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DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD 

FOR PARABOLIC EQUATIONS 

H. Kaneko, K. S. Bey and G. J. W. Hou 

Abstract 

In this paper, we develop a time and its corresponding spatial discretization scheme, 

based upon the assumption of a certain weak singularity of IIut(t)llLz(n) = llut112, for the dis- 

continuous Galerkin finite element method for one-dimensional parabolic problems. Optimal 

convergence rates in both time and spatial variables are obtained. A discussion of automatic 

time-step control method is also included. 
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1 Introduction 

In this paper, the following standard model problem of parabolic type is considered: 

Find u such that 

where R is a closed and bounded set in R with boundary dR, Rf = (O,m), u,, = d2u /dx2 ,  

ut = &/at, and the functions f and uo are given data. 

In this paper, we take advantage of a certain regularity of Ilutllz, to discretize the time 

variable in a way that the optimal convergence rate of the discontinuous Galerkin (DG) method 

is obtained. In a series of papers [l], [2], [3] and 141, Eriksson and Johnson presented adaptive 

DG finite element methods in which time and space variables are adjusted using a posteriori 

estimates of the error. The current method is concerned with establishing a priori error estimate 

for the DG method which is optimal. 

The following conditions will be assumed. Let (h ,  T, S) denote a finite element discretization 

satisfying 
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. 

1. h is a positive function in C'(fi) such that 

1 v h(z)l 5 M ,  for all z E fi and for some AI > 0. 

2. T = { K }  is a set of triangular subdomain of s1 with each triangular element having 

diameter h K  such that 

Clhg I JK d~ 

and associated with the function h through 

for all K E T ,  

where c1 > 0,  c2 > 0. 

3. S is the set of all continuous functions on fi which are polynomials of order r in 2 = (q z ~ )  

on each K E T and vanish on dR. 

For the DG method for (l.l)7 we partition R+ as 0 = t o  < tl < ... < t ,  < ... where we let 

I ,  = (tn-lr t,] with I C ,  E t ,  - tn-l. For each time interval, with q a nonnegative integer, define 

W h k  {v: R+ -+ V,: "11, E Pq(In), 71 = 1 , .  . . N } ,  

where 

[ the space of piecewise linear splines 

defined over R = [0, L] with breakpoints 

0 = 20 < 21 < ... < 2, = L 

and 
Q 

Pq(I,) = { v ( t )  = vie: vi E Vm}. 
i=O 

Even though linear splines are used in the definition of V,, splines of any order can be used to 

form V,. 

The DG method is defined as follows: 
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where [win = UT,' - w,, 'd-) = lims+o+(-) W ( t n  + s), = 210, (u,  u) = sn u(z)u(z)dz and 

a(u,  v) = (VU,Vv). 

As stated earlier, the approach here is to first estimate Ilutllz. For example, if uo(z) = T - z 

0 and 0 = (0, T ) ,  then the actual solution is given by in (1.1) with f(z, t )  
00 

u(z,  t )  = uj0e-j2t sin(jz), (1.3) 
j=1 

where 
U; = S,"(T - z) sin(jz)dz 

= O( $). 

In the following, C's denote generic constants whose values change as they appear. From (1.3) 

The last equality in (1.4) is justified because of the uniform convergence in t of ET1 Ce-2j2t. 

Now using the fact that e-zz& < 00, a simple change of variables (say, y = j&) will show 

that the last expression in (1.4) is $Ct-'12, which leads to 

A similar argument shows that if u; = O ( $ )  for some initial value function uo(z), then 

IIut(t)l12 = O(t-'/4). This case arises when .a(.) = min(z,.rr - z) for z E ( 0 , ~ ) .  If uy de- 

cays faster than j-2.5 as j -+ m, then IIut(t)ll2 will be bounded as t -+ 0,  and in this case, time 

interval can be partitioned uniformly. Before we present the current method in the next section, 

one of the main theorems (theorem 2.3) from 121, which is pertinent to this paper, is recalled 

below. 

Theorem 1.1 (Eri'ksson and Johnson 121) Let u be the solution of (1 .1 )  and U that of (1 .2) .  

Assume that V, C Vm-l and k,, 5 yk,+1 f o r  all n and for  some y > 0. Then there exists 

constants C only depending on c1 and c2 (see condition 2 above) such that f o r  q = 0,1,  and 

A T  = 1,2  > - . - 1  

1121 - Ullr, I CLN lgyNEgn(u), 
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and for q = 1, N = 2,. . . , 

where LN = (log(tN/kN) + 1)1'2, 

The term minjls+l k ~ l l u p ) / l ~ , ,  in (1.5) describes the error associated with discretization in 

time. Thus, if Iluy)l(~,, is bounded for each n and j = 1,2,3, then the DG method is of the 

j t h  order accuracy in time. In many cases where the initial condition is incompatible with the 

boundary conditions, l l ~ ~ l l ~ ~  is unbounded as t --t O f .  We demonstrate in Section 2 that the 

graded time partitions can be established to restore the optimal rates of convergence even in 

thc presence cf ncx-sr=,eeth d2ta. It shou!c! be peintec! out that simi!z nnn-uniform gaded 

discretization schemes were used in capturing the solutions of a class of weakly singular integral 

equations, -e.g., [8], in capturing the solution of parabolic integro-differential equations with 

memory term, -e.g., [9], in capturing the solution of a class of initial value problems, -e.g.,[13] 

as well as in capturing the solution of linear parabolic equations in the h-version of the DG 

finite element method, -e.g., [12]. Some other notable papers in this topic are, -e.g., [5], [lo] and 

references cited therein. The recent paper by Schotzau and Schwab [12] is of particular interest 

here, since it also deals with the h-version of the DG method for parabolic problems with 

non-smooth data, particularly the topic covered in section 5.2 of [12]. Schotzau and Schwab 

derive a graded time partition scheme by analyzing a function defining the initial condition. 

More specifically, uo in (1.1) is examined by the K-method of interpolation as a function which 

belongs to an intermediate space between H 2 ,  the Sobolev space, and Lp and the graded time 

partitions are chosen accordingly. In this paper, graded time partitions are derived in Section 2 

by analyzing the regularity of Ilutll2. The difference between the current approach and that of 

Schotzau and Schwab in I121 manifests itself in an example (Section 3) in which we demonstrate 

that the current method gives rise to more relaxed time partitions. The paper I121 by Schotzau 

and Schwab is a must-read for anyone who is interested in the DG finite element method for 

parabolic problems. The paper goes far beyond what are explored in this paper, which deals 

exclusively with the h-version of the DG method. In Section 3, a numerical example is given to 
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demonstrate the validity of our theory. Also included in Section 3 is the discussion of automatic 

time step control algorithm which is based upon the results presented in Section 2. The term 

(IhiD2ull~,, in (1.5) describes the spatial discretization error and it is of the second order due 

to the use of linear splines in defining the space V, as long as ((D2u(t)(lI, is well behaved. 

Unfortunately, for solutions of parabolic problems, this is not always the case. We investigate 

the behaviour of D2u and establish in Section 2 the spatial discretization scheme that achieves 

the quadratic convergence in space variable. 

2 Discontinuous Galerkin Met hod for Parabolic Problems 

Consider one dimensional parabolic problem (1.3). Even though the method will be outlined in 

one dimensional set,ting, extensions to  higher dimensions are possible and straightforward. 

For 0 < cr < 1 and q a nonnegative integer, define an index of singularity Q E. For a 

i;o;iti.{e i;;tcgcr p: T > 0, let 

n 
t:,=(?$Q, n = 0 , 1 ,  . . ' ,  N 

and 

t, = t;T. 

Define I, = (tn-l, t,], n = 1,2 , .  . . , N ,  and let IC, denote the length of I ,  so that 

n n - 1  
k,  = [(-)Q - (-)&IT, N N n = 1 ,2 , .  . . N .  

Note that 

by the mean value theorem. 

The solution u(z, t)  of (1.1) is then approximated in t over each I ,  by a polynomial of degree 

q. For instance, with q = 1, let P1w denote the linear interpolatory projection of w E H i  = 

{v: DG)v E L2, j  = 0,1 ,2;v  OonaR} in time onto W h k ,  viz, 

t, - t t - t,-1 
PlW(Z,t) = - ~ ( 2 ,  L-1) + ___ w(z, t,), for each t E I,. 

kn kn 
Xote that PI is bounded with respect to the norm 1 1  . l l m , ~ , ,  where 
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Since is assumed to be bounded, Pi is bounded with respect to 1) . ))I,, also. Since Pi equals 

the identity on polynomials of degree 5 1. examining the error terms in the Taylor expansion of 

order 0 and 1 respectively, we obtain, for each n = 1, 2,. . . , N ,  

For higher values of q, carrying out the Taylor expansion to the order q, the best possible 

esbimate that can be achieved for the projection Pq: H i  -+ W h k  is given by 

The type of estimate obtained in (2.5) plays a useful role in bounding the error in time 

vmia'o]e for tile DG filliie eielucl,t uethu,j for parab&c eq~atiozs. T L -  C--+ e---  -- +LA A m h +  I l l G  1 1 1 5 b  bGl111 "*I bLLL I l g u b  

of (2.5) is used to capture the error during the transient phase of the solution, while the second 

term is used for the solution later in time, upon which 11ut112 is expected to be smooth. The 

following lemma examines the f i s t  term on the right hand of (2.5). In [9], for integr&differential 

parabolic equations with memory, a similar singular behaviour in solution is treated. However, 

the analysis used in [9] restricts the construction of graded time partitions to constant and linear 

cases only. 

Lemma 2.1 Let 0 < (Y < 1, q a nonnegative integer and T > 0, we assume that t,, n = 1,. . . , N 

are defined by  (2.1). Then 

where C is a constant independent on  N and for n > 1, 

where C is a constant independent on N .  

Proof: For n = 1, 
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For 1 < n 5 N ,  we obtain 

Using Lemma 2.1 with n = 1 and q = 1, the first term on the right of inequality (2.5) is 

of order O(&),  provided that (1ut(t)ll2 = O(t?) for some cx E (0 , l )  and for t E I1. As stated 

earlier, it is reasonable to expect that IIuttlll, < 00 for n > 1, so that (2.5) yields 

Lemma 2.2 Let t ,  a n d  kn be def ined b y  (2.1). Then, with a n y  p o s i t i v e  i n t e g e r  N ,  

(1 + log 5 ) 1 / 2  5 Jz, for each n = 0,1,. . . , N .  
k* 

Proof: 
(1 + log = (1 + log (n/N)j2!(n-1/N)Q n W Q  )1/2 

- 1 )1/2 

= (1 - log(1 - (+)Q))1/2 

5 (1 - k ( 1 -  (7) ) 

5 (1 + (?)Q)1/2 5 4. 

- (l +log i-(+)Q 

N-1 Q 1/2 

The second to the last inequality is obtained from log(1- z) < -z for z < 1. 

Q.E.D. 

Lemma 2.2 will be used in Theorem 1.1 to guarantee the stability of the DG method currently 

proposed. 

For spatial discretization, let M be a positive integer and let xk for k = 0,1,. . . , 2M denote 

the spatial knots which will be defined precisely later in this section. Denote by p k ( z )  the linear 

spline over f i k  = [2k-1,2&+1] for k = 1,2,. . . , 2M - 1 and cpo(2) and cp2~(2) are h e a r  splines 
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On [xo, q] and [ I c 2 A I - 1 ,  z 2 ~ ]  respectively. Extensions to higher order splines are straightforward. 

At each time level t,, we approximate ~ ( f , ,  2) by 

2" 

U" = U"(Z)  = U(t , ,z)  = CE?cpi(z), n = 0,1,. . . , N ,  
i=O 

where = uo(zi). Now, equations (1.2) can be restated as follows: For n = 1,2, .  . . , N ,  given 

Un-l,-, find U 3 U\I ,  E Pq(I,) such that 

for all v E Pq(I,) where Uo>- = U O .  

For demonstration, let us take a detour to see how equations in (2.7) take specific forms for 

q = 0 and q = 1. First, consider the case q = 0,  -i.e., constant in time. As U" = U",- = Un-'>+ 

in this case, with U" = C ~ ~ o [ ~ c p i ( x ) ,  (2.7) reduces to 

The following theorem is a generalization of Theorem 1.1. A proof can be obtained by 

applying minor changes in the proof of theorem 2.3, [2]. 

Theorem 2.3 Suppose that there is  a constant y such that time steps k ,  satisfy k,  5 yk,+l, 

n = 1,. . . , N - 1 and let U, denote the solution of (1.2) approximating u at t,. Here u is 

approximated by a polynomial of degree q 2 0 oyer each I ,  for n = 1, .  . . , N - 1. Then there is 

a constant C depending only on y and a constant p, where p~ 2 phK and p~ is the diameter 

of the circle inscribed in K for all K E T ,  such that for  n = 1 , 2 , .  . . ~ N ,  

I I U ( t n )  - unl12 5 c(1+ log -1 t n  112 { m a  I I ~  - ~qu111, + I I ~ ; D ~ U I I I , ) .  (2.10) k,  msn 
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We proceed to examine the assumptions of Theorem 2.3 relative to the current time and 

space discretization scheme. First of all: t,he condit,ion k ,  5 yk,+l is satisfied with y = 1 as k ,  

is increasing. Second, for one-dimensional problem (l.l),  h K  = p~ = 10~1 so that e = 1 for all 

Q K .  Hence the assumptions are fulfilled under the current time discretization scheme. Lemma 

2.2 guarantees the uniformly bounded property of (1 + log ?) ' I2 ,  est,ablishing the stability of 

the current DG method. 

By (2.5) along with Lemma 2.1, with any nonnegative integer q, we obtain, provided that 

Ilut(t)ll2 = O(t?) for some O < (Y < 1, 

1 
1121 - PPUIII,  = O ( W ) .  (2.11) 

It remains to examine the spatial discretization error term maxtlt, llhED2u(t)111, in (2.10) for 

the current problem. If llD2u(t)llrn is bounded for each n and for each t ,  then using the graded 

time partitions described in Lemma 2.1, Theorem 2.3 transforms to the following: 

Thmrem 2.4 CGlzSider the pcrcbdic PrGSlcrn (1.1) G Z d  ass%mE that the iiiiticil d u e  u&j is 

defined in such a way that llut(t)112 = O(t-a) ,  for 0 < (Y < 1. Denote by U, the solution of 

(1.2) approximating u at t,. Let time discretization {tn} be defined by  (2.1) and (0, T) is divided 

into 2M subintervals each of equal length. Also assume llD2u(t)llI, is bounded for each n. If 

q denotes the degree of polynomials used in approximating u in time variable, then for each 

n=  1,2 ,..., N ,  
1 1 

IIU(tn> - unll~ = O ( m  + ,ZM). 

In many practical problems, the assumption in the previous theorem that IJD2u(t)llI, is 

bounded for each n and t may not be possible, -e.g., examine the solution of one dimensional 

problem in (1.3). This topic is now considered. 

For elliptic problem, 
-Au = f i n n  

u = O  o n r ,  

it is well known (cf. see [6], p.92) that, for a smooth 82, 

(2.12) 

Now for convenience, let us assume that f = 0 in (1.1). Then using the definitions of the 

respective norms and from (1.1) and (2.12): we obtain 

(2.13) 
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If lIut(t)l12 is bounded as t --f O+ , then spatial discretization can be made arbitrarily with step 

size h and attain 

maxh211ut(t)112 = O(h2), 
t l t n  

where h = 2-" at each time level t,. 

In the case, Ilut(t)ll2 = O(t?), (2.13) implies that we must select a set of knots { x k ( t ) }  that 

depends upon t. The approach here is similar to the adaptive strategy employed by Eriksson 

and Johnson [2] in which the spatial increment h, is selected according to the size of Ilut(t)llm,l,. 

Let h(t)  = maxl<k<2M(xk(t) _ _  - z k - l ( t ) )  for each t E (O,T]. Then h(t)  is determined from the 

condition that h(t)2t-ff = O(t2) as t ---f O+. In terms of N ,  we require that h(t)2t-ff = O(&). 

For t = t j  = (&)l-aT,  j = 1,. . . , N ,  we have, for some C > 0,  g+l 

j 9 . s  1 
h2(tj)[(  -)l-oT]-" = C -  

N N2 . 

Solving (2.14) for h(t j )  with C = 1 for convenience, 

Finally, select M so that 

(2.14) 

(2.15) 

(2.16) 

for each time level t j ,  j = 1,. . . , N ,  and x k ( t j )  = $& (note that M depends upon j )  , for 

IC = 1,. . . , 2M - 1 to form the spatial partition points. Reflecting on what was just discussed, 

we finally have the following theorem which characterizes the convergence of the DG method 

both in time and in space variables in terms of N .  

Theorem 2.5 Consider the parabolic problem (1.1) and assume that the initial value uo(x) is 

defined in such a way that 11ut(t)112 = O ( t P ) ,  for 0 < CY < 1. Denote by  U, the solution of (1.2) 

approximating u at t,. Let time discretization {t,} be defined by (2.1) and (0 ,  n) is divided into 

2M subintervals each of equal length, where M is defined by (2.16). If q denotes the degree of 

polynomials used in approximating u in time variable, then for each n = 1,2, .  . . , N ,  

(2.17) 

Note t,hat, equality (2.15) implies t,hat. less part,ition points in space would be required as j - N .  

This characterizes the situation described previously typical of parabolic problems in which 
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solutions become smoother after certain transient periods. Also note that, a t  each time level 

t, particularly for t near 0: it is possible to reduce computational cost by relaxing the size of 

spatial elements over the regions where u(.,  t j )  is well behaved. This will be made more evident 

when a numerical example is discussed in the next section. 

3 A Numerical Example and Automatic Time Step Control 

In this section, the graded partitions described in the previous section is tested in the following 

standard one dimensional problem. Find u such that 

u~(x, t )  - u,,(x, t )  = 0, 0 < x < n, t E R', 

u(O,t) = u(K,~) = 0, t E R', 

O < x < n  u(x,O) = 7r - 2, 

The initial function is incompatible with the zero boundary conditions in (3.1). The exact 

solution is given in (1.3) and I l u t ( t ) l l ~ ~ ( n )  = O(t- i ) .  Thus, the indices of singularity Q = e 
are 4 and 8 respectively for constant and linear approximations in time variable. Schotzau and 

Schwab (example 7.1 [12]) discuss a similar situation in which the initial function is taken to be 

u(x,O) = 1. For this case, the grading function h is selected as h(t)  = t3(2q+3) in [12]. With N 

denoting, as before, the number of partitions in time variable, Schotzau and Schwab's approach 
results in tl = (m) 1 9  and tl = (&)15 for the constant and linear approximations respectively in 

[12]. In the present method, as Ilut(t)ll~,(n, = O(t-z) with u(z,O) = 1, tl = (p) 1 4  and tl = ( & ) 8  

for the constant and linear approximations. This shows that the present method provides more 

relaxed time increments at the beginning, which is critically important in order for numerical 

computation to proceed with a reasonable cost. 

We select T = 5 and N = 10 so that the solution is sampled at each time level t j  = (&)&T, 
j = 1, .  . . , l o .  First, the case for constant approximation in time, q = 0, is considered. The exact 

solution and the approximate solutions are plotted in Appendix for t,, t ,  = 1,. . . ,9. For q = 0, 

the errors are dominated from the time discretization term which is of order O( k). In Fig. 1.1 

with t l ,  from (2.15), h(t1) N .0058. Hence we take A4 - 9 in (2.16) to guarantee the convergence 

rates in Theorem 2.5. It is interesting to note that, for the example under consideration, we can 

relax M significantly while maintaining an overall quality of t,he numerical solution. Also recall 

that the size of spatial discretization can be relaxed over the region away from x = 0 in this case 
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where u(x, t l )  is well-behaved, but, of course, this requires a priori knowledge of u(z: tl). For 

4 = 1, h ( t l )  N .0002 from (2.15) so that choose M = 14. In this case, (2.17) gives 

1 
Ilu(t1) - u1112 = O(-) N 2  . 

Table 1 

n q = O  q = l  

1 .0133 .0037 

2 .0571 .0020 

3 .0673 .0089 

4 .0729 .0087 

5 .0763 .0086 

Table 1 below lists L2 errors at each time level t,, n = 1,2, .  . . , l o .  

.0702 .0059 

10 .0850 .0073 

Algorithm:[l] Given a tolerance 6 > 0, 

1. Choose k,  = kn-l, 

2. Given k,, compute the corresponding approximate solution U(t,). 

3. If 

where y is a suitable constant, y M 2 or 3, then stop and accept the time step k,. Otherwise, 

decrease or increase k,  by a factor of, say, 2 and return to step 2. 
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TO demonstrate that the algorithm above may become expensive in the presence of a singular 

transient phase. consider the following: Suppose that 6 = lob5 and 11ut(t)112 = O(tP1 l2 ) .  A p  

proximating IlU(t1) -U(to)ll2 by til2, and decreasing the time step size by a factor of 2 beginning 

with k1 E $, it would take 8 steps to  find kl which produces the numerical solution within the 

prescribed tolerance. The current approach is to estimate the parameter a in IIut(t)l12 = O(tPa).  

The following algorithm contains a process of adjusting each time step (step 4), if necessary, as 

computation progresses, but, in principle, if a is estimated accurately in step 1, the amount of 

adjustments would be minimal. 

Algorithm: Given a tolerance 6 > 0: 

1. Choose tl = kl small. Compute IlU(t1) - U(0)112. As 

so CY is estimated by 
in iiiiiilj  - ii(0)ii2 

InCkl 
a*=1-  

2. Time discretization error is controlled by requiring 

tl is adjusted by 

t'-@' < 6, 
1-a* 

and subsequently choose the number N of time partitions from 

where q is the degree of polynomials used in time approximation. 

3. With Q* = s, define 
i ti = (-)&*TI N i = 2,3 , .  . . N ,  

to complete the partitions 0 < tl < t2 < . . . t N  = T. 

4. For i 2 2, compute U ( t i )  and check an accuracy requirement 

If this inequality is satisfied, then proceed to compute U(ti+l) .  If not, adjust ti+l by 

decreasing ki+l = ti+l - ti by the factor of, say, 2. 
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Appendix 
Flg 1 1 Discontinuous Galerkm Finite Element Method for Parabohc Problem - consrant tnme 
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Error- 0 0133 
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Fig 1 2 Discontinuous Gaterkin Finite Element Method for ParabOlc Problem - constant time 
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Fig 1 3 Discontinuous Galerkin Finite Element Method for Parabolic Problem - constant time 
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