 3.14 2.95 2.32

O(∆x2,∆t2) 400 5.69E-4 1.02E-4 4.42E-5 3.22 2.89 3.26

(TVD) 800 1.76E-4 3.55E-5 1.35E-5 2.36 1.32 1.33

1600 7.45 E-5 2.68E-5 1.01E-5
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TABLE III: L1 norm errors and convergence rates for the moving wave test problem from Table I.

The different first and second order schemes are used.

L1 norm errors and convergence rates for the moving wave

Type npts L1(ρ) L1(p) L1(v) c(ρ) c(p) c(v)

100 0.129 2.76E-3 8.79E-4 1.89 1.76 1.76

Flux-splitting 200 6.83E-2 1.56E-3 4.97E-4 1.94 1.87 1.87

O(∆x,∆t) 400 3.51E-2 8.33E-4 2.65E-4 1.97 1.93 1.93

(non-TVD) 800 1.78E-2 4.30E-4 1.36E-4 1.98 1.96 1.96

1600 8.97E-3 2.18E-4 6.95E-5

100 0.13 2.8E-3 8.8E-4 1.9 1.78 1.78

Godunov 200 6.84E-2 1.58E-3 4.99E-4 1.95 1.89 1.89

O(∆x,∆t) 400 3.54E-2 8.35E-4 2.67E-4 1.98 1.93 1.93

(non-TVD) 800 1.8E-2 4.32E-4 1.38E-4 1.99 1.97 1.97

1600 8.9E-3 2.2E-4 6.9E-5

w=-1 100 3.94E-3 1.13E-4 3.67 E-5 3.99 3.99 3.99

(Lax-Wend.) 200 9.86E-4 2.83E-5 9.19E-6 4.00 3.99 3.99

O(∆x2,∆t2) 400 2.46E-4 7.08E-6 2.30E-6 4.00 4.00 3.99

(non-TVD) 800 6.16E-5 1.77E-6 5.75E-7

100 1.15 E-2 8.65E-5 3.01E-5 3.56 3.95 4.07

β = 1 200 3.22E-3 2.19E-5 7.37E-6 3.67 3.96 4.05

O(∆x2,∆t2) 400 8.77E-4 5.52E-6 1.81E-6 3.73 3.97 4.01

(TVD) 800 2.34E-4 1.38E-6 4.53E-7 3.81 3.98 4.00

1600 6.15E-5 3.48E-7 1.13E-7

100 7.81E-3 8.06E-5 2.94E-5 3.45 3.81 4.43

β = 2 200 2.26E-3 2.11E-5 6.65E-6 3.71 3.91 3.98

O(∆x2,∆t2) 400 6.09E-4 5.39E-6 1.67E-6 3.85 3.90 3.81

(TVD) 800 1.57E-4 1.38 E-6 4.38E-7 3.92 4.01 3.94

1600 4.01E-5 3.43E-7 1.11 E-7

100 1.15E-2 8.67E-5 3.01E-5 3.56 3.86 4.14

minmod 200 3.22E-3 2.24E-5 7.25E-6 3.67 4.05 3.98

O(∆x2,∆t2) 400 8.77E-4 5.52E-6 1.82E-6 3.73 3.91 4.03

(TVD) 800 2.34E-4 1.41E-6 4.50E-7 3.81 4.04 3.97

1600 6.15E-5 3.48E-7 1.13E-7



19

TABLE IV: Initial data for the special relativistic shock tube test problems

Special Relativistic Test Problem

Test ρL uL pL ρR uR pR

1 10.0 0.0 13.3 1.0 0.0 0.66.10−6
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TABLE V: L1 norm errors and convergence rates for the shock wave test problem from Table IV.

The different first and second order schemes are used.

L1 norm errors and convergence rates for the shock wave

Type npts L1(ρ) L1(p) L1(v) r(ρ) r(p) r(v)

100 3.72E-1 3.40E-1 4.25E-2 0.58 0.62 0.66

Flux-splitting 200 2.49E-1 2.20E-1 2.68E-2 0.61 0.66 0.72

O(∆x,∆t) 400 1.63E-1 1.38E-1 1.62E-2 0.65 0.698 0.75

(non-TVD) 800 1.03E-1 8.55E-2 9.64E-3 0.70 0.73 0.85

1600 6.38E-02 5.14E-02 5.33E-03

100 0.37 0.33 4.23E-2 0.57 0.62 0.66

Godunov 200 0.24 0.22 2.67E-2 0.61 0.66 0.72

O(∆x,∆t) 400 0.16 0.13 1.62E-2 0.65 0.69 0.75

(non-TVD) 800 0.10 8.51E-2 9.62E-3 0.70 0.73 0.85

1600 6.36E-2 5.12E-2 5.32E-3

w=-1 100 0.22 0.23 1.89E-2 0.29 0.62 0.51

(Lax-Wend.) 200 0.18 0.15 1.32E-2 0.38 0.49 0.31

O(∆x2,∆t2) 400 0.14 0.11 1.06E-2 2.09E-2 0.22 -0.14

(non-TVD) 800 0.13 9.37E-2 1.17 E-2

100 0.28 0.25 2.73E-2 0.68 0.66 0.75

β = 1 200 0.17 0.15 1.61E-2 0.80 0.70 0.83

O(∆x2,∆t2) 400 0.10 9.65E-2 9.08E-3 0.78 0.71 0.79

(TVD) 800 5.85E-2 5.90E-2 5.24E-3 0.76 0.73 0.86

1600 3.43E-2 3.54E-2 2.88E-3

100 0.19 0.14 1.95E-2 0.89 0.91 0.87

minmod 200 0.10 7.68E-2 1.06E-2 0.87 0.94 0.89

O(∆x2,∆t2) 400 5.82E-2 3.99E-2 5.72E-3 0.75 0.93 0.79

(TVD) 800 3.45E-2 2.09E-2 3.31E-3 0.85 0.97 0.99

1600 1.91E-2 1.06E-2 1.67E-3
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FIG. 1: Piecewise linear MUSCL reconstruction of a specific grid zone i. The boundary extrapo-
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FIG. 3: Plot for standing and moving waves using the Godunov method and the MUSCL scheme

with the minmod limiter Eq.(34). npts = 100.
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Wendroff scheme) and β = 1 in Eq.(35). npts = 100.



25

0 0.2 0.4 0.6 0.8 1

x

1

1.5

2

2.5

3

d
e
n
s
it
y

analytic
Flux-split

nxb=100,tmax=2.0,v=0.0

0 0.5 1

x

1

2

3
d
e
n
s
it
y

analytic
beta=2

nxb=100, tmax=2.0,v=0.0

0 0.2 0.4 0.6 0.8 1

x

1

1.5

2

2.5

3
d
e
n
s
it
y

analytic
Flux-split

nxb=100,tmax=2.5, v=0.4

0 0.5 1

x

1

1.5

2

2.5

3

d
e
n
s
it
y

analytic
beta =2

nxb=100, tmax=2.5, v=0.4

FIG. 5: Plot for standing and moving waves using the slope function forβ = 2 in Eq.(35) and the

flux splitting method. npts = 100.
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FIG. 6: The analytic and numerical solutions of the relativistic shock tube problem are plotted.

The first-order Godunov scheme is used with resolution npts = 100.
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FIG. 7: The analytic and numerical solutions of the relativistic shock tube problem are plotted.

The slope function for β = 1 in Eq.(35) is used with resolution npts = 100.
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FIG. 8: The analytic and numerical solutions of the relativistic shock tube problem are plotted.

The slope function for w = −1 in Eq.(29)(Lax-Wendroff scheme) is used with resolution npts = 100.
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