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Abstract

We investigate modified steepest descent methods coupled with a
loping Kaczmarz strategy for obtaining stable solutions of nonlinear
systems of ill-posed operator equations. We show that the proposed
method is a convergent regularizationmethod. Numerical tests are pre-
sented for a linear problem related to photoacoustic tomography and
a non-linear problem related to the testing of semiconductor devices.
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1 Introduction

In this paper we propose a new method for obtaining regularized approxi-
mations of systems of nonlinear ill-posed operator equations.

The inverse problem we are interested in consists of determining an un-
known physical quantity x ∈ X from the set of data (y0, . . . , yN−1) ∈ Y N ,
where X, Y are Hilbert spaces and N ≥ 1. In practical situations, we do
not know the data exactly. Instead, we have only approximate measured
data yδi ∈ Y satisfying

‖yδi − yi‖ ≤ δi , i = 0, . . . , N − 1 , (1)

with δi > 0 (noise level). We use the notation δ := (δ0, . . . , δN−1). The finite
set of data above is obtained by indirect measurements of the parameter,
this process being described by the model

Fi(x) = yi , i = 0, . . . , N − 1 , (2)
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where Fi : Di ⊂ X → Y , andDi are the corresponding domains of definition.
Standard methods for the solution of system (2) are based in the use

of Iterative type regularization methods [1, 7, 13, 16, 19] or Tikhonov type
regularization methods [7, 23, 30, 32, 33] after rewriting (2) as a single
equation F(x) = y, where

F := (F0, . . . ,FN−1) :
N−1
⋂

i=0

Di → Y N (3)

and y := (y0, . . . , yN−1). However these methods become inefficient if N
is large or the evaluations of Fi(x) and F′

i(x)
∗ are expensive. In such a

situation, Kaczmarz type methods [6, 15, 22, 26] which cyclically consider
each equation in (2) separately are much faster [24] and are often the method
of choice in practice.

For recent analysis of Kaczmarz type methods for systems of ill-posed
equations, we refer the reader to [4, 10, 11, 17].

The starting point of our approach is the steepest descent method [7, 29]
for solving ill-posed problems. Motivated by the ideas in [10, 11], we propose
in this article a loping Steepest-Descent-Kaczmarz method (l-SDK method)
for the solution of (2). This iterative method is defined by

xδk+1 = xδk − ωkαksk , (4)

where

sk := F′
[k](x

δ
k)

∗(F[k](x
δ
k)− yδ[k]) , (5)

ωk :=

{

1 ‖F[k](x
δ
k)− yδ[k]‖ ≥ τδ[k]

0 otherwise
, (6)

αk :=

{

Φrel

(

‖sk‖2/‖F′
[k](x

δ
k)sk‖2

)

ωk = 1

αmin ωk = 0
. (7)

Here αmin > 0, τ ∈ [2,∞) are appropriate chosen numbers (see (13), (14)
below), [k] := (k mod N) ∈ {0, . . . , N − 1}, and xδ0 = x0 ∈ X is an ini-
tial guess, possibly incorporating some a priori knowledge about the exact
solution. The function Φrel : (0,∞) → (0,∞) defines a sequence of relax-
ation parameters and is assumed to be continuous, monotonically increasing,
bounded by a constant αmax, and to satisfy Φ(s) ≤ s (see Figure 1).

If M is an upper bound for ‖F′
[k](x)‖, then ‖sk‖2/‖F′

[k](x
δ
k)sk‖2 ≥ 1/M2

(cf. Lemma 3.2). Hence the relaxation function Φrel needs only be defined
on [1/M2,∞). In particular, if one chooses Φrel(s) = αmin being constant
on that interval, then αk = αmin and the l-SDK method reduces to the
loping Landweber-Kaczmarz (l-LK) method considered in [10, 11]. The
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Figure 1: Typical examples for relaxation function Φrel.

convergence analysis of the l-LK method requires αmin ≤ 1/M2, whereas
the adaptive choice of the relaxation parameters in the present paper allows
αk being much larger than 1/M2.

The l-SDK method consists in incorporating the Kaczmarz strategy
(with the loping parameters ωk) in the steepest descent method. This
strategy is analog to the one introduced in [11] regarding the Landweber-
Kaczmarz iteration. As usual in Kaczmarz-type algorithms, a group of N
subsequent steps (starting at some multiple k of N) shall be called a cycle.
The iteration should be terminated when, for the first time, all xk are equal
within a cycle. That is, we stop the iteration at

kδ∗ := argmin{lN ∈ N : xδlN = xδlN+1 = · · · = xδlN+N−1} , (8)

Notice that kδ∗ is the smallest multiple of N such that

xkδ∗ = xkδ∗+1 = · · · = xkδ∗+N−1 . (9)

In the case of noise free data, δi = 0 in (1), we choose ωk ≡ 1 and the iteration
(4) - (7) reduces to the Steepest-Descent-Kaczmarz (SDK) method, which is
closely related to the Landweber-Kaczmarz (LK) method considered in [17].

It is worth noticing that, for noisy data, the l-SDKmethod is fundamen-
tally different from the SDK method: The bang-bang relaxation parameter
ωk effects that the iterates defined in (4) become stationary if all components
of the residual vector ‖Fi(x

δ
k)−yδi ‖ fall below a pre-specified threshold. This

characteristic renders (4) - (7) a regularization method (see Section 3). An-
other consequence of using these relaxation parameters is the fact that, after
a large number of iterations, ωk will vanish for some k within each iteration
cycle. Therefore, the computational expensive evaluation of F′

[k](xk)
∗ might

be loped, making the l-SDKmethod in (4) - (7) a fast alternative to the LK
method in [17]. Since in praxis the steepest descent method performs better
than the Landweber method, the l-SDK is expected to be more efficient
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than the l-LK method [10, 11]. Our numerical experiments (mainly for the
nonlinear problem considered in Section 5) corroborate this conjecture.

The article is outlined as follows. In Section 2 we formulate basic as-
sumptions and derive some auxiliary estimates required for the analysis. In
Section 3 we provide a convergence analysis for the l-SDK method. In Sec-
tions 4 and 5 we compare the numerical performance of the l-SDK method
with other standard methods for inverse problems in photoacoustic tomog-
raphy and in semiconductors respectively.

2 Assumptions and Basic Results

We begin this section by introducing some assumptions, that are necessary
for the convergence analysis presented in the next section. These assump-
tions derive from the classical assumptions used in the analysis of iterative
regularization methods [7, 16, 29].

First, we assume that the operators Fi are continuously Fréchet differ-
entiable, and also that there exist x0 ∈ X, M > 0, and ρ > 0 such that

‖F′
i(x)‖ ≤ M , x ∈ Bρ(x0) ⊂

N−1
⋂

i=0

Di . (10)

Notice that xδ0 = x0 is used as starting value of the l-SDK iteration. Next
we make an uniform assumption on the nonlinearity of the operators Fi.
Namely, we assume that the local tangential cone condition [7, 16]

‖Fi(x)− Fi(x̄)− F′
i(x)(x− x̄)‖Y

≤ η‖Fi(x)− Fi(x̄)‖Y , x, x̄ ∈ Bρ(x0)
(11)

holds for some η < 1/2. Moreover, we assume the existence of and element

x∗ ∈ Bρ/2(x0) such that F(x∗) = y . (12)

where y = (y0, . . . , yN−1) are the exact data satisfying (1).
We are now in position to choose the positive constants αmin, τ in (7),

(6). For the rest of this article we shall assume

αmin := Φrel

(

1/M2
)

, (13)

τ ≥ 2
1 + η

1− 2η
≥ 2 . (14)

In particular, for linear problems we can choose τ equal to 2.

In the sequel we verify some basic results that are necessary for the
convergence analysis derived in the next section. The first result concerns
the well-definedness and positivity of the relaxation parameter αk.
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Lemma 2.1. Let assumptions (10) - (12) be satisfied. Then the coefficients
αk in (7) are well-defined and positive.

Proof. If ωk = 0, the assertion follows from (7). If ωk = 1, then ‖F[k](x
δ
k)−

yδ[k]‖ ≥ τδ[k] and the assertion is a consequence of [29, Lemma 3.1], applied
to F[k] instead of F.

In the next lemma we prove an estimate for the step size of the l-SDK

iteration.

Lemma 2.2. Let sk and αk be defined by (5) and (7). Then

αk‖sk‖2 ≤ ‖F[k](x
δ
k)− yδ[k]‖2 , k ∈ N . (15)

Proof. It is enough to consider the case ωk = 1. It follows from (7) that

αk‖sk‖2 = Φrel

(

‖sk‖2
‖F′

[k](x
δ
k) sk‖2

)

‖sk‖2 ≤ ‖sk‖4
‖F′

[k](x
δ
k) sk‖2

. (16)

Moreover, from the definition of sk we obtain

‖F′
[k](x

δ
k) sk‖ = ‖F′

[k](x
δ
k)F

′
[k](x

δ
k)

∗[F[k](x
δ
k)− yδ[k]]‖ ,

‖sk‖2 ≤ ‖F′
[k](x

δ
k)F

′
[k](x

δ
k)

∗[F[k](x
δ
k)− yδ[k]]‖ ‖F[k](x

δ
k)− yδ[k]‖ .

Now, substituting the last two expressions in (16), shows (15).

The following Lemma is an important auxiliary result, which will be used
at several places throughout this article.

Lemma 2.3. Let xδk, αk, ωk, and sk be defined by (4) - (7) and assume that
(10) - (12) hold true. If xδk ∈ Bρ/2(x

∗) for some k ≥ 0, then

‖xδk+1 − x∗‖2 − ‖xδk − x∗‖2 (17)

≤ ωkαk‖F[k](x
δ
k)− yδ[k]‖

(

(2η − 1)‖F[k](x
δ
k)− yδ[k]‖+ 2(1 + η)δ[k]

)

.

Proof. If ωk = 0, then xk+1 = xk and (17) follows with equality. If ωk = 1,
it follows from (4) and (5) and Lemma 2.2 that

‖xδk+1 − x∗‖2 − ‖xδk − x∗‖2

= 2〈xδk − x∗, xδk+1 − xδk〉+ ‖xδk+1 − xδk‖2

= 2αk〈xδk − x∗, F′
[k](x

δ
k)

∗(yδ[k] − F[k](x
δ
k))〉 + α2

k‖sk‖2

≤ 2kαk〈yδ[k] − F[k](x
δ
k),F

′
[k](x

δ
k)(x

δ
k − x∗)〉+ αk‖F[k](x

δ
k)− yδ[k]‖2

≤ αk

(

2〈yδ[k] − F[k](x
δ
k), F′

[k](x
δ
k)(x

δ
k − x∗)− F[k](x

∗) + F[k](x
δ
k)〉

+ 2〈yδ[k] − F[k](x
δ
k), y[k] − yδ[k]〉 − ‖yδ[k] − F[k](x

δ
k)‖2

)

.
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Now, applying (11) with x = x∗ and x̄ = xδk ∈ Bρ/2(x
∗) ⊂ Bρ(x0), leads to

‖xδk+1 − x∗‖2 − ‖xδk − x∗‖2

≤ ωkαk‖F[k](x
δ
k)− yδ[k]‖

(

2η‖F[k](x
δ
k)− y[k]‖+ 2δ[k] − ‖F[k](x

δ
k)− yδ[k]‖

)

.

The last inequality and (1) show (17).

Our next goal is to prove a monotony property, known to be satisfied
by other iterative regularization methods, e.g., by the Landweber [7], the
steepest descent [29], the LK [17], and the l-LK [11] method.

Proposition 2.4 (Monotonicity). Under the assumptions of Lemma 2.3,

‖xδk+1 − x∗‖2 ≤ ‖xδk − x∗‖2 , k ∈ N . (18)

Moreover, all iterates xδk remain in Bρ/2(x
∗) ⊂ Bρ(x0) and satisfy (17).

Proof. From (12) it follows that x0 ∈ Bρ/2(x
∗). If ωδ = 0, then x1 satisfies

(18) with equality and x1 ∈ Bρ/2(x
∗) ⊂ Bρ(x0). If ω

δ 6= 0, then Lemma 2.3
implies

‖xδ1 − x∗‖2 − ‖xδ0 − x∗‖2 ≥ (2η − 1)‖F0(x
δ
0)− yδ,0‖+ 2(1 + η)δ0

≥ δ0

(

(2η − 1)τ + 2(1 + η)
)

≥ 0 .

Therefore (18), for k = 0, follows from (14). In particular, x1 ∈ Bρ/2(x
∗).

An inductive argument implies (18) and that xk ∈ Bρ/2(x
∗) ⊂ Bρ(x0) for

all k ∈ N. The assertions therefore follows from Lemma 2.3.

3 Convergence Analysis of the Loping Steepest

Descent Kaczmarz Method

In this section we provide a complete convergence analysis for the l-SDK

iteration, showing that it is a convergent regularization method in the sense
of [7] (see Theorems 3.3 and 3.6 below). Throughout this section, we assume
that (10) - (14) hold, and that xδk, αk, ωk, and sk are defined by (4) - (7).

Our first goal is to prove convergence of the l-SDK iteration for δ = 0.
For exact data y = (y0, . . . , yN−1), the iterates in (4) are denoted by xk.

1

Lemma 3.1. There exists an x0-minimal norm solution of (2) in Bρ/2(x0),

i.e., a solution x† of (2) such that

‖x† − x0‖ = inf
{

‖x− x0‖ : x ∈ Bρ/2(x0) and F(x) = y} .

Moreover, x† is the only solution of (2) in Bρ/2(x0) ∩
(

x0 + ker(F′(x†))⊥
)

.

1This is a standard notation used in the literature.
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Proof. Lemma 3.1 is a consequence of [13, Proposition 2.1]. A detailed proof
can be found in [16].

Lemma 3.2. For all k ∈ N, we have αk ≥ αmin.

Proof. For ωk = 0 the claimed estimate holds with equality. If ωk = 1, it
follows from (10) that

‖sk‖2/‖F′
[k](x

δ
k) sk‖2 ≥ ‖F′

[k](x
δ
k)‖−2 ≥ 1/M2 .

Now the monotonicity of Φrel implies αk ≥ Φrel(M
−2) = αmin.

Throughout the rest of this article, x† denotes the x0-minimal norm
solution of (2). We define ek := x† − xk. From Proposition 2.4 it follows
that (17) holds for all k. By summing over all k, this leads to

∞
∑

i=0

αi‖y[i] − F[i](xi)‖2 ≤ ‖x0 − x†‖2
1− 2η

< ∞ . (19)

Equation (19) and the monotony of ‖ek‖ shown in Proposition 2.4 are main
ingredients in the following proof of the convergence of the SDK iteration.

Theorem 3.3 (Convergence for Exact Data). For exact data, the iteration
(xk) converges to a solution of (2), as k → ∞. Moreover, if

N (F′(x†)) ⊆ N (F′(x)) for all x ∈ Bρ(x0) , (20)

then xk → x†.

Proof. From (18) it follows that ‖ek‖ decreases monotonically and therefore
that ‖ek‖ converges to some ǫ ≥ 0. In the following we show that ek is in
fact a Cauchy sequence.

For k = k0N+k1 and l = l0N+ l1 with k ≤ l and k1, l1 ∈ {0, . . . , N−1},
let n0 ∈ {k0, . . . , l0} be such that

N−1
∑

i1=0

‖Fi1(xNn0+i1)− yi1‖ ≤
N−1
∑

i1=0

‖Fi1(xNi0+i1)− yi1‖ , i0 ∈ {k0, . . . , l0} .

(21)
Then, with n := Nn0 +N − 1, we have

‖ek − el‖ ≤ ‖ek − en‖+ ‖el − en‖ (22)

and
‖en − ek‖2 = ‖ek‖2 − ‖en‖2 + 2〈en − ek, en〉 .
‖en − el‖2 = ‖el‖2 − ‖en‖2 + 2〈en − el, en〉 ,

(23)

7



For k → ∞, the first two terms of (23) converge to ǫ − ǫ = 0. Therefore,
in order to show that ek is a Cauchy sequence, it is sufficient to prove that
〈en − ek, en〉 and 〈en − el, en〉 converge to zero as k → ∞.

To that end, we write i = Ni0 + i1, i1 ∈ {0, . . . , N − 1} and set i∗ :=
Nn0 + i1. Then, using the definition of the steepest descent Kaczmarz
iteration it follows that

|〈en − ek, en〉|

=

∣

∣

∣

∣

n−1
∑

i=k

αi

〈

F′
i1(xi)

∗
(

yi1 − Fi1(xi)
)

, x† − xn
〉

∣

∣

∣

∣

≤
n−1
∑

i=k

αi

∣

∣

∣

〈

yi1 − Fi1(xi),F
′
i1(xi)(x

† − xi∗) + F′
i1(xi)(xi∗ − xn)

〉

∣

∣

∣

≤
n−1
∑

i=k

αi‖yi1 − Fi1(xi)‖ ‖F′
i1(xi)(x

† − xi∗)‖

+

n−1
∑

i=k

αi‖yi1 − Fi1(xi)‖ ‖F′
i1(xi)(xi∗ − xn)‖ (24)

From (11) it follows that

‖F′
i1(xi)(x

† − xi∗)‖ ≤ 2(1 + η)‖yi1 − Fi1(xi)‖+ (1 + η)‖yi1 − Fi1(xi∗)‖ .
(25)

Again using the definition of the steepest descent Kaczmarz iteration and
equations (7), (10), it follows that

‖F′
i1(xi)(xi∗−xn)‖ ≤ M ‖xi∗ − xn‖

≤ M

N−2
∑

j=i1

αj‖F′
j(xNn0+j)

∗
(

Fj(xNn0+j)− yj
)

‖

≤ αmaxM
2
N−1
∑

j=0

‖Fj(xNn0+j)− yj‖ . (26)

Substituting (25), (26) in (24) leads to

|〈en − ek, en〉|

≤ c

n−1
∑

i0=k0

N−1
∑

i1=0

‖yi1 − Fi1(xNi0+i1)‖





N−1
∑

j=0

‖Fj(xNn0+j)− yj‖





≤ c

n−1
∑

i0=k0

(

N−1
∑

i1=0

‖yi1 − Fi1(xNi0+i1)‖
)2

8



with c := αmax(3+ 3η+αmaxM
2). Here we made use of (21). So, we finally

obtain the estimate

|〈en − ek, en〉| ≤
Nc

αmin

n−1
∑

i0=k0

N−1
∑

i1=0

αNi0+i1‖yi1 − Fi1(xNi0+i1)‖2 .

Because of (19), the last sum tends to zero for k = Nk0 + k1 → ∞, and
therefore 〈en, en − ek〉 → 0. Analogously one shows that 〈en, en − el〉 → 0.
Therefore ek is a Cauchy sequence and xk = x†−ek converges to an element
x∗ ∈ X. Because all residuals ‖F[k](xk) − y[k]‖ tend to zero, x∗ is solution
of (2).

Now assume N (F′(x†)) ⊆ N (F(x)), for x ∈ Bρ(x0). Then from the
definition of xk it follows that

xk+1 − xk ∈ R(F′
[k](xk)

∗) ⊂ N (F′
[k](xk))

⊥ ⊂ N (F′(xk))
⊥ ⊂ N (F′(x†))⊥ .

An inductive argument shows that all iterates xk are elements of x0 +
N (F′(x†))⊥. Together with the continuity of F′(x†) this implies that x∗ ∈
x0+N (F′(x†))⊥. By Lemma 3.1, x† is the only solution of (2) in Bρ/2(x0)∩
(

x0 +N (F′(x†))⊥
)

, and so the second assertion follows.

The second goal in this section is to prove that xδk∗ converges to a solution
of (2), as δ → 0. First we verify that, for noisy data, the stopping index kδ∗
defined in (8) is finite.

Proposition 3.4 (Stopping Index). Assume δmin := min{δ0, . . . , δN−1} >
0. Then kδ∗ defined in (8) is finite, and

‖Fi(x
δ
kδ∗
)− yδi ‖ < τδi , i = 0, . . . , N − 1 . (27)

Proof. Assume that for every l ∈ N , there exists i(l) ∈ {0, . . . , N − 1} such
that xlN+i(l) 6= xlN . From Proposition 2.4 follows that we can apply (17)
recursively for k = 1, . . . , lN and obtain

−‖x0 − x∗‖2 ≤
lN
∑

k=1

ωkαk‖F[k](x
δ
k)− yδ[k]‖

(

2(1 + η)δ[k] − (1− 2η)‖F[k](x
δ
k)− yδ[k]‖

)

, l ∈ N .

Using the fact that either ωk = 0 or ‖F[k](x
δ
k)− yδ[k]‖ ≥ τδ[k], we obtain

‖x0 − x∗‖2 ≥
(

τ(1− 2η) − 2(1 + η)
)

lN
∑

k=1

ωkαkδ[k]‖F[k](x
δ
k)− yδ[k]‖ . (28)

9



Equation (28), Lemma 3.2 and the fact that xl′N+i(l′) 6= xl′N for all l′ ∈ N,
imply

‖x0 − x∗‖2 ≥
(

τ(1− 2η) − 2(1 + η)
)

l αmin δmin (τδmin) , l ∈ N . (29)

The right hand side of (29) tends to infinity, which gives a contradiction.
Consequently, {l ∈ N : xlN+i = xlN , 0 ≤ i ≤ N − 1} 6= ∅ and the infimum
in (8) takes a finite value.

To prove (27), assume to the contrary, that ‖Fi(x
δ
kδ∗
) − yδi ‖ ≥ τδi for

some i ∈ {0, . . . , N − 1}. From (6) and (8) it follows that, ωkδ∗
= 1 and

xδ
kδ∗+i

= xδ
kδ∗+i+1

respectively. Thus, Proposition 2.4 and Lemma 2.1 imply

0 ≤ (2η − 1)‖Fi(x
δ
kδ∗
)− yδi ‖+ 2(1 + η)δi < δi

(

(2η − 1)τ + 2(1 + η)
)

.

This contradicts (14), concluding the proof of (27).

The last auxiliary result concerns the continuity of xδk at δ = 0. For
y, yδ ∈ Y N , δ > 0, and k ∈ N we define

∆k(δ, y, y
δ) := ωkF

′
[k](x

δ
k)

∗
(

F[k](x
δ
k)− yδ[k]

)

− F′
[k](xk)

∗
(

F[k](xk)− y[k]
)

.

Lemma 3.5. For all k ∈ N,

lim
δ→0

sup
{

‖∆k(δ, y, y
δ)‖ : yδ ∈ Y N , ‖yi − yδi ‖ ≤ δi

}

= 0 . (30)

Moreover, xδk+1 → xk+1, as δ → 0.

Proof. We prove Lemma 3.5 by induction. The case k = 0 is similar to the
general case and is omitted.

Now, assume k > 0 and that (30) holds for all k′ < k. First we note that
(30) and the continuity of Φrel obviously imply xδk+1 → xk+1, as δ → 0. For
the proof of (30) we consider two cases. In the first case, ωk = 1, we have

‖∆k(δ, y, y
δ)‖ = ‖F′

[k](x
δ
k)

∗
(

F[k](x
δ
k)− yδ[k]

)

− F′
[k](xk)

∗
(

F[k](xk)− y[k]
)

‖ .

In the second case, ωk = 0, we have ‖F[k](x
δ
k)−yδ[k]‖ ≤ τδk and consequently

‖∆k(δ, y, y
δ)‖ ≤ ‖F′

[k](xk)
∗(F[k](xk)− y[k])‖

≤ ‖F′
[k](x

δ
k)‖
(

‖F[k](xk)− F[k](x
δ
k)‖+ ‖F[k](x

δ
k)− yδk‖+ ‖yδk − y[k]‖

)

≤ ‖F′
[k](x

δ
k)‖
(

‖F[k](xk)− F[k](x
δ
k)‖+ (τ + 1) δ[k]

)

.

Now (30) follows from (10), the continuity of F[k] and F ′
[k], and the induction

hypothesis (which implies xδk → xk).
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Theorem 3.6 (Convergence for Noisy Data). Assume (δj0, . . . , δ
j
N−1) is a

sequence in (0,∞)N with limj→∞ δji = 0. Let (yj0, . . . , y
j
N−1) be a sequence

of noisy data satisfying

‖yji − yi‖ ≤ δji , i = 0, . . . , N − 1 , j ∈ N ,

and let kj := k∗(δ
j , yj) denote the corresponding stopping index defined in

(8). Then xδ
j

kj converges to a solution of (2), as j → ∞. Moreover, if (20)

holds, then xδ
j

kj → x†.

Proof. Let x∗ denote the limit of the iterates xk which is a solution of (2),
cf. Theorem 3.3. From Lemma 3.5 and the continuity of Fi we know that,
for any fixed k ∈ N,

xδ
j

k → xk , Fi(x
δj

k ) → Fi(xk) , as j → ∞ . (31)

To show that xδ
j

kj → x∗, we first assume that kj has a finite accumulation
point k∗. Without loss of generality we may assume that kj = k∗ for all
j ∈ N. From Proposition 3.4 we know that ‖yδji − Fi(x

δj

k∗
)‖ < τδji and, by

taking the limit j → ∞, that yi = Fi(xk∗). Consequently xk∗ = x∗ and
xjk∗ → x∗ as j → ∞.

It remains to consider the case where kj → ∞ as j → ∞. To that end
let ε > 0. Without loss of generality we assume that kj is monotonically
increasing. According to Theorem 3.3 we can choose n ∈ N such that
‖xkn − x∗‖ < ε/2. Equation (31) implies that there exists j0 > n such
that ‖xδjkn − xkn‖ < ε/2 for all j ≥ j0. This and Proposition 2.4 imply

‖xδjkj − x∗‖ ≤ ‖xδjkn − x∗‖
≤ ‖xδjkn − xkn‖+ ‖xkn − x∗‖ <

ε

2
+

ε

2
= ε , for j ≥ j0 .

Consequently, xδ
j

kj → x∗.

If (20) holds true, then by Theorem 3.3, x∗ = x†. Therefore xδ
j

kj → x†,
which concludes the proof.

Remark 3.7. In standard iterative regularization methods the number of
performed iterations plays the role of the regularization parameter [7, 16]. A
parameter choice rule corresponds to the choice of an appropriate stopping
index kδ∗ = k(δ, yδ).

For the loping Kaczmarz iterations analyzed in this article, the situa-
tion is quite different. If k is fixed, then the iterates xδk, do not depend
continuously on data yδi . However, for a fixed sequence (ωk) of loping pa-
rameters, the iterates xδk do depend continuously on yδi : Now, the loping
sequences (ωk) play the role of the regularization parameters and the partic-
ular sequence ωk = ωk(δ, y

δ), depending on δi and the noisy data yδi , is the
a-posteriori parameter choice rule.
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4 Limited View Problem in Photoacoustic Com-

puted Tomography

In this section we compare the numerical performance of loping Kaczmarz
methods applied to a system of linear equations related to a limited view
problem in photoacoustic computed tomography [8, 18, 28, 34].

Let X := L2(D) denote the Hilbert space of all square integrable func-
tions in the unit disc D ⊂ R

2, and let Y denote the Hilbert space of all
functions y : [0, 2] → R with ‖y‖2 :=

∫ 2
0 y(t)tdt < ∞. We consider the

system
Mi x = yi , i = 0, . . . , N − 1 , (32)

where Mi : X → Y ,

(Mi x)(t) :=
1√
π

∫

S1

x(ξi + tσ) dΩ(σ) , t ∈ [0, 2] , (33)

correspond to a scaled version of the circular mean Radon transform. Solv-
ing (32) is the crucial step in three-dimensional photoacoustic computed
tomography with integrating linear detectors [9, 28], where the centers of
integration, ξi, correspond to the positions of the linear detectors. We are
particularly interested in the incomplete data case (limited view problem),
where the centers ξi =

(

sin(πi/(N − 1)) cos(πi/(N − 1))
)

are uniformly dis-
tributed on the semicircle S1

+ := {ξ = (ξ1, ξ2) ∈ ∂D : ξ1 ≥ 0}. Micro-local
analysis predicts, that if the centers do not cover the whole circle, certain
details (the invisible boundaries) of x outside the detection region (convex
hull of S1

+) cannot be recovered [21, 27, 35].
The operators Mi are linear, bounded, and satisfy ‖Mi ‖ ≤ 1, [10].

For linear bounded operators, the tangential cone condition (11) is satisfied
with η = 0. Consequently, the analysis of Section 3 applies, and the l-SDK

method (4) - (7) provides a convergent regularization method for solving
(32). The adjoint of Mi, required in (5) is given by (M∗

i y)(ξ) = y(|ξi −
ξ|)/√π, [10].

In the following numerical examples, we consider the l-SDK method
with either the choice Φrel(s) = min(αmins, 2) or Φrel(s) = αmin (which
corresponds to the l-LK method). In both cases we use αmin = 0.4 or
αmin = 1, and assume N = 50 measurements. The phantom x†, shown
in the left picture in Figure 2, consists of a superposition of characteristic
functions and one Gaussian kernel. Data yi = Mi x

† were calculated via
numerical integration with the trapezoidal rule and 4% noise was added,
such that ‖yi − yδi ‖/‖yi‖ ≈ 0.04. The the regularized solutions xδ

kδ∗
with

αmin = 0.4 are depicted in Figure 3. For both, the l-SDK l-LK method,
all visible parts of the phantom x† are reconstructed reliable.

Figure 4 and Figure 5 show the number of actually performed iterations
and the reconstruction error eδk := ‖xδk − x†‖ respectively. For comparison
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Figure 2: The left picture shows the phantom x†, where the white dots
indicate the locations of the detectors. The corresponding data (yδi )i are
depicted on the right.

purposes, the error for the SDK and the LK iteration (without loping pa-
rameter) are also included. In all cases, the smaller relaxation parameter
αmin gives the smaller reconstruction errors. This behavior is typically for
the application of Kaczmarz type iterations to Radon transforms [5, 25];
therefore in praxis often relatively small relaxation parameters are chosen.
For αmin = 1, the loping strategy significantly reduces the reconstruction
error of the no-loping iterations. Also, for αmin = 0.4, the regularized so-
lution of the loping Kaczmarz methods (automatically stopped according
to (8)) have errors comparable to the optimal solution of their non-loping
counterparts when stopped after the cycle with minimal error (which is not
available in practice).

PSfrag replacements

l-LK

l-SDK

PSfrag replacements

l-LK

l-SDK

Figure 3: Numerical reconstructions xδ
kδ∗

with αmin = 0.4 of the phantom

depicted in Figure 2.
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Figure 4: The x-axis shows the number of cycles, while the number of
actually performed iterations within each cycle is shown at the y-axis.
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Figure 5: Evolution of the relative error ln ‖x† − xδk‖/‖x†‖.

To point out the effectiveness of the loping Kaczmarz methods for solv-
ing linear inconsistent systems we included the reconstruction error for the
CGNE iteration (conjugate gradient [14, 31] applied to normal equations).
If stooped appropriately the CGNE method is known to be a regularization
method [7, 12]. As can be seen in Figure 5 the reconstruction error for the
l-SDK and the l-LK methods is much smaller that that for the CGNE it-
eration. In Table 1 run times for reconstructing an image on a 120×120 grid

Cycles Runtime (sec) Error (%)

L-SDK 5 21.9 18.2
L-LK 6 21.4 18.5
SDK 4 24.5 18.2
LK 5 16.9 18.1
CGNE 5 38.2 21.6

Table 1: Comparison of the performance of different iterative methods. The
non-loping iterations are stopped after the cycle with minimal error.
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are compared (with non-optimized Matlab implementation on iMac with 2
GHz Intel Core Duo processor).

5 An Inverse Doping Problem

In this section we present another comparison of the numerical performance
of the l-SDK, l-LK and LK methods. This time we consider an application
related to inverse doping problems for semiconductors [2, 10, 20, 3] For
details on the mathematical modeling of this inverse problem we refer the
reader to [10, Section 3].

In what follows we describe the abstract formulation in Hilbert spaces
of the problem (the so called inverse doping problem in the linearized unipo-
lar model for current flow measurements). Let Ω := (0, 1) × (0, 1) ⊂ R

2

be the domain representing the semiconductor device (a diode). The two
semiconductor contacts are represented by the boundary parts:

Γ0 := {(s, 0) : s ∈ (0, 1)} , Γ1 := {(s, 1) : s ∈ (0, 1)} ,

(we denote ∂ΩD := Γ0∪Γ1) while the insulated surfaces of the semiconductor
are represented by ∂ΩN := {(0, t) : t ∈ (0, 1)} ∪ {(1, t) : t ∈ (0, 1)}.
This specific inverse doping problem can be reduced to the identification of
the positive parameter function x (the doping profile C is related to x by
C = x− λ2∆(lnx)) in the model

µn∇ · (x(ξ)∇u) = 0 , in Ω (34)

u = U(ξ) , on ∂ΩD (35)

∇u · ν = 0 , on ∂ΩN (36)

from measurements of the Voltage–Current map (the forward operator)

Σx : H3/2(∂ΩD) → R ,

U 7→ µn

∫

Γ1

eVbi(ξ)uν(ξ) dΓ

which maps an applied potential U at ∂ΩD to the corresponding total current
flow Σx(U) through the contact Γ1. Here µn, λ are positive constants and
Vbi is a known logarithmic function defined on ∂ΩD.

Due to the nature of the practical experiments that can be performed
on a factory environment, some restrictions on the data have to be taken
into account:

1. The voltage profiles U ∈ H3/2(∂ΩD) must satisfy U(ξ) = 0 at the
contact Γ1.
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Figure 6: In the top left picture, the doping profile to be identified. In the top
right picture, a typical voltage profile Ui and the corresponding solution u of (34)
- (36). The initial guess used for the l-SDK, l-LK and LK iterative methods is
shown in the bottom picture. The boundary parts Γ0 and Γ1 correspond to the top
right and to the lower left edge respectively (the origin is the right corner).

2. The parameter x has to be determined from a finite number of mea-
surements, i.e. from the data

yδi := Σx(Ui) ∈ Y := R , i = 0, . . . , N − 1 , (37)

where the Ui ∈ H3/2(∂ΩD) are prescribed voltage profiles satisfying
Item 1.

Therefore we can model the inverse doping problem with a system of oper-
ator equations of the form (2), namely

Fi(x) = yδi , i = 0, . . . , N − 1 ,

where x ∈ L2(Ω) =: X is the unknown parameter, yδi ∈ R =: Y denote the
measured data, Fi : X → Y defined by Fi(x) := Σx(Ui) are the parameter
to output maps, with domains of definition

Di := {x ∈ L∞(Ω) : 0 < xmin ≤ x ≤ xmax, a.e.} .

It is worth mentioning that, although the operators Fi are Fréchet differen-
tiable, they do not satisfy the tangential cone condition (11). Therefore, the
convergence results derived in Section 3 cannot be applied.
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Figure 7: Comparison between the l-SDK, l-LK and LK methods. The top two
pictures show the iterative errors obtained by the l-SDK iteration after 10 and 81
cycles. The two central pictures show the iterative errors obtained by the l-LK

iteration after 80 and 121 cycles. The two bottom pictures show the iterative errors
obtained by the LK after 120 and 380 cycles.

In the following numerical examples we assume that N = 11 Dirichlet–
Neumann pairs (Ui,Fi(x

′)) of measurement data are available. The fixed
inputs Ui, are chosen to be piecewise constant functions supported in Γ0,

Ui(s) :=

{

1 |s− si| ≤ h
0 else

,

where the points si are uniformly distributed on Γ0 and h = 1/32. The
doping profile to be reconstructed is shown in Figure 6 (top left picture).
The top right picture of Figure 6 shows a typical voltage profile Uj (applied
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at Γ0) as well as the corresponding solution u of (34) - (36). In these pictures,
as well as in the forthcoming ones, Γ1 appears on the lower left edge and Γ0

on the top right edge (the origin corresponds to the upper right corner).
In Figure 7 we show the evolution of the iteration error for the l-SDK,

l-LK and LK methods. The same initial guess was used for the three
methods (see Figure 6). In our computations we chose τ = 2.5 in (14). The
stopping rule for the l-SDK method is satisfied after 81 cycles. For the
l-LK method, the same stopping criteria is reached only after 121 cycles.
In order to obtain the same accuracy with the LK method, 380 cycles are
required. In the top pictures of Figure 7 one can see the iteration error for
the l-SDK method after 10 and 81 cycles. For comparison purposes, the
iteration error for the l-LK method is shown after 80 and 121 cycles (see
the central pictures of Figure 7). The bottom pictures of Figure 7 show the
iteration error for the LK method after 120 and 380 cycles. The number of
actually computed iterative steps within each cycle of the l-SDK and l-LK

methods is shown in Figure 8.
As one can see in Figure 8, no more than 2 steepest descent steps per

cycle are computed after the 14-th cycle of the l-SDKmethod. Analogously,
no more than 2 Landweber steps per cycle are computed after the 37-th cycle
of the l-LK method. In total, for the computation of the LK-approximation
in Figure 7 (380 cycles), 4180 Landweber steps are needed, while the l-

LK-approximation (121 cycles) requires the computation of 258 Landweber
steps and the l-SDK-approximation (81 cycles) requires the computation
of 184 steepest descent steps. The l-LK method requires almost 50% more
cycles than the l-SDK method in order to reach the stopping criteria (8).
Moreover, the LK method requires almost three times more cycles thanPSfrag replacements

Computed iterative steps within each cycle

20 40 8060 100 120

1

3

5

9

7

11

Figure 8: Comparison between the performance of l-SDK and l-LK methods.
The solid (blue) line shows the actually performed number of steps within each
cycle of the l-SDK method, while the dashed (red) line gives the corresponding
information with respect to the l-LK method.
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the l-LK method in order to achieve the same accuracy (see [10] for other
comparisons between the LK and l-LK methods).

The efficiency of the l-SDK method becomes even more evident when
we compare the total number of actually performed iterative steps. Each
cycle of the LK method requires the computation of 11 steps, while in the
l-SDK and l-LK methods the number of actually performed steps per cycle
is very small after a few number of cycles.

6 Conclusions

In this paper we propose a new iterative method for inverse problems of the
form (2), namely the l-SDK method. As a by-product we also formulated
the SDK iteration, which is the steepest descent counterpart of the LK

method [17]. In the l-SDK iteration we omit an update of the SDK iteration
(within one cycle) if corresponding i-th residual is below some threshold.
Consequently, the l-SDKmethod is not stopped until all residuals are below
the specified threshold. We provided a complete convergence analysis for the
l-SDK iteration, proving that it is a convergent regularization method in
the sense of [7].

The abstract theory was applied to thermoacoustic computed tomogra-
phy and an inverse problem for semiconductors. In both applications the
l-SDKmethod turned out to be an efficient iterative regularization method.
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