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Abstract

In this paper we present an improved algorithm to computenih@nal null-space basis of polynomial
matrices, a problem which has many applications in contndl systems theory. This algorithm takes
advantage of the block Toeplitz structure of the Sylvestatrixassociated with the polynomial matrix.
The analysis of algorithmic complexity and numerical digbshows that the algorithm is reliable and
can be considered as an efficient alternative to the welvknpencil (state-space) algorithms found in
the literature.
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1 Introduction

1.1 Theproblem and itsapplications

In this paper we consider the problem of finding a polynoméadib for thenull-spaceof an arbitrarynx n

polynomial matrix
A(S) = Ag+ A1s+ ApS + - -+ AgsC. (1)

of degread and rankp < min(m,n).
The right null-space oA(s) is the set of non-zero rational vectzs) such that

A(s)z(s) =0 2)

for all s. The right null-space is clearly a sub space over the fiel@gtdmal functions. A basis of the right
null-space ofA(s) is then formed by any set af— p linearly independent vectors (in the field of rational
functions) satisfying (2). Let us denote Bys) a full-rank matrix having these vectors as columns, so that
A(s)Z(s) = 0. BasisZ(s) is in general a rational matrix (a matrix whose entries atimal functions).
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Notice that any rational basi(s) could be transformed into a strictly polynomial basis via thultipli-
cation of Z(s) by a common multiple of all its denominators. In this paperpresent an algorithm to
compute such a polynomial basis, moreover, our algorittsm @hsures minimality of this basis. L&tfor
i=12,...,n—p be the degree of each vector in a polynomial basis. If the stiall the degrees; is
minimal over the choice of all polynomial basis, then we haw@nimal basisn the sense of Forney [1].

Analogously, a basis of the left null-spaceAff) is formed by any set afh— p linearly independent
non-zero vectors satisfying' (s)z" (s) = 0. Because of this duality, in the remainder of the paper we only
consider the right null-space, that we simply call the rspiace ofA(S).

Computing the null-space basis of a polynomial matrix hagise applications in different areas of
applied mathematics, in particular control and systemartheHere we mention only a few examples, for
more details see for instance [1]. As a first example, the-pete structure of a linear systémepresented
by the state space matricés, B,C,D) can be recovered from the eigenstructure of some polynamaal
trices [2]. This structural information is important in flems such as decoupling [3]. In particular, the
degrees of the vectors in a minimal basis of the null-spatlesopencil

Pe=| %" B .

which are defined as the Kronecker invariant indices [4]resond to invariant lists defined in [5]. These
invariants are key information when solving problems afistural modification for linear systems [6].

Computing null-space basis is also important when solviegoroblem of column reduction of a poly-
nomial matrix [7]. Column reduction is the initial step inveeal elaborated control algorithms. Column
reducedness of polynomial matrices is a property ofteniredin computer-aided control system design.

With the polynomial equation approach of control theoryraduced by Kucera [8], the solution of
several control problems has been reformulated in term®lyhpmial matrix equations or Diophantine
equations [9]. Such formulations are also relevant in theab®ral approach of J. C. Willems and co-
workers [10]. Consider, for instance, the typical polynahmatrix equatiorA(s)X(s) = B(s). By analogy
with the constant case, the null-spacdA(s) B(s)] contains key information about the existence and the
uniqueness of solutioX(s). Many other problems of the polynomial and behavioral apphes to systems
control boil down to computing the null-space basis of aahl& polynomial matrix. Consider for example
a linear multivariable system represented by a left coprimaix fraction descriptiof (s) = Dy *(S)NL(s).

It can be shown [2, 11] that a right coprime factorizatib(s) = Nr(s)Dg*(s) can be obtained via the
computation of the null-space

us) ~N(s] | 33 | =0

In fault diagnostics the residual generator problem carrdrestormed into the problem of finding the
null-space basis of a polynomial matrix [12]. The problerfoisnulated as follows: consider the perturbed
systemy(s) = G(s)u(s) + H(s)d(s) + L(s) f(s) whered(s) is the Laplace transform of the unknown distur-
bances and (s) is the Laplace transform of the monitored faults. It is shdtett the residual generator

is given byQ(s) = p~1(s)Q(s), wherep(s) is a polynomial of suitable degree afs) generates the left

null-space of matrix
M(s) = { Gl(s) H(()s) ]

In [13] an algorithm ford-spectral factorization of a polynomial matrix is presehté/hen the analyzed
polynomial matrix is singular, it is necessary to extractinimal basis of its null-space as an intermediate
step of the factorization algorithm. Thespectral factorization appears in the solution of robHstand
He. optimization control problems [14].

1The set of all the poles and zeros with their multiplicities.



1.2 Brief review of existing algorithms

Computational algorithms for the eigenstructure of polyied matrices appear early in the 1970s. Most of
the algorithms take as a general approacHittearizationof the analyzed polynomial matrix. In [4] it is
shown that the structural indices of a pencil, i.e. the mlittities of the finite and infinite zeros, and the
degrees of the vectors in a minimal null-space basis, artam@d in its Kronecker canonical form, and
reliable algorithms to compute this canonical form are tgyed. In [15] it is proved that the structural
indices of an arbitrary polynomial matrix can be recoveredfthe Kronecker canonical form of a related
pencil, a companion matrix associated(). So, reliable algorithms to obtain the eigenstructurA@)
were presented. Seminal works [4, 15] are currently theshafsimany algorithms for polynomial matrix
analysis. However, a drawback of this approach called iridhewing the pencil approachis that it only
returns the structural indices. Moreover, in several @afitbns the explicit computation of the associated
polynomial eigenvectors is also necessary.

Pencil algorithms that also compute the vectors in a polyiabnull-space basis oA(s) are based on
the results in [11]. First the associated pencil is tramafat into the generalized Schur form

sB,—C, *
U(sB—C)V = 0 B _C. 3)
by the methods explained in [4]. Hes&, — C; is in upper staircase form, containing only the infinite and
null-space structural indices 8{s). Then, to obtain also the vectors in a minimal basis, a postgssing
of sB, — C; is needed: a minimal basi(s) of sB, — C, is computed with the recursive process presented
in Section 4 of [11], then, it is shown that tmebottom rows ofV[Z] (s) 0]T form the searched basis.
Unfortunately the process presented in [11] is usually astaponally expensive and its numerical stability
is not guaranteed.

Another pencil algorithm was presented in [16]. This altjoriis based on descriptor system techniques
and computes rational null-space basis. First, a minimstrigtor realization ofA(s), a rational matrix,
in general, is obtained. Then, using the methods in [4], treesponding pencil is reduced to a staircase
form, and finally some rows are picked up to form the searclasisb Reliable algorithms to compute the
descriptor realization are presented in [17]. Nevertlsles study on the backward error in the coefficients
of A(s) is presented.

On the other hand, the classical numerical methods to mkaépolynomial matrices are based on the
use of elementary operations over the ring of polynomialse poor performance of these basic methods
was quickly identified. The major criticism concerns nuroafistability, lost because of pivoting w.r.t.
power monomials of the indeterminatg18]. However, we can also find in the literature some regabl
polynomial methods which do not use the linearization ofdhalyzed matrix, see [19, 20] for instance.
These methods process directly coefficieghtef A(s) and avoid elementary operations over polynomials.

In [21], an algorithm to obtain the structural indicesA(fs) at any given values = a is presented.
This algorithm is based on the rank computation of diffefegplitz matrices obtained from the Laurent
expansion ofA(s) at a. Similarly, in [22] it is presented an algorithm to obtairetfinite and infinite
structural indices of rational matrices, also based on camiputation of successive Toeplitz matrices.

More recently, another algorithm was presented in [23]. Basic idea of this algorithm is also the
computation of the rank and null-space of some associatatk Hloeplitz matrices. The singular value
decomposition (SVD) is used as the rank revealing methodv, Nalike with the pencil algorithms, one
obtains the structural indices and the vectors in the mihbmaais with the same computational method.
Moreover, the algorithm in [23] does not perform elemenfaolynomial operations, and the use of standard
methods like the SVD improves numerical properties withpees to the classical polynomial methods. A
similar work is presented in [24] using matrix resultantse Mfmark that both papers [23] and [24] appeared
after submission of our conference papers [25, 26], on wthehpresent paper is based. Moreover, as
shown in the remainder of this paper, our algorithm perfoiaster than the algorithms in [23, 24] without
jeopardizing accuracy and numerical stability.



1.3 Contribution

In this paper we contribute with an improved algorithm tladdets advantage of the Toeplitz structure of the
analysed matrices at each step, and uses the LQ factoriz#tithe rank revealing method. Our algorithm
allows to determine in an unequivocal way the vectors whaimfthe minimal basis directly from each
computed orthogonal matrix. This avoids the possibilitychbosing two linearly dependent vectors to
form the basis, but in a simpler and more direct way than thinateproposed in the 3rd step of Algorithm
lin[23].

Moreover, in this paper we present a full analysis in two aspenumerical stability and algorithmic
complexity. We show how the backward error over the coeffiisi@f the analysed polynomial matrix is
bounded, and we give some upper bounds. We also determipé&eséxpressions of the complexity order
of our algorithm. A detailed complexity and stability ansilyis not carried out for the algorithms proposed
in [23] and [24].

2 Prdiminaries

The following notations are used in this paper. Res the machine precision in the floating point arith-
metic systemO(¢) is a constant depending enof the same order of magnituded||2 denotes the 2-norm
or spectral norm of matriA, it is given by||Al2 = omax(A), the greatest singular value Af27]. AT is the
transpose of, andl, denotes the identity matrix of dimensionWe also use some Matlab-like notations,
i.e. A(p:q,:) extracts rows to q from matrix A. For exampleA(1 : 3,1 : 4) represents the sub-matrix
containing the first 3 rows and the first 4 columnsfofandA(:,[1 3 6 9]) is a matrix containing the first,
3rd, 6th and 9th columns &.

In this section we present some definitions and results teaise in the remainder of the paper. We
start with the infinite and finite zero structuresAdk). Together with the null-space structure, they form the
eigenstructuref A(s). Finite and infinite structures are usually defined via thé®end Smith MacMillan
at infinity canonical forms, see for instance [2]. Howeveg, give here an equivalent and more algebraic
definition which will be useful later. A finite zero of a polymial matrix A(s) with rankp is a complex
numbera such that ranl(a) < p. So, there exists a non-zero complex veatoapart from those form-
ing the basis of the null-space 8{s), satisfyingA(a)v = 0. Vectorv is called characteristic vector or
eigenvector associated to the finite zaro

From Theorem A.1 in [28], ifx is a finite zero ofA(s) with algebraic multiplicitym, and geometric
multiplicity my, then there exists a series of integlers 0 fori =1,2,... ,mg such thatng =ky + ko +--- +
km,, and a series of characteristic vectafisvi, . . . , Vi, associated tar such that

P_~o Vil
. . . -0 (4)

A1 - A Vik,
With va1,V21,..., Vmy1 linearly independent and where

=90 | dd

Integerk; is the length of théth chain of eigenvectors associatedito

The infinite structure or structure at infinity 8{s) is equivalent to the finite structure at= 0 of the

dual matrixA(s) = Ag + Ag_15+--- +As? [2]. So, if a = 0 has algebraic multiplicityn, and geometric
multiplicity my in the dual matrixA(s), then there exists a series of integlrs- 0 fori =1,2,...,mg such



thatma = ky + ko + -+ + Eﬁg and a series of eigenvectors at infinity, viz, . . ., Vi such that
Aq Vi
: c | =TV =0 (5)

Ad—k|'+l e Ad Via

With V11,21, .., Vi1 linearly independent. Integkris the length of théth chain of eigenvectors associated
to the infinity. The orders of the zeros or poles at infinitytt@sy appear in the Smith-McMillan form at
infinity of A(s), depend on integeks, see [21]. For our purposes in this paper we simply consiagA(s)
hasma zeros at infinity. The following result is instrumental fbietanalysis of our algorithms.

Lemmal Let n; be the number of finite zeros (including multiplicities) opa@ynomial matrix As) of
degree d and rank, ma the number of zeros at infinity; dnd d the sum of the degrees of all the vectors
in a minimal basis of the left and right null-spaces respeai. Then,

pd =n¢ +ma+d; +d (6)

Proof: The proofis easily derived from section 3.6 in [29] usingdiedinition of zeros at infinity given
above. See also [30]. (]

Notice that from (4) and (5), the problem of finding the zeraature ofA(s) is reduced to the problem
of finding the null-space of some constant block Toeplitzrines. We follow the same idea to compute the
null-space basis 0&(s). TakingA(s) in the form (1) andx(s) = 2+ z1S+ 2 + - - + 25, it follows that,
by identifying like powers of, the polynomial equation (2) is equivalent to the constenaar system of
equations

Aq
Do %
’ ) Z5-1
Ag Ag : =T54125=0. (7)
. : .

Ao
Matrix Ts, 1 is called the Sylvester matrix of degrée- 1 associated té\(s). Sylvester matrices arise in
several areas [2, 23, 31, 32], and the idea is certainly not irethis case, the approach allows to obtain

z(s) by computing the constant null-spaceTgf ;. Matrix Ts, 1 is in block Toeplitz form, so we call our
algorithmsblock Toeplitz algorithms

To compute the null-space @§.,, several numerically reliable methods can be used. Heszdan
the results in [26, 33] where we investigated the reliap#itd efficiency of different numerical methods
like the QR factorization, the Column Echelon form and alsms displacement structure methods based
on the generalized Schur algorithm [34], we propose the L&ofeation as the rank revealing method.
The LQ factorization is reviewed in the next subsection. prablem remaining when solving (7) is the
estimation of the degre® To solve this problem we process iteratively block ToepiitatricesT, of
increasing dimensions as we explain in Section 3.

2.1 LQ factorization

The LQ factorization of an x n matrix is given byM = LQ', where matrix_ is in lower quasi-triangular
form and matrixQ is orthogonal, i.eQQ" = Q"Q = I,,. Form> n, the number of floating point elementary
operations (flops) required by the LQ factorizatioO&mr? — §n3) when matrixQ is not updated. If we
requireQ, we have to perforn®(4mén — 4mr? + §n3) more operations [35].

For the LQ factorization to reveal the rapkof M, a row pivoting is necessary. In practice, we apply
at stepj a Householder transformation to zero the j rightmost entries of a previously chosen row of
Li—1=MQ1Q>...Qj_1. To choose the row at stgp several strategies can be followed. For instance, we



can computéiL;_1(i, j+1 :n)||2 for all rowsi not yet analyzed, and choose the row with the largest norm.
Notice that row pivoting yields the position of the lineaimdependent rows dfl. So, a row permutation
matrix P can be applied to put in the form

(8)

PL:{L“ 0 ]

Loz Loz
wherel1; is a triangulaip x p matrix with non-zero elements along the diagonal.

The LQ factorization is backward stable. It can be shown B8] that the computed matricésandQ
satisfy(M + A)Q = L with ||Al]2 < O(¢)||M||2. Moreover, if we partitiorl as in (8), then (to first order),

22— Laall2 _ [|A]2
Mllz M2

(1+|ILifL3a)l2) 9)

where|| LI11L£1||2, the conditioning of the LQ factorization for rank-deficiematrices, is usually small [37].

So, from equation (9) we can expect to recover the @k M by applying the LQ factorization and
counting the number of columns b$ such that|L22|» < p||M||2 wherep is a tolerance depending @n
If rankM = p, then|[MQ(:,p+1 : n)|2 is suitably small. So, matri®(:,p+ 1 : n) is a computed basis of
the null-space of1. The problem with the LQ factorization as a rank revealingtrod is that|L2,||» is not
always sufficiently small. Fortunately this problem occomnty with some very carefully chosen matrices,
see Example 5.5.1in [35].

Row permutatiorP in (8) is instrumental to proving stability and accuracy bétLQ factorization
as a rank revealing method. It is also important when solimgar systems of equations since it puts
the system in a triangular (or echelon) form allowing fondard substitution. However, this permutation
has no practical effect in revealing the rank. If one fipdiinearly independent rows iM, then matrix
Q(:;,p+1:n)is a basis of its null-space regardless on the order of itsrdioreover, row permutation
would destroy the Toeplitz structure when used to solve $6).when we use the LQ factorization in this
paper, we apply the pivoting strategy only to choose thealiiyandependent rows bute do not perform
row permutationsThe next example clarifies this idea.

Examplel Let
1 01 o0 1
-1 10 2 2
2 -2 0 -4 -4
o 11 2 3

The norm of row 3 is the largest, so we apply a first Househdtdesformation to zero all its elements but
the first oné

M=

-032 -0.61 100 -1.22 -0.22
—-3.16 000 000 000 000

6.32 —-0.00 000 -0.00 -0.00
-348 -061 100 -122 -0.22

Row 3 of M is then our first linearly independent row. We obsdimat row 2 of M is a linear combination
of row 3.

L1=MQ:=

Norms of I3(1,2 : 5) and Ly (4,2 : 5) are equal so we can apply the next Householder transformatio
on row 1 for instance

032 170 000 000 QOO
316 -000 000 000 QOO

L=MQ:Q=1 632 000 -000 000 —000|=M
348 170 000 —000 QOO

Row 1 of M is then our second linearly independent row.

2To save space we display only 2 digits behind the decimaltpoin



This means that row 4 of M is a linear combination of rows 1 an®8, matrix M has rank 2 and a
basis of its null-space is given by((B : 5). No row permutations were carried out!

The LQ factorization oM could be performed using the standard numerical linearatgsoftware
libraries as the dual of the QR factorization with columnapirlg, namely, working on the transposeNdf
i.e. MTP = QRwhereP is a column permutation matrix (for more details see [35]pafly PTM = LQT
and, if no row permutation is requirebl, = PLQ" = LQT.

3 Mainresaults

Knowing the degree§;, solving block Toeplitz equation (7) yields the expectetl-epace basis vectors.
Now we analyze how to obtain these degrees. Let

Ad
-l A
Ao
be a block Toeplitz matrix witl block columns associated to the polynomial ma&{s).
Proposition 1 The following structural information of (&) is obtained by analyzing iteratively block

Toeplitz matrices iTof increasing dimensions. Leg &= n, r1 = rankT; and r, = rankT, — rankT;_; for
i>1. Then

(a) Indices r satisfy § > ri;1.
(b) % =ri—ri;1is the number of vectors of degree i in a minimal polynomiai®a

(c) When r=p for some i=w, we have determined all the degrees of the vectors in a raipialynomial
basis.

(d) fry=pthenf=pfori>w.

(e) Index w is finite.

Proof: First notice that matrid, has the form

0
*
To= | | T nll= T T

0 0

and letT;” denotes the rightmost block column®f. Suppose that rank = r; and that the columk of Ty

is linearly dependent, so columksindk+ nin T are also linearly dependent. On the other hand, because
of the Toeplitz structure, if columpin Ty is linearly independent, it may happen that colujman in Tp,
namely columnj in TS, is linearly dependent. In other words ralk< rankTy +rq, i.e.r2 <ry.

Similarly,

T T2 || T3




whereT; denotes the rightmost block column®f. So, if columnj in T, is linearly independent, it may
happen that columnin T5" is linearly dependent, namely, raftk< rankT, +r», i.e.r3 <r».

In general, matrixl; can be written as

0
Tic1 T || T
L ’
0 0

S0, using the same reasoning as above, it followsrthatr;_; which proves (a).

From (7) it follows that, ifT; has full rank, therA(s) has no vectors of degree 0 in the minimal basis
of its null-space. On the other hand, if colurkin T; is linearly dependent, then colunknin A(s) is a
combination of degree 0 of the other columns. Namely, we lagelumnz;(s) = z;0s° in Z(s). As we
explain above, columk+nin Ty, i.e. columnk in T;, is also linearly dependent on the other columns
in ;. In that way, a linear combination for colunki-n in T, could be[0;z0] which corresponds to a
vectorz(s) = z1(s) which cannot be in the basis of the null-space. However iateift columnj, linearly
independent iy, is dependentiff,, then a linear combination of colunjr-nin T, has the fornjz1; z>q]
which corresponds to a valid vectni(s) = zyp+ z»1s for the minimal basiZ(s). In conclusion, the number
xp of vectors of degree 1 in a minimal basis is equal to the nurablgrearly dependent columns added by
TS, ie.xy=n—r2—(n—ry) =ry—ro.

Similarly, columnj +2nin Tz is a linear combination of the forfi®; z21; zx0], namely, it corresponds to
an invalid vector for the minimal basi&s). On the contrary, if column is linearly independent i, but
dependent iy, then we can find a new vector in the forg(s) = zso + 2315+ z325° for the minimal basis.
So, the numbex; of vectors of degree 2 in a minimal basis is equatte=n—rz— (n—rz) =ra—rz. In
general, the numbeg of vectors of degrekin a minimal basis is equal to the number of linearly depehden
columns added by, ;, i.e. X = ri —ri;1 which proves (b).

Now, suppose the last vectors in the minimal bZ$s have degree/— 1, so the sumg+x3 + - - - +Xw—1
is equal tan— p, the nullity of A(s). Now using (b) to substitutg in the last equation, it follows tha, = p
which proves (c). Point (d) is easily derived from (b) and ¢¢)= 0 fori > w, sop—rj;1 =0.

Finally, from (6) we know thatl, = &1 + - - - + On_ is finite, so no vector in the minimal bas$s) can
have infinite degree. In other wordsg, = p for a finite indexw, which proves (e). Notice that < pd+ 1.
A tight upper bound fow is given byw < S ; degA;(s) — min; degA(s) + 1, with degAi(s) denoting the
degree of theth column ofA(s), see [19]. [

An algorithm to obtain a full-rank minimal degree polynoimizatrix Z(s) such thatA(s)Z(s) = 0 was
sketched in the above Proposition and its proof, see alsoréhel and its proof in [31]. Some remarks on
this algorithm are as follows:

Remark 1. In order to know when to stop the algorithm, it is necessadet@rmine the value qf, the
rank of the analyzed matrix. This could be done iterativglgybmputing also the infinite structure Afs).
From (5), the infinite structure &(s) is also contained in the null-space of some Toeplitz madritet

Ad
Adks1 - Ad
be a block Toeplitz matrix with block columns associated to the polynomial ma&qs).

Proposition 2 The following structural information of (&) is obtained by analyzing iteratively block
Toeplitz matriced; of increasing dimensions. Lej= 0, r1 = rankT; = rankAq andr; = rankT; — rankT;_;
fori > 1. Then

(a) Indicesr; satisfyr; <rj.1.



(b) Integer x=ri;1 — I is the number of chains containing i eigenvectors at infinity

(c) Whenrj = p for some i= w, then we have determined the lengths of all the chains ehe&gtors at
infinity.
(d) Ifry=pthenri=pfori>w.

(e) Index w is finite.

Proof: Similar to the one of Proposition 3.1, for more details se}.[3 L]

So, in the case we do not know the rankAgf), we can simply start witlp = min(m,n) and update
this value when finding vectors ifi(s). At the same time integers must be computed and, sinceis
increasing and; is decreasing, the algorithm should stop wihge=Tr,.

Example 2 Let
1€ 00
Asf=|0 1 s O
0 0 0O

Supposing that we do not know the rank ¢§)Awe can start with the guegs= min(m,n) = 3. First we
obtainr; = 1 and n = 3which means that there is one vector of degree 0(8).AMe havet = p butr; # p
which means that there are zeros at infinity and therefor¢ e rank of As) cannot be 3. After 3 more
steps we obtain valugs = 1,r3 =r4 = 2 and r = r3 = r4 = 3, which confirms the existence of zeros at
infinity in A(s). Finally, we obtainrs = r5 = 2 and the algorithm stops. In conclusion, matrigsphas rank

p =r5 =2, it has one vector of degree 0 and one vector of degree 4 in mmaitbasis of its null-space, and
alsorz —r, = 1 chain of eigenvectors at infinity of length 2, i.e. 2 zerosinity. Notice that equatio(6)

is satisfied.

Remark 2. Now note that Toeplitz matriX; is located in the uppermogn rows of T;. Therefore,
indicesr; can also be obtained when analysing matriGesy searching first for pivots in its uppermast
rows. This strategy could also help to improve the accurddhe computed results as explained in the
subsection 4.2.

Remark 3. The LQ factorization can be used as the rank revealing metlithadut sacrificing signifi-
cantly the accuracy [27, 35, 36], but performing less opanatthan the SVD. Next we also show how the
block structure of matriceg can be used to improve the algorithm by reducing even morauh#er of
operations. We point out that the rank and the nullityiof can be used to proce$s Moreover, we show
how we can determine the vectors in the minimal basis diréicim each computed orthogonal matéx

Let us consider a £ 4 polynomial matrixA(s) with degreed = 1. Suppose that after applying an LQ
factorization toT;, we obtaird
X 0 O
X 0 0
TiQi=| | <« o | =k
X x 0

X X O X

and indices; = 2,r; = 3. So there is a vectaj (s) = Q1(:,4) of degree 0 in the minimal basis. Now notice

that
0

X X|o X

0
0 0
x 0
< 0 =T,. (20)

X X X X
X X O X
X X oo
©COoOoo

3Notice that no row permutation is performed. We follow a fiivg strategy to chose the linear independent rows and wee firs
search for pivots in the uppermost 2 rows of each analyzedxm&br more details about pivoting and numerical stapibee sections
4.1and 4.2.



So, it follows that at step 2 we can apply the LQ factorizatioty to the sub-matrix

T/ =T4(3:6,[3567). (11)
Doing that, suppose we obtain
+ + 0 O
neyr |+ 0 0 0] _
LR=1 1 4 1 o7
+ 0 0 O
Then, ifQ; = [q;j], we can write
1o -
0 1
Ouu O g2 13 qua O
, 0O 1 O 0 0O O
_ , 12
@ o1 O 022 G2z Qa4 O (12)
g1 O 032 gs3 gsa O
Q41 O Q42 Qa3 Cua O
I 0 00 0 0 1]

so that

X X|X X
X X|O X

|3 o |- :
0

+ o+
+ oo
oo
[oNeNe)

++ 4+

0O 0 0 0O

We obtain indices, = 2,r, = 2 and then there is also a vector of degree 1 in the minimasbk&ireover
r2 =rz = 2, so the rank of matriA(s) is 2 and we stop. The columns of orthogonal mafixare given by

0 _{Ql(:,l) Qu(2) # Qu(4) # # # 0
71 0 0 # 0 # # # Q.4

Itis easy to see tha&i(s) = [z1(s) z2(S)], wherezo = Q2(1: 4,7)s+Q2(5: 8,7). Finally notice tha©(:,[4 §))
corresponds to the polynomial vectes(s) andz (s) which cannot be in the basis as we pointed out in the
proof of Proposition 3.1.

The blockedformulation explained above allows to reduce the numbermpefrations required at each
step. In fact, the number of rows of the analyzed matricesnays equal tan(d + 1), and the number
of columns is smaller thaim at each step. More about algorithmic complexity is presbmesection 4.3.
Next we describe the algorithm formally using a Matlab lilksepdo-code.

Algorithm 1 (Blocked LQ algorithm)

Input: An mx n polynomial matrix As) of degree d.

Output: The rankp of A(s), and a matrix 4s) = [z1(S) z(S) - - zo—p(S)] where the Zs) are vectors in a
minimal basis of the null-space of#), namely As)Z(s) = 0. As a sub-product, the algorithm returns the
structure at infinity of As).

1. Build matrix T and compute its LQ factorization @1 = L1 searching first for pivots in the upper-
most row block of . Determine § andry. If r; < nthenlet Z= Qi(:,r1+1:n). Ifry =r; then let
k=0and goto stepf.



i. Construct matrix I from Li_1 and Ly as exemplified in (10) and (11). Carry out the LQ factorizatio
T"Q = L;i searching first for pivots in the uppermost row block ¢f. TConstruct matrix Qas
exemplified in (12), update matrix

o Qifl 0 /
QI - |: 0 Ql :| Qi

and determinejrandr;. If x;_1 = ri_1 —rj > 0 then update matrix

7 { 0 ‘ QG (i—Dn+ri+1:(i—1n+riq) ]
7 )
Ifri=rjthenletk=i—1and go to step f.

f. The rank of As) is p = r¢4+1, and
Z(9=2(1:n:)K+2Z(n+1:2n:)F .4 Z((k—1)n+1:kn:)st+Z(kn+1: (k+1)n,:).

As a sub-product notice that(#) has x = ri11 — f; chains containing i eigenvectors at infinity, for
i=1,2,...,q—1where qis such thag = p. Moreover, these eigenvectors can also be obtained in a
similar way from the orthogonal matrices computed at eaep st

Example 3 Let
1 -2 s 28 -2+s%

A9=15 g 26 & st

At step 1 we compute the factorizatiofQf = L1 where

071 071 000 000 000
141 000 000 000 000
-141 141 000 000 000
000 000 000 000 000
0.00 000 089 039 -0.22
071 071 224 000 -0.00
-141 -141 -0.89 205 -0.00

| -0.00 000 000 098 175

L1 =

and
—0.00 000 000 049 087

0.00 -0.00 045 -0.78 044
Q1= 0.00 000 089 039 -0.22
071 -0.71 000 000 000
071 071 000 000 000

Son =5andr; = 2. At step 2 we construct the matrix

- L1(3:3,3:5) Ll]

000 000 000 Q71 Q71 000 Q00 QOO ]
000 000 000 141 000 Q00 000 QOO0
089 039 -022 -141 141 000 000 Q00
224 000 —000 000 000 000 000 Q00
~0.89 205 —000 000 000 089 039 —0.22
000 098 175 Q71 Q71 224 000 —0.00
000 000 000 -141 -141 -0.89 205 —0.00
000 000 000 —-000 000 000 098 175

“Notice that no row permutations are performed and that piené searched first in the uppermost two rows of the analysed
Toeplitz matrices.



Then we compute, Y’ = L, and we obtaifir, = 4 andr, = 2. Finally we update

Q= [ % (gl ]Q’z, where Q= { Z (glz, }
and Z= Qy(:,10).

At step 3 we construct
T/ — L2(3:83:7) | L1
3 = 0 :

Then we compute}TY; = Lz and we obtaimz = 2 and r; = 3. We update matrix

_ QZ 0 /
Q3‘{ 0 Ql] 2

where
l4 | 0 0 0
Q= 0| Q4(1:51:5 0 Qj(1:56:10
3 0 0 1 0
0| Q46:101:5 0 Q4(6:106:10

and we update

5 { 2 Qs(:,14) }

At step 4 we construct

1 [ La(3:83:8) | Ly
4 0
and we compute,TQ; = L4. We obtairrs = 2, and i = 2, then we update
_ Q3 0 /
Q4_|: 0 O 4
where _ -
g 0 0 0 0 0
0 7(1:31:3) 0 Q;(1:34:6) O n(1:3,7:17)
Y 0 1 0 0 0
“= 1 0| Qj4:61:3) 0 Qj4:64:6) 0 Qj4:67:11) |’
0 0 0 0 P 0
| 0| Qj(7:11,1:3) 0 Q(7:114:6) 0 Q(7:117:11) |

and we update

7 {2 Qa(:,18) }

Finally, we stop sincesq=r4 = 2. The rank of As) is p = 2 and a minimal basis is given by

Z(s) = Z(1:5:)8+2(6:10:)*+2Z(11:15:)s+2(16:20Q:)
—-0.71s 0.70s —0.13s+0.088°
0.00 —0.07¢% 0.32+0.08s— 0.60s%>— 0.04s®
= 071  —0.70 013+ 0.085%+0.08s3
0.00 007 060— 0.04s
0.00 000 —0.32—0.08s

Sincer; =rp =r3=r4=2=p, it follows that As) has no zeros at infinity. Moreover, since the sum of the
degrees of the vectors in the minimal bas{s)4s 6 = pd, we conclude that &) has no finite zeros either,
cf. equation (6).

5To save space we do not show computed matlicemdQ/’. Row pivoting is performed as required by Algorithm 1 and o r
permutation is applied.



4 Algorithmic analysis

Now we analyze the features of the blocked LQ algorithm deedrin the previous section. The analysis
is divided in three parts. First we prove the numerical $itgbthen we argue about the accuracy of the
computed results and the pivoting strategy, finally we fanuthe algorithmic complexity.

4.1 Numerical stability

We have seen in section 2.1 that the LQ factorizatiojaé backward stable. Showing the backward
stability of our blocked LQ algorithm is not difficult. Onelgrhas to consider the blocked process described
in the Remark 3 as a sequence of some particular Househoddefdrmations and then apply the proof of
Theorem 18.3in [27], as illustrated next.

Consider the computed LQ factorization
|:1 = (Tl + CDl)l:hl:lz . |:|p = (Tl + CD;L)Q;L

where||®1||2 < @1]|T1]|2. Hereg, = O(¢) is a small constant depending on the dimensiorig ahe machine
precisione, and the number of applied Householder reflections (818[2/j. Now, when computing the
LQ factorization ofT, using the blocked process described above, we have

. QloHlo][lo} A
Ly=(To4+ @ A - - =(To+ & ,
2= (Ta+®2) [ 0 O 0 Fpus 0 Hpiq (T2+®2)Q2
where||®;||2 < @||T2||2. Similarly, an upper bound fap, = O(g) can be computed as in §18.3 of [27].
Clearly, this bound for the backward error will be more pessiic, which can be expected since we have
performedy more Householder reflections and the dimension of the nesthias increased. We summarize
these results in the following lemma.

Lemma 2 Consider that polynomial matrix (&) has a vector of degre&in a basis of its null-space. The
application of the blocked LQ factorization to solve sys{@&is backward stable, name(fiz, 1 +4) Zs =

0, |All2 < @||Ts+1]l2, where Zg contains the computed coefficients of the vector in the spdke basis,
and @ = O(¢) is a small constant depending on the dimensionssof, the machine precisios, and the
number of applied Householder reflections.

This result shows tha:gg is the exact null-space of the slightly perturbed mafgix; +A. Nevertheless,
we require that vectoz(8), constructed fromzZs, is the exact polynomial vector in the null-space of the
slightly perturbed matriA(s) +A(s), whereA(s) = Ag +Ags+ - -+ Mg, and||A(9)||* < O(g)||A(s)||* for
some polynomial matrix norr- ||*. Ideally we want

lai]l2 < O(e)||Aill2, 1=0,1,...,d. (13)
The following result gives an upper bound for the er\¥s) when using the blocked LQ factorization to
solve (7), see also [39].

Theorem 1 Let A(s) be a polynomial matrix and suppose that it has a vectsy af degreed in a minimal
basis of its null-space. The computed ved&), obtained from(7) via the blocked LQ algorithm, is the
exact null-space vector of the slightly perturbed matris)A- A(s) where

A" = 1All2 < VI Tssallz = YIAGS)|%, (14)
Ag
A= | Ao N |,

JAY)



andy = O(¢) is a small constant depending en

Proof: From Lemma 2 we know thafs 1 + 1) Zg = 0 with I1A]l2 < @|| Ts. 1|2 Error matrixA has the
following (non block Toeplitz) general form:

&4
A= | AS A§
X Ag

wherex represents possibly non zero blocks. However, note thaiawepply row elementary operations
gathered in a left multiplieP such thaP(Ts,; +A) Zg = (Tor1+ A)Za = 0. Existence oP is equivalent to
having a matrixE with ||[E||2 < @|| Ts, 1|2, such thaP =1 + E and therP(Ts, 1 +A) = T 1 + A+ E(Tsp 1+
A) =Ts 1+ A, namely _

A+E(Ts 1 +4A)=A. (15)
For the error analysis to make sense, we requirefaatdA do not modify the rank ofs, ; (Since otherwise
the structure of the null-space would change and the prolleaid be ill posed), so matrik satisfying
(15) has infinite solutions. In consequence error mdlrig not unique, but we can always ensure that, to
first order,||A||2 < y|| Ts41]|2 Which is the expected result. (]

Theorem 1 and its proof seem to be incomplete whereas the @élpis unknown. Obtaining exact
expressions for the backward error is out of the scope ofpilyier, here we simply propose an expression
for y using the standard definition of relative backward erromg27], namely, we look for the smallest
value satisfying (14) in Theorem 1, i.e.

y = min{s \ (A(S) +A(s))2(s) =0,
IAS)[* = [[A]l2 < €] Tssall2 = €HA(S)||*}-

Taking the norm of the residua(s) = ro+ris+ - - - +r¢s< given byr(s) = A(s)2(s) = —A(s)2(s), we obtain
a lower bound fog, i.e. ||r(s)||* < |€||| Tsx1/l2]|2(9)||*, SO, the solution of (16) is

(16)

N LG
A Tswall2liz(s)ll* (17)

where|r(s)||* and||2(s)|* are, similarly, equal to the Euclidean norms of the vectara#fficients in the

Ik
monomial basis, i.el|2(s)[|* = || Z5||2, [IF(3)||* = IR |l2 whereR =
lo
Example4 Let
Als) — | ST 1.0034 2075 10034
(s)= 3 1 $°-0.4819278

Its null-space, computed with Algorithm 1, is given by

—0.6693113+ 3.563x 10 3%
2(s) = 0.3225598
0.6693113- 3.563x 1035

The residual is

() = A(g)a(s) = | 1998x 107 5+3563x 107
- = | 9.437x 101651 1.069% 107503

so the relative backward error is equal to

y=—Rl2_ 7598, 1016

[ T2ll2l| Z2l2



Sharper bounds than (14) and (17), such as the one given hycélrBbe expected from a component-
wise error analysis [40, 41], see also the second editio@@f [An analysis with geometrical arguments
such asin [42, 43] can also be considered as a future lineseéreh.

A similar analysis on stability can be done for the pencibaiihm to obtain the staircase form (3), see
[4] for some ideas. Nevertheless, the stability of the pssaxplained in [11] to compute the searched
null-space basis from (3) is not guaranteed. On the othed,hr@fiable algorithms to compute descriptor
realizations are found in [17], however, no expressionsafoupper bound of the backward ert@x(s)||
are presented there.

4.2 Accuracy and row pivoting

Theorem 1 shows that our Toeplitz algorithm has a boundekidzrrd error. Nevertheless, the accuracy of
the obtained results depends not only on the backwardisyadfithe algorithm but also on the conditioning
of the problem. It is well-known that the problem of detegtiwhether rani = r is ill-posed or co-
conditioned wherr is less than the row or column dimensionMf As an important implication, the
problem of finding the right null-space of a constant mallixcan be well-conditioned only 1 has full
row-rank. In that way, the problem of finding the null-spa€a polynomial matrix is also ill-posed and the
forward error is not bounded. First, notice that the numberthe degree of the computed vectors could be
different from those corresponding to the exact null-spa&econd, for a given degréethe coefficients

of the computed vector could be also different from the eraets because, in general, maifix ; has not
full row-rank.

Some strategies to render the problem well-posed can beufated along the lines in [43], see also
[44]. Given a first approximation of the structure at infimitythe null-space of\(s), we can think in some
kind of iterative refinement over some manifold where thiscure is invariant, and hence over which
the problem is well-posed. Another possible way to imprdwe ¢onditioning (posedness) of the matrix
can be a scaling along the lines in [45, 46]. The extensionldhase results to the polynomial matrix
eigenstructure problem is however out of the scope of thiepa

Since these results are still missing, at least we must barwtectly the information obtained at each
step by the algorithms. With infinite precision, the ranKiadomputed by only one SVD or LQ factorization
is equal to the rank computed using the blocked process afrdign 1. Nevertheless, with finite precision
this may not be true. In this case, it is important to rementie&trwhat we want to obtain ultimately is the
infinite and null-space structures of a polynomial matrid aot a series of ranks of some Toeplitz matrices
(rank determination is, after all, not only a problem in matomputation, but an exercise of interpretation
of the numerical results). In the same order of ideas, wighfttiowing academic example we show how
the blocked process of Algorithm 1 with its particular rowqting strategy could help to obtain results
which correspond to a valid eigenstructure of a given bacliyesl polynomial matrix.

Example5 Consider the full rank matrix

108 1082 1
A(s) = 20 16 0
0 1+20s 108

To compute the infinite structure of9), first we use Proposition 2 and a simple LQ factorization Ifeitt

the blocked process) as rank revealing method. Maffix A, has exact rank 1. The rank computed with
the LQ factorization is also 1 (a pivot is chosen in the firatypsor; = 1. Now, looking at matrixT,

we can see that the exact rank is 2. The rank obtained by ordy@nfactorization is also 2, s = 1.
Notice, that the LQ factorization in this case picks pivotsows 6 and 4. Row 1 is now dependent because
the pivot was chosen in row 6 which has a larger norm. At stewl8le the exact rank of3 is 5 (i.e.

r3 = rankA(s) = 3 which means that &) has 2 chains of 2 eigenvectors at infinity), the rank comphged

6n the classical sense of Hadamard which means that thésohftthe problem does not depend continuously on the dattaeor
parameters.



only one LQ factorization is only 4, g = 2. Now the pivot in row 4 is also lost, but there is no other
row to replace it. Finally, when computing the rankTafwe recoverr, = 3. This means that ) has one
computed chain of 2 eigenvectors and another one with 3 eggeors, namely 5 computed zeros at infinity,
which is far from the correct result.

A similar phenomena occur when obtaining also the null-sp&datrix T; has exact rank 3. The rank
computed by an LQ factorization is also 3 but no pivot is chdsethe first 3 rows of 1, sof; = 3 and
r1 = 0. Matrix T, has exact rank 6, but the rank computed by only one LQ faetioiz is 5. In this case, a
pivot is chosen in row six, §& = 2 andr, = 1. At step 3, while the exact rank of i 9, the computed rank
is only 7. Aditional pivots are chosen in rows 8 and 9fse- 2 andfz = 2. In summary, matrix £s) has
a computed ran = 2, one computed chain of 1 eigenvector at infinity, anothenwitfe 2 eigenvectors at
infinity (namelyma = 3), and 1 vector of degree 1 in a minimal basis of its null-spaenelyd, = 1).

The computed null-space vector is

3.236x 107184.0.4472136
2(s) = | —0.8944272-3.388x 10 2%
8.944x 107104 1.789x 1078

with residual

8.944x 107104 1.789x 10 85— 4.472x 10 8% — 3.388x 10353
r(s) = 6.471x 1017 —-3.388x 107245
—3.331x 107164+ 0.0000003— 6.777 x 10242

From (17), the relative backward error 575 x 10716, which is in the order of magnitude of the machine
precision, nevertheless this result does not corresporaivalid eigenstructure of s). First, f; cannot
be 0 because this means that-A 0, namely that the degree of 4 is only 1. Moreover, the determinant
of A(s) is exactly computed adetA(s) = 20+ 400s— 1000s> which means that &) has two finite zeros
(namelyii; = 2), so the obtained structure is inconsistent since equgBdmrannot be satisfiedd = 4 #

Ait -+ Ma+ d; + d; for any value ofi, > 0.

On the other hand, the lector could easily verify that the pvoting strategy proposed with the blocked
Algorithm 1 allows to recover the correct structurej =, = 1, f3 = 3, andfy = fo = f3 = 3. This is
mainly because pivots are chosen first in the uppermost roakhdf the analysed matrices, and then they
are respected in the subsequent steps. Notice that (6) isatisfied, the rank of &) is 3 and, in addition
to the 2 finite zeros, we have only 4 zeros at infinity.

4.3 Algorithmic complexity

The blocked LQ algorithm consists on the application of anfaQorization to some Toeplitz matrices at
each step. The total amount of elementary floating pointaijmers (flops) performed by the algorithm is
mainly the sum of the flops performed at each step. It depemdsweral factors such as the dimension and
degree of the analysed matrix, but also the structure of tiflespace. Since the structure of null-space is
an outcome of the algorithm, it is impossible to obtain arcerapression for the number of operations. In
this section we derive an upper bound.

For notational ease, we restrict our analysis to a squara polynomial matrixA(s) of degreed > 1.
We always consider the worst case when combining the diffdeetors that have an impact on the total
amount of operations. The objective is to obtain an uppend@xpression of the typ@(n°d® %) where
thec are integers to be determined ahds the maximum degree of a vector in the computed null-space
basis. So we assume thiais a problem data, of the same natureandd.

Theorem 2 Let As) be a square polynomial matrix of degree d and dimension i, avitull-space basis
of degree at most f. Then the complexity of becked LQ algorithmcomputing a minimal basis of its
null-space is in @nd f3).



Proof: See the appendix. (]

A similar analysis on complexity can be done for the pengjbathm to obtain the staircase form (3).
From [4, 47] the complexity of the pencil algorithm is @(nd®) when considering an average value for
the null-space degrefe Our analysis is finer in the sense that we incorporate a tepemting on the null-
space degree. If is known and fixed, our complexity estima®n3d) compares favorably wit®(n3d?),
and the weak dependency of our algorithm on the degiemild be seen as an advantage.

Another advantage of our algorithm arises when the nuléspectors are required. In this case the
amount of operations performed by the other part of the pafgarithms, namely the process explained in
[11] to compute the searched null-space basis from (3),@nththod to compute descriptor realizations,
should be taken into account. In conclusion, the blocked Ig@réghm is faster, see [26, 33] for some
practical and meaningful examples.

The extreme case when the analyzed matrix has only one vefcttagree(n — 1)d in its null-space,
i.e. it has no infinite or finite zeros, implies the largest eippound for the number of steps performed by
our algorithm. Iff = (n— 1)d, then our algorithmic complexity estimate becor@¥s®d*). Fortunately, as
pointed out in the literature, this kind of matrices appearsly in practice. In control theory, for instance,
the number of steps is generally small since the analyzeghpolial matrices are usually not column-
reduced and have elementary divisors accounting for fimibefimite poles and zeros of the modeled linear
systems.

5 Concluding Remarks

We have presented a reliable algorithm to obtain a minimsibt the null-space of an arbitrary polynomial
matrix, a problem with relevant applications in controlahe This algorithm can naturally be extended to
obtain the whole eigenstructure of a polynomial matrix [2B]d thus it can be seen as a reliable alternative
to the pencil methods presented in [15]. Our algorithm psees numerically block Toeplitz matrices
readily constructed from polynomial matrix coefficientadano elementary operations over polynomials
are needed. The dimension of the analyzed Toeplitz matiscesunded and depends on the dimension
and the degree of the polynomial matrix. The number of stepfopmed by the algorithm is also bounded,
it is at most equal to the number of steps performed by thesiclalspencil algorithms presented in [4].
Our algorithm is based on the LQ factorization and has a leld¢krmulation. We showed that it is more
efficient than the similar algorithms presented recentl28y 24]. Moreover, in this paper we presented a
full analysis of numerical stability and complexity.

Concerning algorithmic complexity, we can conclude thatileak dependency of our algorithm on the
degree of the analyzed polynomial matrix is an advantagenegpect to the pencil algorithm. Another fea-
ture of our algorithm that has a positive impact on the finabam of performed floating point operations is
its blocked formulation. A major advantage of our algoritisrthat we obtain, with the same computational
method, the structural indices and the associated eigtrgec

Concerning numerical stability, we have proved the backvesability of our algorithm. We derived
a bound for the backward error produced in the coefficienth®fanalyzed polynomial matrix. Similar
bounds are obtained for the algorithm in [4], nevertheltes stability of the process presented in [11] is
not guaranteed. On the other hand, reliable algorithmstaimdescriptor realizations are described in [17]
but no bounds for the backward error produced in the coeffisief the polynomial matrix are presented.
The bound for our backward error is given by equations (14)(a). This bound is more pessimistic than
the ideal one given by equation (13). Sharper bounds cangeeted from a component-wise error analysis
[27, 40]. An analysis with geometrical arguments such ag)43] can also be considered as a future line
of research. The objective of such an analysis should bedttivation of exact first-order expressions for the
errors in the coefficients of the polynomial matrix due topleeturbations in the analyzed Toeplitz matrices.
In[45, 46], pre-conditioning techniques to reduce the &kl error for the polynomial eigenvalue problem
are presented. Similar techniques for the whole polynoeiggnstructure problem are welcome.

lll-posedness of the rank revealing problem renders thélpno of obtaining the null-space, and in



general the eigenstructure of a polynomial matrix, alspaéed oro-conditioned. lll-posed problems arise
in several fields of scientific computing and thus, represeahallenge in numerical computations. As
explained in [44], a lot of meaningful ill-posed problemsdze solved numerically very satisfactorily in
practice. In [43] some geometrical strategies allow to mefdate some ill-posed problems restoring the
well-posedness and even making them well-conditioned.aBather line of future research could be the
extension of these strategies to the polynomial eigertstre@roblem. Before this is achieved, we expect
that our algorithm with its particular row pivoting strategan give reliable results in most of the cases.
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Appendix: Proof of Theorem 2

Dimensions of the analysed constant block Toeplitz maradeeach step are as follows:

e Atthe first step of the algorithm, we apply an LQ factorizat@ver the matrix; of dimensiormx n
wherem=n(d+ 1) andn=n. Itis clear tham> n.

e At the second step, the analysed mafifkhas dimensions= n(d + 1) andn=rq+r1 —r1. Now,
if m< n, thenn(d+ 1) < 2r; —r;. This implies that; < 0 ford > 1 which is impossible, san > n.

e At stepi, fori > 2, the analysed matri¥” has dimensions=n(d+1) andn=r; +R_1— R _1,
whereR =r1+---+rjandR =r1+---+r;. If m< n, then

n(d+1) < +R_1—R_1 (18)

which is possible in some cases. In the remainder of thisraipeve consider that the numbérof
steps performed by the algorithm is decompose#l asp + q wherep is such tham < nfori > p,
andm>nfori <p

The LQ factorization of anx 1 matrix with m> n'involves 2mn?2 — %ﬁ3 flops when orthogonal matrix
Q is not updated. We start with this analysis supposing thabmg require the structural indices and not
also the corresponding vectors. For simplicity we redusedapression asrd?, we consider the worst
case, i.e.n=n+(i—1)n—(i—1) =in— (i — 1) and we also approximat@ = n(d + 1) ~ nd. These
simplifications do not affect our analysis since we searchifoupper bound ok, the total number of flops.

At step 1, the algorithm performs abdkit= 2nd(n?) operations. At step 2, the algorithm performs
aboutk, = 2nd(2n— 1)2 operations. Similarly, at stegdor i < p the algorithm performs abokit= 2nd[in —
(i — 1)]? operations. At step+ 1 dimensions of the analysed Toeplitz matmix="n(d + 1) andn= (p+
1)n— p, are such tham < n. So, we consider that the algorithm performs atigut 2n2d?[(p+1)n— p]
operations. In general, at stefor i > p, the algorithm performs abokit= 2n?d?[in — (i — 1)] operations.



In conclusion, the total amount of operations performechyaigorithm is abouk = nd(gin? — gon+
g3) + Nn?d?(gsn — gs) where

o = 22. 1i2——p(p+1)(2p+1)

R = 42. 1|2 42. 1|:3p<p+1>(2p+1> 2p(p+1)

g = 2y0,i2-437,i+25" 1=3p(p+1)(2p+1)—2p(p+1)+2p
@ = 2y7 0 i=q@+2p+1)

g5 = 22|p+;§1+1i Z|‘)=+§+11=Q(Q+2p—1)

Itis clear thaigin? > gin? — gon + g3 andgsn > gan — gs, SO We can writ = g;n3d + gsn3d2. To obtain
the expected result we simply consider that n for all the steps, so that the algorithm performs about
= (914 gs)n3d operations, where

p+q
=2 ) i?=Zq[6p(p+a-+1)+q(29+3) +1].
i=p+1

Now, fork to be an upper bound of the total number of operations, We'mettthS k, i.e. Os > gad. This
implies the following relation

%q[Gp(p+q+1)+q(2q+3)+1]2dq(2p+q+1). (19)

In the worst caser(=n, r = 1) equation (18) yielda(d+ 1) < (p+ 1)n— p. So we can conclude thatis
always greater thad, and so thapq(2p + 2q+ 2) > dq(2p+q+1). Therefore, inequality (19) is always
true anck < k = Cnd whereC = gy +gs = £ f(f +1)(2f +1).

Now we consider the case when the computed null-space ger®also required. The LQ factorization
of amx N'matrix with m > n performs now 4¥n— 2?2 + 3n° operations. It is clear thar#n > 4P —
2mn? + %ﬁ3 so for simplicity we reduce the complexity expressionméi we consider the worst case, i.e.
n=n+(i—1)n—(i—1)=in— (i— 1) and we also approximate=n(d + 1) ~ nd. These simplifications
do not affect our analysis since we search for an upper bonkleototal number of flops.

Following the same reasoning that above, we obtain thatottad amount of operations performed by
the algorithm is about = g7n3d? + 2ggn3d where

p
gr=4% i=2p(p+1).
2

Now, since (19) is true, notice thit> (g7 + 2g4)n>d?, andm cannot be considered greater ttrafor all
steps. So, we explore the other possibility, namely, winen n for all the steps, and we take= 2(g1 +
ge)N3d. In this case we require thgtd < 2g; for k to be an upper bound, this implies that@p+ 1) <
%p(p+ 1)(2p+1). This last inequality is not always valid, in particular itrist verified wherp is near to
d > 2. So, to ensure we have an upper bound, we simply&aké(gﬁr gs)n°d from which it follows that
g7d < 3g1. Thenk < k=3Cn®d whereC = g1 + g = 3 f(f +1)(2f + 1).

So, the proof is complet, the complexity of our algorithmigi( f3nd).



