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Abstract

There are basically two kinds of mathematical computation, numerical and symbolic. Numerical algorithms are usually
implemented in strongly typed languages, and compiled with a view to efficiency. Symbolic algorithms are mostly written
for interpreters in untyped languages. Therefore, symbolic mathematics is usually slow, and bug ridden. Since symbolic
algorithms are usually more difficult to implement, there are also very few computer algebra systems. This paper presents
a computer algebra system that is both fast, and implemented in a strongly typed language, and designed to accept com-
piled extensions. The authors describe a scheme to achieve these goals without creating difficulties for the end-user. The
reason for creating this new computer algebra system is to make feasible mixed computation, i.e., programming software
that needs both numerical computation and computer algebra. For instance, Finite Element Methods require a lot of num-
ber crunching as well as computer algebra to perform triangularization, manipulating shape functions, etc. Mixed compu-
tation requires speed and safety that interpreted computer algebra cannot provide.
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1. Introduction

Computers have been used for numerical computations since their beginning. These general purpose
machines can also be used for transforming and combining symbolic expressions as well. That is, computers
can be used not only to deal with numbers, but also with abstract symbols representing mathematical formu-
las. This fact was realized much later and is only now gaining acceptance among mathematicians and
engineers.

According to Winkler [1] in his short introduction to Computer Algebra, before 1850 mathematicians
solved the majority of their problems by extensive calculations. However in the 19th century, the style of
mathematical research changed from quantitative to qualitative aspects. The advent of modern digital com-
puters and the development of Computer Algebra programs in the 20th century stressed this trend. Notwith-
standing even today many mathematicians think that the role of computers is number crunching and their role
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is the application of the appropriate algebraic transformations to the problem and thus underestimating the
power of computing systems for algebraic manipulation, which was recognized as early as 1844 by Lady
Augusta Ada Byron, countess of Lovelace. In describing the possible applications of the Analytical Engine

developed by Charles Babbage, she wrote [1]:
‘‘Many people who are not conversant with mathematical studies imagine that because the business of
[Babbage’s Analytical Engine] is to give its results in numerical notation, the nature of its process must
consequently be arithmetical and numerical rather than algebraic and analytical. This is an error. The
engine can arrange and combine its numerical quantities exactly as if they were letters or any other gen-
eral symbols; and in fact it might bring out its results in algebraic notation were provisions made
accordingly.’’
Indeed a modern computer is a universal machine that is able to carry out an arbitrary algorithm, being it
numerical, symbolic or of any other nature.

What does one mean by Computer Algebra or symbolic algebra computation? R. Loos wrote [2]:
‘‘Computer Algebra is that part of computer science which designs, analyzes, implements, and applies
algebraic algorithms.’’
Algebraic algorithms are algorithms that utilize the rules of Algebra to transform algebraic formulas con-
taining numbers, variables and function applications. In short, Computer Algebra systems deal not only with
integers and reals, but also with variables representing unknown quantities and any expression combining
numbers and variables by means of mathematical operations. Numbers are represented exactly. The approx-
imations of floating point numbers for reals are not acceptable anymore. So there is no need to be concerned
about approximation errors.

Computer Algebra software finds application in any field dealing with the formulation of laws in mathemat-
ical terms, using algebraic equations and/or analytic concepts such as ordinary, partial differential equations
and integrals. After the formulation of a law, it should be solved, simplified or reduced to the normal form.
This process can be performed with help of Computer Algebra. Normal form is a concept that changes from
one branch of Mathematics to another. For instance, in Lambda Calculus, a term in the normal form has no
subterms of the formðkx:R SÞ, i.e., terms that can be lambda reduced. In relational algebra, one may have
another definition. The fact is that the existence of the normal form makes it possible to compare expressions.
After a sequence of transformation, one expects that two equivalent expressions be reduced to the same nor-
mal form. In this work, the reader will find a definition of normal form that allows one to compare two seman-
tically equivalent algebraic expressions.

Nowadays there are a handful of programs which perform Computer Algebra. These programs can
be applied in areas such as Mathematics, Computer Science, Engineering, Economics, etc. With these pro-
grams one can perform algebraic simplifications as well as handle literals, as illustrated by the following
examples.
5
a2 � 2abþ b2

a� b
¼ 5aþ 5b;

d

dx
ðax2 þ bxþ cÞ ¼ 2axþ b;

sin2 aþ cos2 a ¼ 1:
Most of these programs suffer drawbacks. For instance, their programming languages are not referentially
transparent, that is, they do not allow substitution of equals for equals, invalidating the use of certain Math-
ematical laws. Even if other areas of thought are able to do without substitution of equals for equals, this is
not true of Mathematics, the main subject of Computer Algebra. Therefore, the absence of referential trans-
parency is a mortal sin, when it occurs in a Computer Algebra language.

The notion of transparency is due to Whitehead and Russell [3]. Antoni Diller [4] illustrates the invalidation
of substitution in natural languages with the following sentence drawn from Russell [5]:
George IV wished to know whether Scott was the author of Waverley.
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It should be noted that the above sentence is true, since the mad king really wished to know whether Scott was
the author of Waverley. However, we do know that Scott and the author of Waverley are indeed the same
person. Therefore, we may feel entitled to substitute Scott for the author of Waverley in Russell’s sentence.
In doing so, we get
George IV wished to know whether Scott was Scott.
The result is obviously false, for even being mad, the King knew well that Scott was Scott.
Imperative computer languages suffer from the same lack of transparency as natural languages. For exam-

ple, one cannot make use of the commutative property of multiplication to conclude that the C program of
listing 1 will print the same number twice, although f ð2Þ � gð5Þ ¼ gð5Þ � f ð2Þ in Mathematics. This happens
because C functions may change the state of the computing system (by means of assignments to variables)
besides (possibly) computing a value. In listing 1 function g changes the contents of the global variable k

before returning a value and function f needs the value of k in order to compute its result. So calls to g have
an effect on calls to f. The return value of f depends on the previous calls to g. This program outputs �6 ¼ 99
and shows that C is a referentially opaque language. Thus it is highly desirable that the language used to
express Computer Algebra algorithms be referentially transparent.
This work has three phases. The authors started by implementing a computer algebra system in Scheme, an
imperative language of the LISP family. This was done so as to become familiar with computer algebra algo-
rithms by performing a traditional implementation. Besides this, a working Scheme system could be used for
comparison, and prototyping. The next step was to implement a Computer Algebra library for Haskell, a lan-
guage with the desired referential transparency property, highly popular, and quite flexible, which facilitates
the creation of novel algorithms. The Haskell implementation was used as a proof of concept. The next and
last step was to translate the Haskell implementation to Clean, a highly efficient language of the same family as
Haskell. Then the main purpose of this work is to provide algorithms for manipulation of algebraic expres-
sions in a declarative context, compatible with Mathematics, and implement them as a language for Computer
Algebra programming embedded in Clean. Its implementation is one more example that shows that functional
languages are viable for day to day programming, even beating conventional languages in some aspects, such
as the level of abstraction, and even in speed, when the algorithms involve memory manipulation and data
structures.

One can ask the reason for translating the Computer Algebra system described in this paper from Haskell
to Clean, since the two languages are close implementations of a branch of Mathematics called Lambda Cal-
culus, and show referential transparency. Clean is much faster than Haskell, and this is enough to justify the
translation, if one can show that speed is at a premium. Since people do a lot of algebraic manipulation by
hand, it seems that speed is not very necessary in this branch of Mathematics. However, the fact is people limit
themselves to relatively small problems. For instance, Delaunay completed a hand calculation in 1867 to
determine the moon’s position as a function of time; it took him 10 years to complete the task, and a further
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10 years to check it (vide [6]). One hundred years after Delaunay’s efforts Henrard and Rom [7] used a rather
primitive computer algebra program to check Delaunay’s work. According to Henrard in a private commu-
nication to us, their Computer Algebra program was able to get the result in less than 24 h. The program was
almost 1000 times faster than Delaunay. The conclusion is that for purely algebraic problems the speed of
available Computer Algebra systems is more than enough. However, numerical calculations often have a
strong symbolic component. For instance, the Finite Element Method requires handling shape functions, per-
forming triangularization, and finding a node renumbering schemes that produce narrow band matrices. Since
these tasks may be performed concurrently with numerical calculations, an efficient Computer Algebra system
may be useful.

The development of this library has also lead us to identify some limitations of Haskell and Clean, as well as
extensions to these languages that would make the implementation easier and more elegant. These limitations
are described in the paper through examples drawn from the library.

The rest of this paper is organized as follows. Section 2 presents related works in the area, describing the
most popular Computer Algebra Systems. Section 3 provides a short overview of functional programming lan-
guages, which are derived from the Lambda Calculus. Section 4 describes some relevant aspects of the system
design and implementation. Section 5 discusses some limitations in Haskell that make the library more difficult
to design and implement. Finally, Section 6 concludes the discussion.

2. Related work

According to Nilsson [8], research in Computer Algebra had its beginnings when James Slagle created the
program Saint, which was able to integrate functions by elementary methods. After this first step, Joel Moses
improved the algorithms of Saint, creating another program of symbolic integration, which was named SIN.

In the sixties, Carl Engleman, Joel Moses and William Martin (at the Massachusetts Institute of Technol-
ogy, as part of the MAC project) started the project Macsyma1 [9], which is one of the finest systems of Sym-
bolic Mathematics. It is quite large, and written in Lisp. After Macsyma, many other systems of Computer
Algebra came to light. Each one of these systems tried to correct a real or imaginary weakness of Maclisp,
the original computer language of Macsyma. Some of these systems are:

• Reduce.2 In the beginning, Lisp had many dialects. In general, every machine had its own dialect. Macsyma
was developed in Maclisp. Therefore, one could not build the system in a machine running Franz Lisp,
Interlisp, etc. The designers of Reduce [10,11] proposed a standard dialect of Lisp, which should be porta-
ble to any machine. Although Reduce became very popular, Standard Lisp was badly beaten by Common
Lisp in the struggle to become the standard dialect of the main AI language. In the meantime, Macsyma
migrated from MACLISP to Common Lisp. The result is that Macsyma runs in a standard language, while
Reduce is built on top of an obscure dialect known as Standard Lisp.

• Maple.3 Lisp always had a bad reputation for being slow. Therefore, Maple [12] was developed (at Water-
loo University, Canada) in a procedural language (C) with a view to greater efficiency. Since procedural
languages like C are not fit for symbolic computation, the implementors of Maple were forced to design
a symbolic language. Not being experts in compiler construction, they wrote an interpreter for the Maple
language. The result is that Maple is much slower than Macsyma and other Lisp based systems. Maple’s
source code is not in the public domain.

• Derive.4 This package (and its precursor MuMATH) was designed to offer a small and fast Computer Alge-
bra system [13]. It was the only competitor to Macsyma that really delivered on its promises. The system is
indeed very small and reasonably fast. However, it did not meet the commercial success of Reduce and
Maple.
1 http://www.macsyma.com/
2 http://www.rrz.uni-koeln.de/REDUCE
3 http://www.maplesoft.com/
4 http://www.derive.com/

http://www.macsyma.com/
http://www.rrz.uni-koeln.de/REDUCE
http://www.maplesoft.com/
http://www.derive.com/
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Maple, Reduce and Derive were designed to be worthy competitors of Macsyma. There are also systems
designed to offer limited functionality in a friendly environment. Among these systems, MatLab5 [14] and
Mathematica6 [15] became very popular. It is interesting to note that these two systems that promised limited
functionality also failed to deliver on their promise. Due to demands from the market, the implementors of
both Matlab and Mathematica have increased the functionality of their systems, which soon became as fat
as Reduce. However, neither Matlab nor Mathematica have the well designed architecture of Reduce. In fact,
these systems suffered from a chaotic growth.

3. A short overview of functional programming

In this section we describe the main concepts related to functional programming. Functional programming
has roots in the lambda calculus. We start by describing the syntax and semantics of the lambda calculus.
After we show that lambda calculus presents all the features existent in modern functional programming lan-
guages such as Haskell and Clean. In reality a pure functional programming language is an applied lambda
calculus.

3.1. Lambda calculus

Functional programming has roots in the lambda calculus. The lambda calculus is a branch of logic, devel-
oped in the 1920s and 1930s by logicians who wanted to explore how to define functions formally and how to
use this formalism as a foundation for mathematics. The lambda calculus is a simple and powerful formal lan-
guage of functions. The first developments were made by Schönfinkel [16], and Curry [17] who defined a var-
iation called combinatory logic. Later, Church [18] defined the first version of the actual lambda calculus.
Note that these early logicians had no intention of defining any programming languages. Actually, there wer-
en’t even any computers at that time. The syntax of the lambda calculus is very simple, because there are only
three types of constructs: variables, abstractions, and applications. A brief notion of the meaning of each one
of the constructs (intuitive semantics) follows:

1. The variables are just place holders for values. In this section we use lowercase letters for representing vari-
ables such as x; y; f ; g.

2. Abstraction is a model for function definition, which is not associated to any name. In terms of syntax an
expression kx:M denotes an abstraction. The variable x is the parameter of the function, and the expression
M is the body of the function. All occurrences of x in kx:M are said to be bound. All unbound occurrences
of a variable in a term are free.

3. Applications are a model for the computation of a functional value. In a lambda expression like (M1 M2),
the first item (called the rator, from operator) is applied to the second item (called the rand from operand).

In a lambda term like (M1 M2), if M1 (sometimes called the applicand) is an abstraction, the term may be
reduced. M2, the argument, may be substituted into the body of M1 in place of the formal parameter of M1

and the result is a new lambda term which is equivalent to the old one. As we mentioned earlier, if a lambda
term contains no subterms of the form ðkx:M1 M2Þ then it cannot be reduced, and is said to be in a normal
form. The expression fN=xgM represents the result of taking the term M and replacing all free occurrences of
x with N. Thus we write
5 htt
6 htt
ðkx:M NÞ ! fN=xgM

The right side fN=xgM is considered to be simpler than ðkx:M NÞ. This reduction is known as b-reduction.
There is an additional rule called a-conversion, which renames bound variables:
kx:M ! ky:fy=xgM y not free in M
p://www.mathworks.com/
p://www.mathematica.com/

http://www.mathworks.com/
http://www.mathematica.com/
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A b-reduction reduction captures the essential behavior of all mathematical functions. For instance, consider
the function that computes the square of a number. We might write
The square of x is x � x
In the specification above we use the symbol ‘*’ to indicate multiplication. The symbol x is the formal param-
eter of the function. To evaluate the square for a particular argument, say 2, we insert it into the definition in
place of the formal parameter:
The square of 2 is 2 � 2
In order to evaluate the resulting expression 2 * 2 it is necessary to know what the number 2 means and how to
multiply two numbers. Since any computation is simply a composition of the evaluation of suitable functions
on suitable primitive arguments, this simple substitution principle suffices to capture the essential mechanism
of computation.

With respect to the previous example it is important to notice that the number 2 and multiplication oper-
ator ‘*’ belong to arithmetic and are not part of the pure calculus. We are going to use the term constant in the
next subsection to describe such constructs. However, in the lambda calculus, notions such as ‘2’ and ‘*’ can be
represented without any need for externally defined primitive operators or constants. It is possible to identify
terms in the lambda calculus, which, when suitably interpreted, behave like the number 2 and like the multi-
plication operator.

Computation in the lambda calculus is symbolic. A term is ‘‘reduced’’ into the simplest form as possible. A
reduction strategy for the lambda calculus is a rule for choosing redexes (‘‘reduction expressions’’). A redex is
a term of the form ðkx:M NÞ: There are two reductions strategies, which are known as call-by-value and call-

by-name.
The call-by-name reduction strategy chooses the leftmost-outermost redex while the call-by-value reduction

strategy chooses the leftmost-innermost redex in a term. The expressions inner and outer refer to nesting of
terms. The call-by-name strategy is also referred to as normal-order reduction. If there exists a normal form
then the call by value reduction strategy is going to find it. On the other hand, call-by-value strategy can get
stuck, forever evaluating an argument that will never be used. Next we show the reduction of the expression
ðkx:xþ xÞ (2 * 2) by using both strategies.

Call-by-name strategy:
ðkx:xþ xÞð2 � 2Þ ! ð2 � 2Þ þ ð2 � 2Þ
! 4þ ð2 � 2Þ
! 4þ 4

! 8
Call-by-value strategy:
ðkx:xþ xÞð2 � 2Þ ! ðkx:xþ xÞ 4

! 4þ 4

! 8
It is possible to combine call-by-name evaluation with updating. By using call-by-name an expression is eval-
uated only when its value is needed. Updating means that if the value of an expression is needed more than
once, the result of the first evaluation is stored and subsequent requests for it will return the stored value
immediately without further evaluation. The resulting strategy is known as lazy evaluation.

3.2. Applied lambda calculus: functional programming languages

The syntax of the applied lambda calculus or a functional programming language is also very simple. The
syntax of the lambda calculus described above is extended by including a new construct: constants. Constants
correspond to the built-in constants and operators in a programming language. Some examples of constants
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are: true, false, if. The intended use of a constant is formalized by defining reduction rules. Reduction rules for
constants are called d rules. The following lines describe two reduction rules.
if True MN ! M

if false MN ! N
The symbol! should be read as ‘‘is reduced to’’. The following example makes use of the rules defined above.
Consider a combinator or defined by kxy:ifxtruey. A combinator is a lambda term without free variables. The
or combinator resembles an important construction in programming languages: the if–then–else statement.
The remaining rules simulate integer arithmetic.
if true MN ! M

if false MN ! N

iszero 0! true

iszero ðsucck 0Þ ! false where k P 1

iszero ðpredk 0Þ ! false where k P 1

succ ðpred MÞ ! M

pred ðsucc MÞ ! M
The constants succ and pred correspond to the successor and predecessor functions, respectively. The notation
MkN , for k>+0, corresponds to k successive applications of M to N. An important feature in applied lambda
calculus is how to define a recursive function, which is a function defined in terms of itself. Recursion is
achieved by means of fixed-point combinators. M is a fixed-point combinator if Mf ¼ f ðMf Þ. Next we are
going to use the fixed-point combinator designated by Y to introduce recursivity into the language. The def-
inition of Y follows:
Y ¼ kf :ðkg:f ðggÞÞðkg � f ðggÞÞ

The relationship between a fixed-point combinator and recursive functions is going to be illustrated by means
of an example. We start by defining the plus function:
xþ y ¼ y if x ¼ 0; otherwise;

xþ y ¼ ðx� 1Þ þ ðy þ 1Þ:
Using the reduction rules described above we arrive at
plus! kxy:if ðiszero xÞ y ðplusðpred xÞðsucc yÞÞ

A suitable term for plus is Y M, where Y is the fixed-point combinator described earlier and M is
kf :xy:if ðiszero xÞ y ðf ðpred xÞðsucc yÞÞ

In a similar way we can define a term times:
Y kf :xy: if ðiszero xÞ 0 ðplus yðf ðpred xÞyÞÞ
By using plus and times we can define a well-known function: the factorial function.
factorial ¼ Y kf :x: if ðiszero xÞðsucc 0Þðtimes xðf ðpred xÞÞÞ
Restrictions on the use of constants are possible by introducing types into the lambda calculus. The notion of
type is the same that we find in programming languages. For instance, an identity function from integers to
integers is written as
kx : integer:x
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It is interesting to note that a function like identity might be defined not only for integers but also for reals or
any other type. This means that identity should be defined as polymorphic function. In fact it is possible to
write polymorphic functions in functional programming languages. The extended syntax for covering type al-
lows a variable to be bound to a general type rather than a specific type like integer.

The lambda calculus is known to be computationally equivalent in power to many other plausible models
for computation (including Turing machines); that is, any calculation that can be accomplished in any of these
other models can be expressed in the lambda calculus, and vice versa.

4. The library design

4.1. Formulas

Formulas are expressions that can be manipulated in Algebra. They can be added and multiplied. They can
be squared. Trigonometric transformations may be applied to them. They can be differentiated and integrated.
There is a large number of operations that can be applied to formulas. These algebraic expressions are made
up of numbers and variables, which can be combined in different ways.

Formulas can be grouped, according to their structure, in several classes, including

• Integers, correspond to the integer numbers, as defined in axiomatic theories like Peano’s axioms, Church’s
numbers, or in one of the many brands of the Set Theory. A few examples of this class are 416, 7453 and
�3291.

• Constants, represent known mathematical entities. They are expressed by a symbol or name, like p, e (nepe-
rian number) and i (imaginary unit). In general, a constant formula stands for a number without an exact
representation in a given numeric system.

• Variables, correspond closely to mathematical variables. Logicians call them literals more often than not.
Examples of literals: x, y, a, b, a, b.

• Applications, which are formulas built from simpler formulas by applying a functional operator to argu-
ments, which are formulas too. Exempli gratia: sin x; coth x; ln x; log10x; xþ 2; �a, p2 and
5� sin½3pðaþ 2Þ�. Applications may have different forms, depending on the operator. The basic arithmetic
applications are
– Sum, denotes the sum of two formulas. Examples are aþ b and 13þ y � 4x.
– Product, denotes the product of two formulas. For example 4� x and ðaþ bÞ � ðaþ cÞ.
– Power, denotes the power of two formulas, as in x2 and ðaþ bÞ

1
2.
Other common applications are

• Logarithm of a formula in a given base. Examples are log10y, logeðxþ yÞ, and logbbc.
• Trigonometric formulas, like sines, cosines and tangent, of a formula. Examples: sin x; cos a2; tanðx2 þ y2Þ.

There are many other possible forms of applications (hyperbolic formulas, derivatives, integrals, vectors,
matrices, series, . . .)

• Indeterminates, which are formulas whose value cannot be determined, like those obtained by dividing by
zero. Examples are 3

0
, 00 and ln0x.
4.2. Trivial representation of formulas

The representation of formulas in the implementation language is tricky. One could simply use an algebraic
data type to obtain the disjoint union of the relevant formula classes. Listing 2 is a first attempt in defining the
type of (a simplified set of) formulas using this approach. It contemplates only the most basic classes of for-
mulas: integers, named constants, variables, sums, products, powers and indeterminates.

Formulas that are applications have a common representation: all of them have an operator and a list of
arguments. The type of the operator, Fn, is just an enumeration of all possible operators: sum, product and
power in our case. The arguments are formulas. For each possible class of formula there is a value constructor.



128 J.R. Malaquias, C.R. Lopes / Applied Mathematics and Computation 192 (2007) 120–134
Table 1 exemplifies mathematical formulas and their corresponding representation in the data type declared in
listing 2.
In the representation, operators (that is, the value constructors) take a prefix form, where the constructor
precedes the arguments. This prefix form is somewhat harder to read, but it eases the handling of expressions.
Note that the mapping between the integer representation and the integer field is constrained only by the
amount of memory available in the computer, as the jIntegerj type represents arbitrary precision integers:
its values can be as large as there is room for storing them in memory. There is no fixed number of bits for
representing them as happens in conventional languages like C, Pascal and Java.

A naive addition operation is defined in listing 3. It is based on the following rules of Mathematics:
mþ n ¼ the sum of m and nm; n 2 Z;

xþ 0 ¼ x;

0þ x ¼ x;

ðxþ yÞ þ z ¼ xþ y þ z;

xþ ðy þ zÞ ¼ xþ y þ z:
Some identifiers we would like to use (such as +, *, ^ and sin) are already bound in the Haskell standard
libraries. So we will want to overload them. We also want to have some binary function names to have infix
status. By doing so, we make sure that the notation used to express operations over formulas resembles the
mathematical notation as far as possible, and the mathematical notation should be preferred in computational
algebra systems.

A few examples of evaluation of formulas applying arithmetic operations follow.
2þ 3

5
þ 8x3

x
� x2 ) 13

5
þ 7x2;

aðaþ bÞ ) a2 þ ab;

ln x5 � ln x) 4 ln x;

sin2ðxþ yÞ þ cos2ðxþ yÞ ) 1:



Table 1
Representing mathematical formulas

Math Haskell

831 Int 831
p Cte pi
X Var x

4 + x Sum [Int 4, Var x]
a� x App Pro [Var a, Var x]
x2�a App Pow [Var x, App Pro [Int 2, Var a]]
x� y � z App Sum [Var x, App Pro [Int (�1), Var y, Var z]]
p /2 App Pro [Cte pi, App Pow [Int 2, Int (�1)]]
m/0 Ind (App Pro [Var m, App Pow [Int 0, Int (�1)]])
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The examples show that a computer algebra system is supposed to simplify any formula that cannot be
reduced to a number. In general, an expression can be simplified in different ways, producing textually differ-
ent but mathematically equal results. This issue is investigated in the next section. For the time being, we will
take a look at Listing 4 which presents an example of using operations over formulas in a program. The exam-
ple shows the symbolic solution of a quadratic equation. Note that symbolic variables are used exactly like
numerical ones, making computation over formulas both easy and natural.
4.3. Dealing with context

An algorithm may need to evaluate an expression in many ways, depending on the desired form of the
result. For example, the expression b2: a

bþ aaþ bbþ ab can be simplified to yield a2 þ 2abþ b2 or ðaþ bÞ2
depending on whether we need to expand or to factor it. So the employed algorithms may produce different
results. Therefore, when using an algorithm, one must state which kind of simplification is to be carried out.
This is done by means of controllers, i.e., identifiers associated to values that control evaluation of formulas.
The system may check these controllers at function applications, and build its result according to the values of
the controllers. The derived set of controllers forms the context in which expressions are evaluated.

4.4. Representing contexts

The contexts are states represented as a record in the implementation language. Each controller is a field in
the record. The value of a controller is the value of the corresponding field. Listing 5 shows an example of
context. Appendix A briefly describes the meaning of some controllers. This initial context is bound to a global
variable, since it may be used whenever one needs to restart a chain of state changes.

In the beginning of this section, it was said that context is a state representation. This means that the pro-
grammer may change one or more fields of the initial context. If we were dealing with a procedural language
or even with a functional language with mutable data structures, we would change the global context directly.
Haskell, like other pure functional languages, does not allow this, in order to guarantee referential transpar-
ency. However, one may pass the context as argument to a function and change it in the context of a new call.
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5. Haskell limitations

5.1. Data type extensions

The first limitation of Haskell is related to type extensibility. By that we mean the possibility of extending a
data type with new value constructors in a new data type declaration. We highly desire a modular design, so
a program that makes use of this system should mention only the relevant modules, i.e., a basic algebra and a
linear algebra module. But the linear algebra module extends the Fn data type with new value constructors for
the new formula formats it introduces, let us say Vec for vectors, and Mat for matrices. This cannot be accom-
plished in the current Haskell definition. And these new constructors have to be introduced in the module that
defines the Fn data type.

If the user wants to build a new module to deal with a new kind of formula, let us say tensors, and needs to
introduce a new value constructor, it has to be done by modifying the module defining Fn and we will have to
distribute the source code of our library so that the user can recompile the modified module.

There are some research works that propose type extensibility for the Haskell type system. They include
extensible union types [19], extensible records [20] and polymorphic subtyping [21].
5.2. Function definition extension

Another aspect of extendibility is the possibility of adding new equations for an already defined function.
This is desired because, in our modular approach to the system design, we augment the definition of some
functions as we deal with some new specific kinds of formulas.

For example, when implementing the algorithms related to trigonometric expressions (those involving sine
and cosine) we need to add the rules for multiplication so that expressions like 2 sinðxÞ cosðxÞ can be trans-
formed into sinð2xÞ. As we already have basic multiplication defined, we want to extend it to deal with such
additional algorithms.

Haskell requires all the equations defining a function to be grouped (that is, in the same module, without
any code intervening between them) and this greatly damages our modular design. At the end we had to
have something like a big, really big, module with most of the definitions, or else, a collection of modules
with very tight coupling, each one exporting many definitions that should be hidden in principle, and
the general functions like the one implementing multiplication, dealing with all possibilities on a single
module.

Again, if the user wants to extend the library with a new algorithm for a new kind of formula, the distrib-
uted modules will have to be edited and recompiled. Certainly this is completely against the desired modular
design we would like to achieve.
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5.3. Passing an environment around

The problem of passing an environment around while a computation takes place certainly is not new to
Haskell and to modern functional programming. But in our case it has some peculiarities.

As discussed before, the way formulas are manipulated depends on a context (environment) containing
the controllers. With different environments, the same simplification may produce different results. So the
environment has to be passed to the functions that implement the simplification algorithms in some way.
At first it would be enough to add an extra argument corresponding to the environment of the relevant
functions.

Passing the context as an extra argument is an acceptable solution, but it has a drawback: the arity of each
function will be incremented by one. For instance, the binary functions will become ternary. The deleterious
consequence of this increase in arity is that one cannot overload operators belonging to Haskell’s primitive
environment. For example, there will be no way of writing xþ y as the + function now needs a third argument.
To solve this we tried the following:

1. Encapsulating the environment into the formulas themselves creating a new data type definition. This
works well until we need to retrieve a controller in a function with more than one value as an argument:
which one will be used as the environment supplier? There is no easy way to decide, as all of them carry
an environment (the one that was visible when the value was constructed).

2. Making the function arguments not formulas, but a more elaborate construct: functions having the envi-
ronment as input and the resulting formula as output. Then, the function would be called with some func-
tional arguments which should be applied to an environment to find out the values on which to operate,
and its result would be another function also to be applied to an environment to produce the desired result
value. The definition would be something like the example from listing 6. The problem with this solution is
the loss of sharing among intermediate results [22]. To avoid this problem, one has to make the functional
values memorize their results, which generally imposes drastic performance penalties on the system. This is
the case unless there is a good library for function memorization that could be implemented independently
to the specific Haskell implementation being used.

3. Implicitly passing the environment as an additional parameter to the functions, simulating dynamic scope
from other languages [23]. In this way the additional parameter does not have to be written explicitly in the
function calls, allowing one to use infix notation as desired. Some Haskell implementations offer this func-
tionality as an extension.

Although Haskell supports mutable data structures without spoiling referential transparency as part of the
monadic IO system, its use (as with any monad) imposes a sequential order of evaluation that is not desirable
in a Computer Algebra system. Mathematics does not have any notion of order of evaluation. Putting one into
our system would make it too artificial. Besides that, the use of monadic structures would make it too hard, or
even impossible, to have a notation compatible with the common mathematical notation, that includes binary
operators such as + and �.



132 J.R. Malaquias, C.R. Lopes / Applied Mathematics and Computation 192 (2007) 120–134
6. Conclusions

Haskell, as a modern functional language, and with its referential transparency, is one of the best languages
for implementing systems with high Mathematical backgrounds. Such a system has been developed by the
authors and its development has demonstrated the viability of Haskell in real-world applications development.
But some drawbacks in the design of Haskell have been met. It is therefore that these be removed in future
revisions of the language.

The main problems we encountered are related to

• type extensibility
• function definition extensibility
• passing the environment around

To overcome these problems our design was not as sophisticated as we would like it to be and the modular
principle was seriously damaged.

Currently there are some proposals of extensions to Haskell that would greatly reduce the difficulties we
encountered, allowing for a better modular design of our system. We really look forward to seeing them in
future versions of the language.
Appendix A. The meaning of some controllers

The algebraic controllers described in Section 4.4 enable the library user to apply fine control over the
transformations used to simplify an expression.

The kinds of subformulas that are distributed or factored from a formula can be precisely controlled by
setting an appropriate value to the appropriate controller. Positive integer values cause distribution whereas
negative values cause factoring. The exact type of formula which is distributed or factored can be determined
from Table 2.

If the value of the controllers num_num, den_num, num_den or den_den is an integer multiple of one of
the primes listed in Table 2. Then formulas of the type associated with that prime are distributed (or factored if
the controller is negative) in accordance with the transformations associated with that control variable.

• num_num – controls the distribution (factoring) of factors in the numerator of a formula over (from) the
terms of a sum in the numerator using the transformation:
Table
Meani

Prime

2
3
5

a� ðbþ cÞ ¼ a� bþ a� c
Table 3 has an example of the use of num_num to control the distribution of factors over a sum. Note that
differences are internally represented as sums involving negative coefficients.

• den_den – controls the distribution (factoring) of factors in the denominator of a formula over (from) the
terms of a sum in the denominator using the transformation:
1

a� ðbþ cÞ �
1

a� bþ a� c
2
ng of controllers

Type Examples

Numerical formulas 4;�1=3; 5=7
Other nonsums x; sinðxÞ; z3

Sums r þ s; x2 � x; ln xþ z



Table 3
Transforming 3x� ð1þ xÞð1� xÞ with different values for num_num

num_num Result

0 3x� ð1þ xÞð1� xÞ
2 x� ð1þ xÞð3� 3xÞ
3 3ð1þ xÞðx� x2Þ
5 3x� ð1þ x� x� ð1þ xÞÞ
6 ð1þ xÞð3x� 3x2Þ

10 x� ð3þ 3xþ x� ð�3� 3xÞÞ
15 3ðx� x3Þ
30 3x� 3x3
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For example, if den_den is 15, the formula
y
x
� 1

1þ x
� 1

1� x
is transformed into
y
x� x3
• den_num – controls the distribution (factoring) of factors in the denominator of a formula over (from) the
terms of a sum in the numerator using the transformation:
bþ c
a
� b

a
þ c

a

For example, if den_num is 6, the formula
xþ 3
3
x

is transformed into
1

3
þ 1

x

• num_den – controls the distribution (factoring) of factors in the numerator of a formula over (from) the
terms of a sum in the denominator using the transformation:
a
bþ c

� 1
b
aþ c

a

This transformation yields a kind of continuation-fraction expansion. For example, if num_den is 5, the
formula
3þ x
1þ x
is transformed into
1
x

3þxþ 1
3þx
If num_den is 30, the result is
1
1

1þ3
x
þ 1

3þx
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