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1. Introduction

In this paper, we are mainly concerned with the mathematical analysis of the evaporation of a single

droplet in a gas, in the continuation of our previous work2.

Experimental studies around this subject are of course important for industrial purposes. Let us

refer for instance to the works3,4,5,6,7,8,11,13.

One of our main interest in this paper is to analyze the time evolution of the droplet radius, a study

that we began in our previous work2. Let us just mention here that the experimental evolution of

this radius is well known as the d2 law13,16, where d denotes the diameter of the droplet, see below

for more details.

Let us recall the standard physical framework for this evolution.

The evaporation of a single droplet in a gas involves simultaneous heat and mass transfer processes.

In particular, heat from evaporation is transferred to the droplet boundary by conduction and

convection, while vapor is carried by convection and diffusion back into the gas stream. Evaporation

rate depends on the pressure, temperature and physical properties of the gas, the temperature,

volatility and diameter of the drop in the spray.
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To fix the ideas, in the experimental study13 of a single droplet evaporation performed by the

LCSR (Combustion Laboratory of the University of campus from Orleans, France), the droplet is

suspended from a silicate tube. The elliptic shape of the droplet is assimilated to a sphere of equal

volume. Important quantities of interest for these experiments are time evolution of the droplet

radius, as well as classical quantities such as mass fractions or temperatures of the liquid and gas.

In the experimental studies performed above, the so-called d2 law is used to simplify two-phase

fluid models and then propose adequate numerical schemes. This law simply states that the time

evolution of the radius behaves as d2

d20
in time flow, and is purely phenomenological.

Our purpose in this paper is exactly in the opposite sense. We start from phenomenological fluid

(mixtures) PDE modeling the drop evaporation process, compute the time-evolution of the drop

radius, and then deduce other quantities of interest such as mass fractions of the liquid and gas. In

particular, our numerical experiments are in good agreement with this phenomenological d2 law, at

least for small time evolution.

Our framework is therefore as follows: we consider a droplet initially represented as a single compo-

nent mixture (liquid chemical specie 1) while the surrounding gas at time t = 0 is made of only one

(gas) chemical specie, say 2.

During the evaporation process, the liquid vapor is transferred into the gas, while by condensation

at the droplet surface and then by diffusion, gas chemical specie 2 appears inside the droplet.

We make the important simplification that the moving interface between the droplet and the sur-

rounding gas (i.e. between the two species) is spherical, with radius R = R(t) evolving in time.

Let ρG (resp. ρL) denote gas density (resp. liquid density), and vG (resp. vL) denote the gas velocity

(resp. liquid velocity). Then, one has the classical overall continuity and momentum conservation

laws

∂tρk + div(ρkvk) = 0 (1.1)

ρk∂tvk + ρkvk.∇vk = −∇p. (1.2)

Above, subscript k refers to the gas G or to the liquid L, depending on whether one considers the

gas or liquid.p the state equation of the gas.

Let YL1, YL2 (resp. YG1, YG2) the mass fractions of the liquid (resp. gas) obtained after diffusion of

species in the surrounding gas. Therefore for two species, one has

YG1 + YG2 = YL1 + YL2 = 1.

Along with equation (1.1), we have to add the equation giving species conservation. So for the liquid,

we have

ρL∂tYLk + ρLvL.∇YLk + div(ρLYLkvLk) = −ρLf(YLk), k = 1, 2, (1.3)

YLk denoting mass fraction of the liquid, and f being a continuous function modeling a friction or

a resistance for the drop.

We assume that the liquid speed is so small that is can be settled to 0. Equations (1.1) and (1.3)

can then be written under conservative form as

∂t(ρ g̃) + div(ρ g̃v) = F ( g̃) (1.4)
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or

∂tu+
∂

∂x
(f(u)) = F (u), (1.5)

in a system of particular coordinates.

If Γ is a curve of discontinuity of u, then one has

[f(u)] = [u]
dx

dt
, (1.6)

where [.] denotes the jump of the inner quantity, s = dx
dt

is the speed of discontinuity along Γ. The

jump relation (1.6) is known as Rankine-Hugoniot condition. It merely means that discontinuities

cannot be completely arbitrary. The above considerations are all classical facts9,14,15,16.

In the case of our droplet, in order to find interface condition at the droplet surface, i.e. for r = R(t),

it is sufficient to use (1.5) and (1.4) in polar coordinates, getting

[ρ g̃v] = [ρ g̃]
dR

dt
. (1.7)

Thus taking g̃ = 1, one has

(ρG − ρL)
dR

dt
= ρGvG − ρLvL,

that is also with vL = 0

ρG

(

vG − dR

dt

)

= −ρL
dR

dt
. (1.8)

Taking g̃ = Y in (1.7), Y denoting the mass fraction of the liquid or the gas after diffusion, we get

(ρGYGk − ρLYLk)
dR

dt
= ρGYGk(vG + vGk)− ρLYLkvLk

and this is equivalent to

ρGYGk(vG −R′) + ρGYGkvGk = −ρLYLkR
′ + ρLYLkvLk. (1.9)

Above vGk (resp.vLk) is the speed of specie Gk (resp.Lk), k = 1, 2.

Combining relation (1.9) with Fick’s law7,9,16, that is

YG1vG1 =− D12∇YG1, YG2vG2 = −D21∇YG2,

D12 and D21 being diffusion coefficients, and with equations relating the thermodynamic state at

the interface r = R(t)

YGk = KkYLk, k = 1, 2,

we obtain, for the mass fraction of the liquid YL1, the boundary condition

∂rYL1 +
R′(t)(K1 − 1)

K2ρG(R(t), t)−K3
YL1 = 0 at r = R(t), (1.10)
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using polar coordinates.

In our previous work2, we have made huge mathematical and physical simplifications taking the

state equation of the gas p as constant in (1.2), and considering gas velocity vG as a given function

of the time t. Thus in our previous work, system (1.1), (1.2) was reduced to equation (1.1) with a

given vG(t).

In the present work, we consider the full hyperbolic system (1.1), (1.2) with an auxiliary state

equation for the gas given by p1 = ργ . This of course extends our previous work, but considering

such pressure laws has the advantage that we have been able to perform numerical comparisons.

More general state laws will be studied in a future work.

Once ρG(r, t) and vG(r, t) determined, radius R(t) of the drop suspended in the gas will be computed

through the ordinary differential equation (1.8). Then we shall determine the mass fraction YL1 of

liquid after evaporation process, through the PDE (1.3) along with boundary condition (1.10), for

a given suitable function f .

For this last purpose, within the framework of weighted Sobolev spaces on initial data and for some

continuous function f subject to increasing condition, we shall provide an unique local solution for

the mass fraction YL1 of the liquid. In addition, we shall show that if the initial condition is bounded,

then so is our solution.

In the numerical applications (2nd example) we have chosen the experimental conditions made by

the LCSR in the study of single drop evaporation and in this case the study of the radius of the

drop shows us that the graphic associated to our mathematical model presents the same features as

in the experimental curves.

Plan of the paper: In Section 2, by using Riemann invariants, we determine the droplet radius.

This enables to get, in Section 3, the liquid mass fraction, using a variational method. Finally, we

have presented some numerical simulations in the last Section, which shows that our model is is

good agreement with experimental simulations, at least for short time.

2. Hyperbolic system and droplet radius

The gas velocity vG(r, t) and its density ρG(r, t) satisfy the following system, using polar coordinates

∂ρG
∂t

+
1

r2
∂

∂r

(

r2ρGvG
)

= 0

∂

∂t
(ρGvG) +

1

r2
∂

∂r

(

r2ρGv
2
G

)

= −∂p

∂r
.

(2.1)

Setting ρ(r, t) = r2ρG(r, t) and v(r, t) = vG(r, t), we have

∂ρ

∂t
+ v

∂ρ

∂r
+ ρ

∂v

∂r
= 0

∂v

∂t
+ v

∂v

∂r
= −1

ρ

∂p1
∂r

,
(2.2)

where p1(r, t) is an auxiliary function connected to the state equation of the gas p(r, t), by

∂p1
∂r

= r2
∂p

∂r
.

In (2.2), according to the discussion in the Introduction, we choose the auxiliary function p1(r, t) as

p1=ργ , γ > 1.
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With this choice, we get the following system

∂ρ

∂t
+ v

∂ρ

∂r
+ ρ

∂v

∂r
= 0

∂v

∂t
+ v

∂v

∂r
+ γργ−2∂p

∂r
= 0.

(2.3)

We note that (2.3) is equivalent to matrix form

∂

∂t

(

ρ

v

)

+A.
∂

∂r

(

ρ

v

)

= 0, (2.4)

A being the (2, 2) matrix

A =

(

v ρ

γργ−2 v

)

.

Eigenvalues of A (characteristics speeds) are given λ = v − c and µ = v + c, c =
√

γργ−1. Since

λ < µ, system (2.4) is therefore hyperbolic. Thus there exists two functions W (ρ, v) and Z(ρ, v)

(Riemann invariants) such that

W (ρ, v) = constant on
dX1

dt
= λ, (2.5)

Z(ρ, v) = constant on
dX2

dt
= µ. (2.6)

W (ρ, v) is determined by the system dv
c/ρ

=
dρ
1 , vectorR1 = (1, c/ρ) being and eigenvector associated

to the eigenvalue µ. Thus

W (ρ, v) = v − 2c

γ − 1
. (2.7)

Similarly, the Riemann invariant Z(ρ, v) corresponding to λ is given by

Z(ρ, v) = v +
2c

γ − 1
. (2.8)

Functions W (ρ, v) = W (t, r) and Z(ρ, v) = Z(t, r) satisfy the following system, equivalent to system

(2.4)

∂W

∂t
+ λ(W,Z)

∂W

∂r
= 0

∂Z

∂t
+ µ(W,Z)

∂Z

∂r
= 0,

(2.9)

where λ(W,Z) and µ(W,Z) are given by

λ = −
(

γ−3
4

)

Z +
(

γ+1
4

)

W

µ =
(

γ+1
4

)

Z −
(

γ−3
4

)

W,
(2.10)

as follows from (2.7) and (2.8).

It is well known that a sufficient condition in order that (2.9) is authentically nonlinear is that
∂λ
∂W

> 0 and
∂µ
∂Z

> 0, which is the case here according to (2.10).

Integration along the characteristics defined by
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dX1

dt
= λ(W,Z), X1(0) = β

gives

X1
(0,β)(t) = β +

∫ t

0

λ(W (s,X1(s)), Z(s,X1(s)))ds. (2.11)

Therefore, the solution of the initial value problem

Wt + λ(W,Z)Wr = 0, W (0, r) = W0(r) (2.12)

can be written as

W (t, r) = W0

(

X1
(0,β)(0)

)

= W0(β), (2.13)

where β = r −
∫ t

0 λ(W (s,X1(s)), Z(s,X1(s)))ds.

Similarly we have

Z(t, r) = Z0

(

X2
(0,α)(0)

)

= Z0(α), (2.14)

where

X2
(0,α)(t) = α+

∫ t

0

µ(W (s,X2(s)), Z(s,X2(s)))ds.

The above considerations lead to the following

Proposition 2.1. Assume that W ′
0(β) < 0 or Z ′

0(α) < 0. Then solution of system (2.3) is defined

on a finite interval [0, T [.

�

Proof: Differentiation of (2.5) and (2.11) with respect to β gives

dX1
β

dt
= λβ(W,Z) with X1

β(t = 0) = 1, (2.15)

and in the same way

dX2
α

dt
= µα(W,Z) with X2

α(t = 0) = 1. (2.16)

Since λβ = λWWβ + λZZβ = λWW ′
0(β) and µα = µZZ

′
0(α), from (2.15) and (2.16), integrating

w.r.t. t along the characteristics yields

X1
β(t) = 1 +

∫ t

0

λWW ′
0(β)dt = 1 +

(

γ + 1

4

)

W ′
0(β)t, (2.17)

X2
α(t) = 1 +

∫ t

0

µZZ
′
0(α)dt = 1 +

(

γ + 1

4

)

Z ′
0(α)t. (2.18)

From (2.17), it follows that X1
β(t1) = 0 for t1 = −4

(γ + 1)W ′
0(β)

> 0. Similarly X2
α(t2) = 0 for

t2 = −4
(γ + 1)Z ′

0(α)
> 0.
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Hence ∂W
∂r

(t, r) becomes infinite for T = inf {t1, t2}, since ∂W
∂r

= Wβ .
dβ
dX

=
W ′

0(β)
Xβ

.

�

From Proposition 2.1, it follows that

Proposition 2.2. System (2.9) admits an unique C1 solution on [0, T [, for all r ∈ R
+ and for

initial data ρG(0, r) = ρ0(r) and vG(0, r) = v0(r) belonging to C1(R+).

�

Concerning the droplet radius, it follows from (1.8), that we have the following ode for this radius

dR(t)

dt
=

vG(t, R(t))ρG(t, R(t))

ρG(t, R(t))− ρL
, R(0) = R0. (2.19)

We immediately deduce

Proposition 2.3. The Cauchy problem (2.19) has an unique solution R(t) on a maximal time

interval [0, T ∗[ with T ∗ ≤ T , given initial data ρ0(r) and v0(r) such that W ′
0(r) < 0 or Z ′

0(r) < 0.

�

3. Liquid Mass Fraction

The liquid mass fraction YL1 satisfies the conservation equation of specie (1.3), which can be rewritten

as

∂tYL1 −
1

r2
∂

∂r

(

r2
∂

∂r
YL1

)

+ f(YL1) = 0. (3.1)

We have used polar coordinates, and taken the diffusion constant D12 as being equal to 1. Of course,

(3.1) is equivalent to

∂tYL1 −∆YL1 −
2

r

∂

∂r
YL1 + f(YL1) = 0, for 0 < r < s(t), (3.2)

where s(t) = R(t) denotes the droplet radius determined in section 2.

The boundary condition at the surface s(t) is given by the Rankine-Hugoniot condition connected

to the thermodynamic equilibrium, i.e. formula (1.10).

Performing the change of variable r = R(t)x, function YL1(t, r) turns to function YL1(t, R(t)x) =

u(t, x), which satisfies the following initial boundary value (i.b.v.) problem

∂tu− a(t)

(

∆u+
2

x
∂xu

)

− x
R′(t)

R(t)
∂xu+ f(u) = 0, 0 < x < 1, t > 0, (3.3)

|limx→0+xux(t, x)| < ∞, ux(t, 1) + k(t)u(t, 1) = 0, (3.4)

u(0, x) = u0(x), (3.5)

where we used the following notations

a(t) =
1

R2(t)
, k(t) =

R(t)R′(t)(K1 − 1)

K2ρG(t, R(t))−K3
. (3.6)

Our purpose in this Section is to analyze the boundary value problem (3.3)-(3.5).
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We shall do so by setting this problem in a variational framework, using weighted Sobolev spaces.

Let Ω =]0, 1[ and define H as the Hilbert space given by

H = {v : Ω → R, measurable and such that

∫ 1

0

x2v2(x)dx < +∞}.

Note that H is the closure of C0(Ω̄) w.r.t. the norm ‖v‖H =
(

∫ 1

0

x2v2(x)dx
)1/2

. We also introduce

the real Hilbert space V =
{

v ∈ H |v′ ∈ H
}

. In the following, we shall often use the fact that V

is the closure of C1(Ω̄) w.r.t. the norm ‖v‖V =
(

‖v‖2H + ‖v′‖2H
)1/2

. V is continuously embedded in

H . Identifying H with his dual H ′, one has V ⊂ H ⊂ V ′with continuous injections.

Note also that the norms ‖.‖H and ‖.‖V can be defined, respectively, from the inner products

< u, v >=

∫ 1

0

x2u(x)v(x)dx and < u, v > + < u′, v′ >.

We then have the following results, the proofs of which can be found in the paper12,

Lemma 3.1. For every v ∈ C1([0, 1]), ǫ > 0 and x ∈ [0, 1] we have

‖v‖20 ≤
1

2
‖v′‖20 + v2(1),

v2(1) ≤ ǫ‖v′‖20 + Cǫ‖v‖20,
∣

∣

∣
v(1)

∣

∣

∣
≤ 2 ‖v‖1,

∣

∣

∣
xv(x)

∣

∣

∣
≤

√
5‖v‖1

where Cǫ = 3 + 1
ǫ and ‖.‖0 = ‖.‖H , ‖.‖1 = ‖.‖V .

�

Lemma 3.2. The embedding V ⊂ H is compact.

�

Remark 3.1. From Lemma 3.1, it follows that
(

‖v′‖20 + v2(1)
)1/2

and ‖v‖1 are two equivalent

norms on V since 2
3‖v‖

2
1 ≤ v2(1) + ‖v′‖20 ≤ 5‖v‖21, for all v ∈ V .

�

Remark 3.2. We have xv(x) ∈ C0([0, 1]), for all v ∈ V .

Indeed, on one hand, lim
x→0+

xv(x) = 0, ∀v ∈ V (see the book1, p.128), and on the other hand

v|[ǫ,1] ∈ C0([ǫ, 1]), ∀ǫ, 0 < ǫ < 1, since we have H1(ǫ, 1) ⊂ C0([ǫ, 1]) and ǫ‖v‖H1(ǫ,1) ≤ ‖v‖1 ∀v ∈ V

∀ǫ, 0 < ǫ < 1.

�

If X is any Banach space, we denote by ‖.‖X its norm, and by X ′ the dual space of X . We denote by

Lp(0, T ;X), 1 ≤ p ≤ ∞, the standard Banach space of real functions u : (0, T ) → X , measurable,

such that
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‖u‖Lp(0,T ;X) =

(

∫ T

0

‖u(t)‖pXdt

)1/p

< +∞, for 1 ≤ p < ∞

and

‖u‖L∞(0,T ;X) = ess sup0<t<T ‖u(t)‖X , for p = ∞.

Let u(t), u′(t), ux(t), uxx(t) denote u(t, x), ∂u
∂t

(t, x), ∂u
∂x

(t, x), ∂2u
∂x2 (t, x) respectively.

We shall make the following set of assumptions:

• (H1) u0 ∈ H ;

• (H2) a, k ∈ W 1,∞(0, T ), a(t) ≥ a0 > 0;

• (F1) f ∈ C(R,R);

• (F2) There exists positive constants C1, C
′
1, C2 and p, 1 < p < 3, such that

(i) uf(u) ≥ C1|u|p − C′
1,

(ii) |f(u)| ≤ C2(1 + |u|p−1).

Let u ∈ C2([0, T ]× [0, 1]) be a solution of problem (3.3)-(3.5).

Then, after multiplying equation (3.3) by x2v, v ∈ V w.r.t. the scalar product of H , integrating by

parts and taking into account boundary condition given by (3.4), we get

d

dt
< u(t), v > + a(t)

∫ 1

0

x2uxvxdx+ a(t)k(t)u(1)v(1)− R′(t)

R(t)

∫ 1

0

x3uxvdx+ < f(u), v >= 0

The weak formulation of the ibv problem (3.3)-(3.5) can then be given in the following way: Find

u(t), defined on the open set (0, T ), such that u(t) satisfies the following variational problem

d

dt
< u(t), v > + ã(t;u(t), v)+ < f(u(t)), v >= 0, ∀v ∈ V, (3.7)

together with the initial condition

u(0) = u0. (3.8)

Above, we have used the following bilinear form

ã(t;u, v) = a(t)

∫ 1

0

x2uxvxdx+ a(t)k(t)u(1)v(1)− R′(t)

R(t)

∫ 1

0

x3uxvdx, u, v ∈ V . (3.9)

We first note the following lemma, the proof of which can be found in our previous paper2

Lemma 3.3. There exists constants KT , αT and βT depending on T , such that

| ã(t;u, v)| ≤ KT ‖u‖1‖v‖1, for all u, v ∈ V, (3.10)

ã(t;u, u) ≥ αT ‖u‖21 − βT ‖u‖20, u, v ∈ V. (3.11)
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�

We then have the following existence theorem

Theorem 3.1. Let T > 0 and assumptions (H1),(H2),(F1),(F2) hold true. Then, there exists a

solution u of the variational problem (3.7),(3.8) such that

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), x2/pu ∈ Lp(QT ),

tu ∈ L∞(0, T ;V ), tut ∈ L2(0, T ;H).

Furthermore, if f satisfies the additional condition

(f(u)− f(v))(u − v) ≥ −δ|u− v|2,
for all u, v ∈ R, for some δ ∈ R, then the above solution u is unique.

�

Proof of Theorem 3.1. We divide it in several steps.

• Step 1, Galerkin method.

Denote by {wj}, j = 1, 2, ..., an orthonormal basis of the separable Hilbert space V . We wish to

find um(t) of the form

um(t) =

m
∑

j=1

cmj(t)wj , (3.12)

where cmj(t) satisfy the following system of nonlinear differential equations

< u′
m(t), wj > + ã(t;um(t), wj)+ < f(um(t)), wj >= 0, 1 ≤ j ≤ m, (3.13)

together with the initial condition

um(0) = u0m, (3.14)

and

u0m → u0 strongly in H. (3.15)

Clearly, for each m, there exists an unique local solution um(t) of the form (3.12), which satisfies

(3.13) and (3.14) almost everywhere on 0 ≤ t ≤ Tm, for some Tm, 0 < Tm ≤ T. The following

estimates allow us to take Tm = T for all m.

• Step 2, A priori estimates.

(a) First estimate.

Multiplying jth equation of system (3.13) by cmj(t) and summing up w.r.t. j, we have

1

2

d

dt
‖um(t)‖20 + ã(t;um(t), um(t))+ < f(um(t)), um(t) >= 0. (3.16)

Using assumption (H2), (F2,i), Lemma 3.1 and Remark 3.1, it follows from (3.16) that

d

dt
‖um(t)‖20 + 2αT ‖um(t)‖21 + 2C1

∫ 1

0

x2|um(t, x)|pdx ≤ 2C′
1

3
+ 2βT ‖um(t)‖20. (3.17)
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Integrating (3.17), using (3.15), it follows that

Sm(t) ≤ C0 +
2

3
TC′

1 + 2βT

∫ t

0

Sm(s)ds, (3.18)

where

Sm(t) = ‖um(t)‖20 + 2αT

∫ t

0

‖um(s)‖21ds+ 2C1

∫ t

0

ds

∫ 1

0

x2|um(s, x)|pdx, (3.19)

and C0 is a constant depending only on u0 with ‖u0m‖20 ≤ C0 ∀m.

Applying Gronwall’s lemma, we obtain from (3.18)

Sm(t) ≤
(

C0 +
2

3
TC′

1

)

exp(2βT t) ≤MT , ∀m, ∀t, 0 ≤ t ≤ Tm ≤ T, (3.20)

that is Tm = T .

In the following, we denote by MT any generic constant depending only on T .

(b) Second estimate.

Replacing wj by t2um in (3.8) gives

‖tu′
m‖20 +

1

2

d

dt

[

a(t)‖tum‖20 + a(t)k(t)t2u2
m(1)

]

+
1

2

d

dt

[

t2
∫ 1

0

x2f̂(um)dx

]

= ‖umx‖20
d

dt

[

t2a(t)
]

+
1

2
u2
m(1)

d

dt
(t2a(t)k(t)) + 2t

∫ 1

0

x2f̂(um)dx

+
R′(t)t2

R(t)

∫ 1

0

x3umxu
′
mdx

(3.21)

where

f̂(z) =

∫ z

0

f(y)dy. (3.22)

Integrating (3.21) w.r.t. time variable from 0 to t, we have, after some rearrangements

2

∫ t

0

‖su′
m(s)‖20ds+ a(t)‖tumx(t)‖20 + a(t)t2u2

m(t, 1)

= a(t)(1 − k(t))t2u2
m(t, 1) +

∫ t

0

[

s2a(s)
]′‖umx(s)‖20ds

+

∫ t

0

[

s2a(s)k(s)
]′
u2
m(s, 1)ds+ 2

∫ t

0

R′(s)

R(s)
s2 < xumx(s), u

′
m(s) > ds

+4

∫ t

0

sds

∫ 1

0

x2f̂(um(s, x))dx − 2t2
∫ 1

0

x2f̂(um)dx.

(3.23)

By means of assumption (H2) and Remark 3.1, we get

a(t)‖tum(t)‖20 + a(t)t2u2
m(t, 1) ≥ 2

3
a0‖tum(t)‖21 ∀t ∈ [0, T ], ∀m. (3.24)

We fix ǫ > 0 such that

‖a‖∞‖1− k‖∞ǫ <
a0
3
, (3.25)

where ‖.‖∞ = ‖.‖L∞(0,T ).
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Using again Lemma 3.1, Remark 3.1 with ǫ > 0 as in (3.25) and first estimate (3.20), the terms on

the r.h.s. of (3.23) can be estimated as follows

a(t)(1 − k(t))t2u2
m(t, 1) ≤ ‖a‖∞‖1− k‖∞

(

ǫ‖tum(t)‖21 + Cǫ‖tum(t)‖20
)

≤ a0
3
‖tum(t)‖21 +MT ,

(3.26)

∫ t

0

(

s2a(s)
)′‖umx(s)‖20ds+

∫ t

0

(

s2a(s)k(s)
)′
u2
m(s, 1)ds

≤
[∥

∥(t2a)′
∥

∥

∞
+
∥

∥(t2ak)′
∥

∥

∞

]

∫ t

0

[

‖umx(s)‖20 + u2
m(s, 1)

]

ds

≤ 5
[∥

∥(t2a)′
∥

∥

∞
+
∥

∥(t2ak)′
∥

∥

∞

]

∫ t

0

‖um(s)‖21ds ≤ MT ,

(3.27)

2

∣

∣

∣

∣

∫ t

0

s2
R′(t)

R(t)
< xumx(s), u

′
m(s) > ds

∣

∣

∣

∣

≤
∫ t

0

‖su′
m(s)‖20ds+

∥

∥

∥

∥

R′

R

∥

∥

∥

∥

2

∞

∫ t

0

‖sum(s)‖21ds. (3.28)

From assumptions (F1) and (F2), we note also that

− m̂0 = −
∫ z0

−z0

|f(y)|dy ≤ f̂(z) =

∫ z

0

f(y)dy ≤ C2

(

|z|+ |z|p
p

)

, ∀z ∈ R, (3.29)

where z0 = (C′
1/C1)

1/p.

Using first estimate (3.20), (3.29) and Lemma 3.1, we obtain
∣

∣

∣

∣

4

∫ t

0

sds

∫ 1

0

x2f̂(um(s, x))dx − 2t2
∫ 1

0

x2f̂(um(t, x)dx

∣

∣

∣

∣

≤ 4C2

∫ t

0

sds

∫ 1

0

x2

(

|um(s, x)| + 1

p
|um(s, x)|p

)

dx+ 2t2
∫ 1

0

x2m̂0dx

≤ 4C2

∫ t

0

s‖um(s)‖0ds+
4

p
C2t

∫ t

0

ds

∫ 1

0

x2|um(s, x)|pdx+
2

3
T 2m̂0

≤ 2C2T
√

MT +
2C2

pC1
TMT +

2

3
T 2m̂0 ≤ MT .

(3.30)

Hence, we deduce from (3.23), (3.24), (3.26)-(3.28) and (3.30) that

∫ t

0

‖su′
m(s)‖20ds+

a0
3
‖tum(t)‖21 ≤ MT +

∥

∥

∥

∥

R′

R

∥

∥

∥

∥

2

∞

∫ t

0

‖sum(s)‖21ds. (3.31)

By Gronwall’s lemma, we get

∫ t

0

‖su′
m(s)‖20ds+

a0
3
‖tum(t)‖21 ≤ MT exp

(

∥

∥

∥

∥

R′

R

∥

∥

∥

∥

2

∞

.
3T

a0

)

≤ MT , ∀t ∈ [0, T ]. (3.32)

Finally, using (3.20) and assumption (F2,ii) we have also
∫ t

0

ds

∫ 1

0

∣

∣

∣
x2/p′

f(um(s, x))
∣

∣

∣

p′

dx ≤ (2C2)
p′

∫ t

0

ds

∫ 1

0

x2|um(s, x)|pdx ≤ MT , (3.33)

with p′ =
p

p− 1.

• Step 3, the limiting process.
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From (3.20), (3.32) and (3.33), we deduce that there exists a subsequence of {um}, still denoted
{um} such that

um → u weakly ∗ in L∞(0, T ;H) ,

um → u weakly in L2(0, T ;V ) ,

x2/pum → x2/pu weakly in Lp(QT ) ,

tum → tu weakly ∗ in L∞(0, T ;V ) ,

(tum)′ → (tu)′weakly in L2(0, T ;H).

(3.34)

Using a standard compactness lemma10 (p.57) together with (3.34), we can extract from the sequence

{um}, a subsequence still denoted by {um} such that

tum → tu strongly in L2(0, T ;H). (3.35)

Continuity of f also implies (up to a sub-sequence)

f(um(t, x)) → f(u(t, x)) a.e. (t, x) ∈ QT = (0, T )× (0, 1). (3.36)

Applying a standard weak convergence lemma10, we have also

x2/p′

f(um) → x2/p′

f(u) weakly in Lp′

(QT ).

Passing to the limit in (3.13) and (3.14), it follows from (3.15), (3.34) and (3.36), that function u(t)

satisfies the i.b.v. problem (3.7), (3.8).

• Step 4. Uniqueness of the solutions.

First of all, we note the following slight extension of a lemma used in our previous paper2 (see also

the book10)

Lemma 3.4. Let w be the weak solution of the following i.b.v. problem

wt − a(t)(wxx + 2
xwx) = f̃(t, x), 0 < t < T, 0 < x < 1,

∣

∣

∣
lim

x→0+
xwx(t, x)

∣

∣

∣
< +∞, wx(t, 1) + k(t)w(t, 1) = 0, w(0, x) = 0,

w ∈ L2(0, T ;V ) ∩ L∞(0, T ;H), x2/pw ∈ Lp(QT ),

tw ∈ L∞(0, T ;V ), twt ∈ L2(0, T ;H).

Then

1

2
‖w(t)‖20 +

∫ t

0

a(s)
[

‖wx(s)‖20 + k(s)w2(s, 1)
]

ds−
∫ t

0

< f̃(s), w(s) > ds = 0,

a.e. t ∈ (0, T )

�

Uniqueness of solutions for our initial i.b.v problem will then be deduced as follows. Let u and v

be two weak solutions of (3.3)-(3.5). Then w = u − v is a weak solution of problem mentioned in

Lemma 3.4, with r.h.s. given by f̃(t, x) =
xR′(t)
R(t)

wx − f(u) + f(v). Therefore, Lemma 3.4 implies
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1

2
‖w(t‖20 +

∫ t

0

ã(s;w(s), w(s))ds + 2

∫ t

0

< f(u(s))− f(v(s)), w(s) > ds = 0.

Using Lemma 3.3 and assumption (F3) we obtain

‖w(t)‖20 + 2αT

∫ t

0

‖w(s)‖21 ≤ 2(δ + βT )

∫ t

0

‖w(s)‖20ds. (3.37)

If δ+ βT ≥ 0 we have ‖w(t)‖0 = 0 by applying Gronwall’s lemma. In the case where δ+ βT < 0 the

result is clearly still true.

This ends the proof of Theorem 3.1.

�

We now turn to the boundness of the above solutions.

For this purpose, we shall make use of the following assumptions

• (H’1) u0 ∈ L∞(0, 1), |u0(x)| ≤ M, a.e. x ∈ (0, 1)

• (H’2) a, k ∈ W 1,∞(0, T ), a(t) ≥ a0 > 0, k(t) ≥ k0 > 0

• (F’1) uf(u) ≥ 0 ∀u ∈ R such that |u| ≥ ‖u0‖∞, for a.e. x ∈ (0, 1).

We then have the following result

Theorem 3.2. Let (H’1), (H’2), (F1)-(F3) and (F’1) hold. Then the unique weak solution of the

ibv problem (3.7)-(3.9), as given by theorem 1, belongs to L∞(QT ).

�

Proof of Theorem 3.2. Firstly, we note that Z = u−M satisfies the i.b.v. problem

∂tZ − a(t)

(

∆Z +
2

x
∂xZ

)

− x
R′(t)

R(t)
∂xZ + f(Z +M) = 0, 0 < x < 1, t ∈ (0, T ), (3.38)

|limx→0+xZx(t, x)| < ∞, Zx(t, 1) + k(t)[Z(t, 1) +M ] = 0, (3.39)

Z(0, x) = u0(x)−M (3.40)

Multiplying equation (3.38) by x2v, for v ∈ V , integrating by parts w.r.t. variable x and taking into

account boundary condition (3.39), one has
∫ 1

0

x2Ztvdx+ a(t)

∫ 1

0

x2Zxvxdx+ a(t)k(t)Z(t, 1)v(1) − R′(t)

R(t)

∫ 1

0

x3Zxvdx

+

∫ 1

0

x2f(Z +M)vdx = −Ma(t)k(t)v(1), ∀v ∈ V ,

(3.41)

hence for v = Z+ = 1
2

(

Z + |Z|
)

, since u0 ∈ L∞(0, 1). It follows that

1
2
d
dt

∫ 1

0

x2|Z+|2dx+ a(t)

∫ 1

0

x2|(Z+)x|2dx+ a(t)k(t)|Z+(t, 1)|2

−R′(t)
R(t)

∫ 1

0

x3Z+
x Z+dx+

∫ 1

0

x2f(Z+ +M)Z+dx = −Ma(t)k(t)Z+(t, 1) ≤ 0,

since
∫ 1

0

x2ZtZ
+dx =

∫ 1

0,Z>0

x2(Z+)tZ
+dx =

1

2

d

dt

∫ 1

0

x2|Z+|2dx.
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On the other hand, by assumption (H’2) and Remark 3.1, one has

a(t)

∫ 1

0

x2
∣

∣Z+
x

∣

∣

2
dx+ a(t)k(t)

∣

∣Z+(t, 1)
∣

∣

2 ≥ C̃0

∥

∥Z+(t)
∥

∥

2

1
, (3.42)

where C̃0 = 2
3a0 min {1, k0}.

Using the monotonicity of f(u) + δu and (F’1), we have
∫ 1

0

x2f(Z+ +M)Z+dx =

∫ 1

0

x2
[

f(Z+ +M)− f(M)
]

Z+dx+

∫ 1

0

f(M)x2Z+dx

≥ −δ

∫ 1

0

x2
∣

∣Z+
∣

∣

2
dx+

∫ 1

0

f(M)x2Z+dx ≥ −δ
∥

∥Z+
∥

∥

2

0
.

(3.43)

(3.41)-(3.43) together with Cauchy’s inequality applied to the term −R′(t)
R(t)

∫ 1

0

x3Z+
x Z+dx yields

d

dt

∥

∥Z+(t)
∥

∥

2

0
+ C̃0

∥

∥Z+(t)
∥

∥

2

1
≤
(

1

C̃0

∥

∥

∥

∥

R′

R

∥

∥

∥

∥

2

∞

+ 2|δ|
)

∥

∥Z+(t)
∥

∥

2

0
. (3.44)

Integrating (3.44), we get

∥

∥Z+(t)
∥

∥

2

0
≤
∥

∥Z+(0)
∥

∥

2

0
+

(

1

C̃0

∥

∥

∥

∥

R′

R

∥

∥

∥

∥

2

∞

+ 2|δ|
)

∫ t

0

∥

∥Z+(s)
∥

∥

2

0
ds. (3.45)

Since Z+(0) =
(

u(0, x)−M
)+

=
(

u0(x)−M
)+

= 0, Gronwall’s lemma yields ‖Z+(t)‖0 = 0. Thus

u(t, x) ≤ M a.e. (t, x) ∈ QT .

The case u0(x) ≥ −M is similar, by considering Z = u +M and Z− = 1
2

(

|Z| − Z
)

. Thus we get

Z− = 0 and hence u(t, x) ≥ −M a.e. (t, x) ∈ QT .

All in all, one obtains |u(t, x)| ≤ M a.e. (t, x) ∈ QT and this ends the proof of Theorem 3.2.

�

4. Numerical applications

For the numerical applications, we have taken in (2.3) γ = 3, so that equation (2.9) reduces to

Burger’s equation
{

Wt +WWr = 0, W (0, r) = W0(r)

Zt + ZZr = 0, Z(0, r) = Z0(r).
(4.1)

It is well known that classical Burger’s equation

ut + uur = 0, u(0, r) = u0(r)

admits the solution u(t, r) = u0(ξ(t, r)), ξ(t, r) being defined by the parametrization r = u0(ξ)t+ ξ.

Having in mind (4.1), we have considered two examples.

• First example.

For the first example, we have chosen the initial conditions W0(r) = 1, r > 0; W0(0) = 0 and

Z0(r) = 2, r > 0; Z0(0) = 0. The continuous solutions of (4.1) are then given by
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W (t, r) =

{

1 if 0 ≤ t ≤ r,
r
t if 0 ≤ r ≤ t,

Z(t, r) =

{

2 if 0 ≤ 2t ≤ r,
r
t if 0 ≤ r ≤ 2t.

According to Section 2, the droplet radius is given by formula (2.19) which we consider here with

an initial condition taken equal to be 1

dR(t)

dt
=

vG(t, R(t))ρG(t, R(t))

ρG(t, R(t))− ρL
, R(0) = 1, (4.2)

and where






vG(t, r) =
1

2
(W (t, r) + Z(t, r))

ρG(t, r) =
1

2
√
3r2

(Z(t, r)−W (t, r)).
(4.3)

In figure 1 below, we have drawn the curve t −→ R(t) on the time interval [0, 1] with a step h = 0.05

and ρL = 0.9.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

d2

Fig. 1

• Second example.

For the second example, we have chosen the truly experimental conditions made by the LCSR in

the study of single drop evaporation, the drop being suspended from a silicate tube. Drops are

made up of n-heptane fuel (ρL = 683 kg/mm3)) in air at normalized atmospheric pressure and

with an initial speed vG(0, r) = C1 = 35mm/s. The initial density ρG(0, r) of the gas is taken as

C2 = 348
T0

, T0 = 373K.

In this case, the solution of (4.1) are given by

W (t, r) = C1 −
√
3C2ξ

2, ξ =
1 +

√

1− 4(r − C1t)
√
3C2t

2
√
3C2t

,
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Z(t, r) = C1 +
√
3C2η

2, η =
−1 +

√

1 + 4(r − C1t)
√
3C2t

2
√
3C2t

.

We then compute vG and ρG by formula (4.3), and then solve the ode for R given by (4.2).

We note that R′(0) = C1C2

C2−ρL
< 0 where C2 = 348

372 < 1 < ρL = 683.

On the other hand, one has

vG(t, r) =
1

4
√
3C2t

[C1 +

√
3

12t2C2
(α+

√
1− α−

√
1 + α)],

where

α = α(t, r) = 4(r − C1t)
√
3C2t, |α| ≤ 1.

One has sgnvG(t, r) = sgn[C112t
2C2 +

√
3(α +

√
1− α −

√
1 + α)]. Since |α| ≤ 1, it follows that√

3(α+
√
1− α−

√
1 + α) ≥ −

√
6.

Thus vG(t, r) > 0 if C112t
2C2 ≥

√
6 i.e. t ≥ t2 = 1

C12
1

4

≃ 1
35 and vG(t, r) < 0 on the interval [t1, t2[ .

Similarly 0 ≤ ρG(t, r) ≤ 1
C2

2
t26.2.r2

[2 +
√
1− α−

√
1 + α] ≤ 1

3t2r2 .

Thus, if t ≥ tm, r ≥ rm, ρG(t, r) ≤ 1
3t2mr2m

≤ ρL ≃ 683, that is for tmrm ≥ 1
3.683 ≃ 1

45 .

Since R′(0) < 0 it follows that R(t) is decreasing on [0, t1[, increasing on [t1, t2[ and then from the

starting point t2 always non increasing.

Figures 2 and 3 represent resp. the velocity vG(t, r) and the pressure ρG(t, r) given by (4.3) for

(t, r) ∈ (0, 1)× (0, 1).

Fig. 2
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Fig. 3

The curve of the radius t −→ R(t) for this case is drawn in figure 4.
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Fig. 4
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Fig. 5

Since W ′
0(ξ) < 0 the maximal existence interval is finite (Proposition 2.1) as can be seen in our

graphic. Let us remark that looking on the experimental curves 11 made by the LCSR (figure 5)

at the beginning, the function t −→ R(t) is increasing around the vicinity of t = 0. This fact is

confirmed by our model which represents a good improvement of our previous model2 in which the

velocity vG(t) was a given function of t.
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