
An Improved Toeplitz Algorithm for Polynomial Matrix
Null-Space Computation

J. C. Zúñiga Anaya1,∗and D. Henrion2,†

1. Department of Mathematics, University of Guadalajara,
Av. Revolución 1500, 44430 Guadalajara, Jalisco, Mexico.

2. LAAS-CNRS,
7 Avenue du Colonel Roche, 31077 Toulouse, France.

January 22, 2009

Abstract

In this paper we present an improved algorithm to compute theminimal null-space basis of polynomial
matrices, a problem which has many applications in control and systems theory. This algorithm takes
advantage of the block Toeplitz structure of the Sylvester matrix associated with the polynomial matrix.
The analysis of algorithmic complexity and numerical stability shows that the algorithm is reliable and
can be considered as an efficient alternative to the well-known pencil (state-space) algorithms found in
the literature.

Keywords
Polynomial matrices, numerical linear algebra, computer-aided control system design.

1 Introduction

1.1 The problem and its applications

In this paper we consider the problem of finding a polynomial basis for thenull-spaceof an arbitrarym×n
polynomial matrix

A(s) = A0 +A1s+A2s
2 + · · ·+Adsd

. (1)

of degreed and rankρ ≤ min(m,n).

The right null-space ofA(s) is the set of non-zero rational vectorz(s) such that

A(s)z(s) = 0 (2)

for all s. The right null-space is clearly a sub space over the field of rational functions. A basis of the right
null-space ofA(s) is then formed by any set ofn−ρ linearly independent vectors (in the field of rational
functions) satisfying (2). Let us denote byZ(s) a full-rank matrix having these vectors as columns, so that
A(s)Z(s) = 0. BasisZ(s) is in general a rational matrix (a matrix whose entries are rational functions).

∗juan.zuniga@red.cucei.udg.mx
†henrion@laas.fr

1

Notice that any rational basisZ(s) could be transformed into a strictly polynomial basis via the multipli-
cation ofZ(s) by a common multiple of all its denominators. In this paper wepresent an algorithm to
compute such a polynomial basis, moreover, our algorithm also ensures minimality of this basis. Letδi for
i = 1,2, . . . ,n−ρ be the degree of each vector in a polynomial basis. If the sum of all the degreesδi is
minimal over the choice of all polynomial basis, then we haveaminimal basisin the sense of Forney [1].

Analogously, a basis of the left null-space ofA(s) is formed by any set ofm−ρ linearly independent
non-zero vectors satisfyingAT(s)zT(s) = 0. Because of this duality, in the remainder of the paper we only
consider the right null-space, that we simply call the null-space ofA(s).

Computing the null-space basis of a polynomial matrix has several applications in different areas of
applied mathematics, in particular control and systems theory. Here we mention only a few examples, for
more details see for instance [1]. As a first example, the pole-zero structure of a linear system1 represented
by the state space matrices(A,B,C,D) can be recovered from the eigenstructure of some polynomialma-
trices [2]. This structural information is important in problems such as decoupling [3]. In particular, the
degrees of the vectors in a minimal basis of the null-space ofthe pencil

P(s) =

[

sI−A B
C D

]

,

which are defined as the Kronecker invariant indices [4], correspond to invariant lists defined in [5]. These
invariants are key information when solving problems of structural modification for linear systems [6].

Computing null-space basis is also important when solving the problem of column reduction of a poly-
nomial matrix [7]. Column reduction is the initial step in several elaborated control algorithms. Column
reducedness of polynomial matrices is a property often required in computer-aided control system design.

With the polynomial equation approach of control theory, introduced by Kučera [8], the solution of
several control problems has been reformulated in terms of polynomial matrix equations or Diophantine
equations [9]. Such formulations are also relevant in the behavioral approach of J. C. Willems and co-
workers [10]. Consider, for instance, the typical polynomial matrix equationA(s)X(s) = B(s). By analogy
with the constant case, the null-space of[A(s) B(s)] contains key information about the existence and the
uniqueness of solutionX(s). Many other problems of the polynomial and behavioral approaches to systems
control boil down to computing the null-space basis of a suitable polynomial matrix. Consider for example
a linear multivariable system represented by a left coprimematrix fraction descriptionT(s) = D−1

L (s)NL(s).
It can be shown [2, 11] that a right coprime factorizationT(s) = NR(s)D−1

R (s) can be obtained via the
computation of the null-space

[DL(s) −NL(s)]

[

NR(s)
DR(s)

]

= 0.

In fault diagnostics the residual generator problem can be transformed into the problem of finding the
null-space basis of a polynomial matrix [12]. The problem isformulated as follows: consider the perturbed
systemy(s) = G(s)u(s)+H(s)d(s)+L(s) f (s) whered(s) is the Laplace transform of the unknown distur-
bances andf (s) is the Laplace transform of the monitored faults. It is shownthat the residual generator
is given byQ̄(s) = p−1(s)Q(s), wherep(s) is a polynomial of suitable degree andQ(s) generates the left
null-space of matrix

M(s) =

[

G(s) H(s)
I 0

]

.

In [13] an algorithm forJ-spectral factorization of a polynomial matrix is presented. When the analyzed
polynomial matrix is singular, it is necessary to extract a minimal basis of its null-space as an intermediate
step of the factorization algorithm. TheJ-spectral factorization appears in the solution of robust,H2 and
H∞ optimization control problems [14].

1The set of all the poles and zeros with their multiplicities.

1.2 Brief review of existing algorithms

Computational algorithms for the eigenstructure of polynomial matrices appear early in the 1970s. Most of
the algorithms take as a general approach thelinearizationof the analyzed polynomial matrix. In [4] it is
shown that the structural indices of a pencil, i.e. the multiplicities of the finite and infinite zeros, and the
degrees of the vectors in a minimal null-space basis, are contained in its Kronecker canonical form, and
reliable algorithms to compute this canonical form are developed. In [15] it is proved that the structural
indices of an arbitrary polynomial matrix can be recovered from the Kronecker canonical form of a related
pencil, a companion matrix associated toA(s). So, reliable algorithms to obtain the eigenstructure ofA(s)
were presented. Seminal works [4, 15] are currently the basis of many algorithms for polynomial matrix
analysis. However, a drawback of this approach called in thefollowing thepencil approach, is that it only
returns the structural indices. Moreover, in several applications the explicit computation of the associated
polynomial eigenvectors is also necessary.

Pencil algorithms that also compute the vectors in a polynomial null-space basis ofA(s) are based on
the results in [11]. First the associated pencil is transformed into the generalized Schur form

U(sB−C)V =

[

sBz−Cz ∗
0 sB∗−C∗

]

(3)

by the methods explained in [4]. HeresBz−Cz is in upper staircase form, containing only the infinite and
null-space structural indices ofA(s). Then, to obtain also the vectors in a minimal basis, a post-processing
of sBz−Cz is needed: a minimal basisZz(s) of sBz−Cz is computed with the recursive process presented
in Section 4 of [11], then, it is shown that then bottom rows ofV[ZT

z (s) 0]T form the searched basis.
Unfortunately the process presented in [11] is usually computationally expensive and its numerical stability
is not guaranteed.

Another pencil algorithm was presented in [16]. This algorithm is based on descriptor system techniques
and computes rational null-space basis. First, a minimal descriptor realization ofA(s), a rational matrix,
in general, is obtained. Then, using the methods in [4], the corresponding pencil is reduced to a staircase
form, and finally some rows are picked up to form the searched basis. Reliable algorithms to compute the
descriptor realization are presented in [17]. Nevertheless, no study on the backward error in the coefficients
of A(s) is presented.

On the other hand, the classical numerical methods to manipulate polynomial matrices are based on the
use of elementary operations over the ring of polynomials. The poor performance of these basic methods
was quickly identified. The major criticism concerns numerical stability, lost because of pivoting w.r.t.
power monomials of the indeterminates [18]. However, we can also find in the literature some reliable
polynomial methods which do not use the linearization of theanalyzed matrix, see [19, 20] for instance.
These methods process directly coefficientsAi of A(s) and avoid elementary operations over polynomials.

In [21], an algorithm to obtain the structural indices ofA(s) at any given values = α is presented.
This algorithm is based on the rank computation of differentToeplitz matrices obtained from the Laurent
expansion ofA(s) at α. Similarly, in [22] it is presented an algorithm to obtain the finite and infinite
structural indices of rational matrices, also based on rankcomputation of successive Toeplitz matrices.

More recently, another algorithm was presented in [23]. Thebasic idea of this algorithm is also the
computation of the rank and null-space of some associated block Toeplitz matrices. The singular value
decomposition (SVD) is used as the rank revealing method. Now, unlike with the pencil algorithms, one
obtains the structural indices and the vectors in the minimal basis with the same computational method.
Moreover, the algorithm in [23] does not perform elementarypolynomial operations, and the use of standard
methods like the SVD improves numerical properties with respect to the classical polynomial methods. A
similar work is presented in [24] using matrix resultants. We remark that both papers [23] and [24] appeared
after submission of our conference papers [25, 26], on whichthe present paper is based. Moreover, as
shown in the remainder of this paper, our algorithm performsfaster than the algorithms in [23, 24] without
jeopardizing accuracy and numerical stability.

1.3 Contribution

In this paper we contribute with an improved algorithm that takes advantage of the Toeplitz structure of the
analysed matrices at each step, and uses the LQ factorization as the rank revealing method. Our algorithm
allows to determine in an unequivocal way the vectors which form the minimal basis directly from each
computed orthogonal matrix. This avoids the possibility ofchoosing two linearly dependent vectors to
form the basis, but in a simpler and more direct way than the method proposed in the 3rd step of Algorithm
1 in [23].

Moreover, in this paper we present a full analysis in two aspects: numerical stability and algorithmic
complexity. We show how the backward error over the coefficients of the analysed polynomial matrix is
bounded, and we give some upper bounds. We also determine simple expressions of the complexity order
of our algorithm. A detailed complexity and stability analysis is not carried out for the algorithms proposed
in [23] and [24].

2 Preliminaries

The following notations are used in this paper. Realε is the machine precision in the floating point arith-
metic system.O(ε) is a constant depending onε, of the same order of magnitude.‖A‖2 denotes the 2-norm
or spectral norm of matrixA, it is given by‖A‖2 = σmax(A), the greatest singular value ofA [27]. AT is the
transpose ofA, andIn denotes the identity matrix of dimensionn. We also use some Matlab-like notations,
i.e. A(p : q, :) extracts rowsp to q from matrix A. For example,A(1 : 3,1 : 4) represents the sub-matrix
containing the first 3 rows and the first 4 columns ofA, andA(:, [1 3 6 9]) is a matrix containing the first,
3rd, 6th and 9th columns ofA.

In this section we present some definitions and results that we use in the remainder of the paper. We
start with the infinite and finite zero structures ofA(s). Together with the null-space structure, they form the
eigenstructureof A(s). Finite and infinite structures are usually defined via the Smith and Smith MacMillan
at infinity canonical forms, see for instance [2]. However, we give here an equivalent and more algebraic
definition which will be useful later. A finite zero of a polynomial matrixA(s) with rank ρ is a complex
numberα such that rankA(α) < ρ. So, there exists a non-zero complex vectorv, apart from those form-
ing the basis of the null-space ofA(s), satisfyingA(α)v = 0. Vectorv is called characteristic vector or
eigenvector associated to the finite zeroα.

From Theorem A.1 in [28], ifα is a finite zero ofA(s) with algebraic multiplicityma and geometric
multiplicity mg, then there exists a series of integerski > 0 for i = 1,2, . . . ,mg such thatma = k1+k2+ · · ·+
kmg, and a series of characteristic vectorsvi1,vi2, . . . ,viki associated toα such that







Ā0
...

. . .
Āki−1 · · · Ā0













vi1
...

viki






= 0 (4)

with v11,v21, . . . ,vmg1 linearly independent and where

Ā j =
1
j!

[

d jA(s)
dsj

]

s=α
.

Integerki is the length of theith chain of eigenvectors associated toα.

The infinite structure or structure at infinity ofA(s) is equivalent to the finite structure atα = 0 of the
dual matrixĀ(s) = Ad + Ad−1s+ · · ·+ A0sd [2]. So, if α = 0 has algebraic multiplicity ¯ma and geometric
multiplicity m̄g in the dual matrixĀ(s), then there exists a series of integersk̄i > 0 for i = 1,2, . . . ,m̄g such

thatm̄a = k̄1 + k̄2+ · · ·+ k̄m̄g, and a series of eigenvectors at infinity ¯vi1, v̄i2, . . . , v̄ik̄i
such that







Ad
...

. . .
Ad−ki+1 · · · Ad













v̄i1
...

v̄ik̄i






= T̄kiV = 0 (5)

with v̄11, v̄21, . . . , v̄m̄g1 linearly independent. Integer̄ki is the length of theith chain of eigenvectors associated
to the infinity. The orders of the zeros or poles at infinity, asthey appear in the Smith-McMillan form at
infinity of A(s), depend on integers̄ki , see [21]. For our purposes in this paper we simply consider thatA(s)
hasm̄A zeros at infinity. The following result is instrumental for the analysis of our algorithms.

Lemma 1 Let nf be the number of finite zeros (including multiplicities) of apolynomial matrix A(s) of
degree d and rankρ, m̄A the number of zeros at infinity, dl and dr the sum of the degrees of all the vectors
in a minimal basis of the left and right null-spaces respectively. Then,

ρd = nf + m̄A+dr +dl (6)

Proof: The proof is easily derived from section 3.6 in [29] using thedefinition of zeros at infinity given
above. See also [30].

Notice that from (4) and (5), the problem of finding the zero structure ofA(s) is reduced to the problem
of finding the null-space of some constant block Toeplitz matrices. We follow the same idea to compute the
null-space basis ofA(s). TakingA(s) in the form (1) andz(s) = z0 +z1s+z2s2 + · · ·+zδsδ, it follows that,
by identifying like powers ofs, the polynomial equation (2) is equivalent to the constant linear system of
equations

















Ad
...

. . .
A0 Ad

. . .
...

A0



























zδ
zδ−1

...
z0











= Tδ+1Zδ = 0. (7)

Matrix Tδ+1 is called the Sylvester matrix of degreeδ + 1 associated toA(s). Sylvester matrices arise in
several areas [2, 23, 31, 32], and the idea is certainly not new. In this case, the approach allows to obtain
z(s) by computing the constant null-space ofTδ+1. Matrix Tδ+1 is in block Toeplitz form, so we call our
algorithmsblock Toeplitz algorithms.

To compute the null-space ofTδ+1, several numerically reliable methods can be used. Here, based on
the results in [26, 33] where we investigated the reliability and efficiency of different numerical methods
like the QR factorization, the Column Echelon form and also some displacement structure methods based
on the generalized Schur algorithm [34], we propose the LQ factorization as the rank revealing method.
The LQ factorization is reviewed in the next subsection. Theproblem remaining when solving (7) is the
estimation of the degreeδ. To solve this problem we process iteratively block Toeplitz matricesTi of
increasing dimensions as we explain in Section 3.

2.1 LQ factorization

The LQ factorization of am×n matrix is given byM = LQT , where matrixL is in lower quasi-triangular
form and matrixQ is orthogonal, i.e.QQT = QTQ= In. Form≥ n, the number of floating point elementary
operations (flops) required by the LQ factorization isO(2mn2− 2

3n3) when matrixQ is not updated. If we
requireQ, we have to performO(4m2n−4mn2+ 4

3n3) more operations [35].

For the LQ factorization to reveal the rankρ of M, a row pivoting is necessary. In practice, we apply
at step j a Householder transformation to zero then− j rightmost entries of a previously chosen row of
L j−1 = MQ1Q2 . . .Q j−1. To choose the row at stepj, several strategies can be followed. For instance, we

can compute‖L j−1(i, j +1 : n)‖2 for all rows i not yet analyzed, and choose the row with the largest norm.
Notice that row pivoting yields the position of the linearlyindependent rows ofM. So, a row permutation
matrixP can be applied to putL in the form

PL =

[

L11 0
L21 L22

]

(8)

whereL11 is a triangularρ×ρ matrix with non-zero elements along the diagonal.

The LQ factorization is backward stable. It can be shown [27,36] that the computed matricesL̂ andQ̂
satisfy(M + ∆)Q̂= L̂ with ‖∆‖2 ≤ O(ε)‖M‖2. Moreover, if we partitionL as in (8), then (to first order),

‖L̂22−L22‖2

‖M‖2
≤

‖∆‖2

‖M‖2
(1+‖L−1

11 LT
21‖2) (9)

where‖L−1
11 LT

21‖2, the conditioning of the LQ factorization for rank-deficient matrices, is usually small [37].

So, from equation (9) we can expect to recover the rankρ of M by applying the LQ factorization and
counting the number of columns ofL̂22 such that‖L̂22‖2 ≤ µ‖M‖2 whereµ is a tolerance depending onε.
If rankM = ρ, then‖MQ̂(:,ρ +1 : n)‖2 is suitably small. So, matrix̂Q(:,ρ +1 : n) is a computed basis of
the null-space ofM. The problem with the LQ factorization as a rank revealing method is that‖L̂22‖2 is not
always sufficiently small. Fortunately this problem occursonly with some very carefully chosen matrices,
see Example 5.5.1 in [35].

Row permutationP in (8) is instrumental to proving stability and accuracy of the LQ factorization
as a rank revealing method. It is also important when solvinglinear systems of equations since it puts
the system in a triangular (or echelon) form allowing for forward substitution. However, this permutation
has no practical effect in revealing the rank. If one findsρ linearly independent rows inM, then matrix
Q(:,ρ + 1 : n) is a basis of its null-space regardless on the order of its rows. Moreover, row permutation
would destroy the Toeplitz structure when used to solve (7).So, when we use the LQ factorization in this
paper, we apply the pivoting strategy only to choose the linearly independent rows butwe do not perform
row permutations. The next example clarifies this idea.

Example 1 Let

M =









1 0 1 0 1
−1 1 0 2 2

2 −2 0 −4 −4
0 1 1 2 3









.

The norm of row 3 is the largest, so we apply a first Householdertransformation to zero all its elements but
the first one2

L1 = MQ1 =









−0.32 −0.61 1.00 −1.22 −0.22
−3.16 0.00 0.00 0.00 0.00

6.32 −0.00 0.00 −0.00 −0.00
−3.48 −0.61 1.00 −1.22 −0.22









.

Row 3 of M is then our first linearly independent row. We observe that row 2 of M is a linear combination
of row 3.

Norms of L1(1,2 : 5) and L1(4,2 : 5) are equal so we can apply the next Householder transformation
on row 1 for instance

L = MQ1Q2 =









−0.32 1.70 0.00 −0.00 0.00
−3.16 −0.00 0.00 0.00 0.00

6.32 0.00 −0.00 0.00 −0.00
−3.48 1.70 0.00 −0.00 0.00









= MQ.

Row 1 of M is then our second linearly independent row.

2To save space we display only 2 digits behind the decimal point.

This means that row 4 of M is a linear combination of rows 1 and 3. So, matrix M has rank 2 and a
basis of its null-space is given by Q(:,3 : 5). No row permutations were carried out!

The LQ factorization ofM could be performed using the standard numerical linear algebra software
libraries as the dual of the QR factorization with column pivoting, namely, working on the transpose ofM,
i.e. MTP = QRwhereP is a column permutation matrix (for more details see [35]). Clearly PTM = L̃QT

and, if no row permutation is required,M = PL̃QT = LQT .

3 Main results

Knowing the degreesδi , solving block Toeplitz equation (7) yields the expected null-space basis vectors.
Now we analyze how to obtain these degrees. Let

Ti =

















Ad
...

. . .
A0 Ad

. . .
...

A0

















be a block Toeplitz matrix withi block columns associated to the polynomial matrixA(s).

Proposition 1 The following structural information of A(s) is obtained by analyzing iteratively block
Toeplitz matrices Ti of increasing dimensions. Let r0 = n, r1 = rankT1 and ri = rankTi − rankTi−1 for
i > 1. Then

(a) Indices ri satisfy ri ≥ r i+1.

(b) xi = r i − r i+1 is the number of vectors of degree i in a minimal polynomial basis.

(c) When ri = ρ for some i= w, we have determined all the degrees of the vectors in a minimal polynomial
basis.

(d) If rw = ρ then ri = ρ for i > w.

(e) Index w is finite.

Proof: First notice that matrixT2 has the form

T2 =









T1

0

0

T1









=









T1

0

T∗
2









and letT∗
2 denotes the rightmost block column ofT2. Suppose that rankT1 = r1 and that the columnk of T1

is linearly dependent, so columnsk andk+n in T2 are also linearly dependent. On the other hand, because
of the Toeplitz structure, if columnj in T1 is linearly independent, it may happen that columnj + n in T2,
namely columnj in T∗

2 , is linearly dependent. In other words rankT2 ≤ rankT1 + r1, i.e. r2 ≤ r1.

Similarly,

T3 =









T2

0

0

T∗
2









=









T2

0

T∗
3









,

whereT∗
3 denotes the rightmost block column ofT3. So, if column j in T∗

2 is linearly independent, it may
happen that columnj in T∗

3 is linearly dependent, namely, rankT3 ≤ rankT2 + r2, i.e. r3 ≤ r2.

In general, matrixTi can be written as

Ti =









Ti−1

0

0

T∗
i−1









=









Ti−1

0

T∗
i









,

so, using the same reasoning as above, it follows thatr i ≤ r i−1 which proves (a).

From (7) it follows that, ifT1 has full rank, thenA(s) has no vectors of degree 0 in the minimal basis
of its null-space. On the other hand, if columnk in T1 is linearly dependent, then columnk in A(s) is a
combination of degree 0 of the other columns. Namely, we havea columnz1(s) = z10s0 in Z(s). As we
explain above, columnk+ n in T2, i.e. columnk in T∗

2 , is also linearly dependent on the other columns
in T∗

2 . In that way, a linear combination for columnk+ n in T2 could be[0;z10] which corresponds to a
vectorz2(s) = z1(s) which cannot be in the basis of the null-space. However note that if column j, linearly
independent inT1, is dependent inT∗

2 , then a linear combination of columnj +n in T2 has the form[z21;z20]
which corresponds to a valid vectorz2(s) = z20+z21s for the minimal basisZ(s). In conclusion, the number
x1 of vectors of degree 1 in a minimal basis is equal to the numberof linearly dependent columns added by
T∗

2 , i.e. x1 = n− r2− (n− r1) = r1− r2.

Similarly, column j +2n in T3 is a linear combination of the form[0;z21;z20], namely, it corresponds to
an invalid vector for the minimal basisZ(s). On the contrary, if columnq is linearly independent inT∗

2 but
dependent inT∗

3 , then we can find a new vector in the formz3(s) = z30+z31s+z32s2 for the minimal basis.
So, the numberx2 of vectors of degree 2 in a minimal basis is equal tox2 = n− r3− (n− r2) = r2− r3. In
general, the numberxi of vectors of degreei in a minimal basis is equal to the number of linearly dependent
columns added byT∗

i+1, i.e. xi = r i − r i+1 which proves (b).

Now, suppose the last vectors in the minimal basisZ(s) have degreew−1, so the sumx0+x1+ · · ·+xw−1

is equal ton−ρ, the nullity ofA(s). Now using (b) to substitutexi in the last equation, it follows thatrw = ρ
which proves (c). Point (d) is easily derived from (b) and (c): xi = 0 for i ≥ w, soρ− r i+1 = 0.

Finally, from (6) we know thatdr = δ1 + · · ·+ δn−r is finite, so no vector in the minimal basisZ(s) can
have infinite degree. In other words,rw = ρ for a finite indexw, which proves (e). Notice thatw≤ ρd+1.
A tight upper bound forw is given byw≤ ∑n

i=1degAi(s)−mini degAi(s)+1, with degAi(s) denoting the
degree of theith column ofA(s), see [19].

An algorithm to obtain a full-rank minimal degree polynomial matrix Z(s) such thatA(s)Z(s) = 0 was
sketched in the above Proposition and its proof, see also Theorem 1 and its proof in [31]. Some remarks on
this algorithm are as follows:

Remark 1. In order to know when to stop the algorithm, it is necessary todetermine the value ofρ, the
rank of the analyzed matrix. This could be done iteratively by computing also the infinite structure ofA(s).
From (5), the infinite structure ofA(s) is also contained in the null-space of some Toeplitz matrices. Let

T̄i =







Ad
...

. . .
Ad−ki+1 · · · Ad







be a block Toeplitz matrix withi block columns associated to the polynomial matrixA(s).

Proposition 2 The following structural information of A(s) is obtained by analyzing iteratively block
Toeplitz matrices̄Ti of increasing dimensions. Let̄r0 = 0, r̄1 = rankT̄1 = rankAd andr̄ i = rankT̄i − rankT̄i−1

for i > 1. Then

(a) Indicesr̄ i satisfyr̄ i ≤ r̄ i+1.

(b) Integer xi = r̄ i+1− r̄ i is the number of chains containing i eigenvectors at infinity.

(c) Whenr̄ i = ρ for some i= w, then we have determined the lengths of all the chains of eigenvectors at
infinity.

(d) If r̄w = ρ thenr̄ i = ρ for i > w.

(e) Index w is finite.

Proof: Similar to the one of Proposition 3.1, for more details see [38].

So, in the case we do not know the rank ofA(s), we can simply start withρ = min(m,n) and update
this value when finding vectors inZ(s). At the same time integers ¯r i must be computed and, since ¯r i is
increasing andr i is decreasing, the algorithm should stop when ¯rw = rw.

Example 2 Let

A(s) =





1 s3 0 0
0 1 s 0
0 0 0 0



 .

Supposing that we do not know the rank of A(s), we can start with the guessρ = min(m,n) = 3. First we
obtainr̄1 = 1 and r1 = 3 which means that there is one vector of degree 0 in Z(s). We have r1 = ρ but r̄1 6= ρ
which means that there are zeros at infinity and therefore that the rank of A(s) cannot be 3. After 3 more
steps we obtain values̄r2 = 1, r̄3 = r̄4 = 2 and r2 = r3 = r4 = 3, which confirms the existence of zeros at
infinity in A(s). Finally, we obtain̄r5 = r5 = 2 and the algorithm stops. In conclusion, matrix A(s) has rank
ρ = r5 = 2, it has one vector of degree 0 and one vector of degree 4 in a minimal basis of its null-space, and
alsor̄3− r̄2 = 1 chain of eigenvectors at infinity of length 2, i.e. 2 zeros at infinity. Notice that equation(6)
is satisfied.

Remark 2. Now note that Toeplitz matrix̄Ti is located in the uppermostim rows of Ti . Therefore,
indices ¯r i can also be obtained when analysing matricesTi by searching first for pivots in its uppermostim
rows. This strategy could also help to improve the accuracy of the computed results as explained in the
subsection 4.2.

Remark 3. The LQ factorization can be used as the rank revealing methodwithout sacrificing signifi-
cantly the accuracy [27, 35, 36], but performing less operations than the SVD. Next we also show how the
block structure of matricesTi can be used to improve the algorithm by reducing even more thenumber of
operations. We point out that the rank and the nullity ofTi−1 can be used to processTi . Moreover, we show
how we can determine the vectors in the minimal basis directly from each computed orthogonal matrixQ.

Let us consider a 2×4 polynomial matrixA(s) with degreed = 1. Suppose that after applying an LQ
factorization toT1, we obtain3

T1Q1 =









× × 0 0
× 0 0 0
× × × 0
× × × 0









= L1

and indices ¯r1 = 2, r1 = 3. So there is a vectorz1(s) = Q1(:,4) of degree 0 in the minimal basis. Now notice
that

T2

[

Q1 0
0 Q1

]

=

[

L1 0
0 L1

]

=

















× × 0 0
× 0 0 0
× × × 0 × × 0 0
× × × 0 × 0 0 0

× × × 0
× × × 0

















= T ′
2. (10)

3Notice that no row permutation is performed. We follow a pivoting strategy to chose the linear independent rows and we first
search for pivots in the uppermost 2 rows of each analyzed matrix. For more details about pivoting and numerical stability, see sections
4.1 and 4.2.

So, it follows that at step 2 we can apply the LQ factorizationonly to the sub-matrix

T ′′
2 = T ′

2(3 : 6, [3 5 6 7]). (11)

Doing that, suppose we obtain

T ′′
2 Q′′

2 =









+ + 0 0
+ 0 0 0
+ + + 0
+ 0 0 0









= L2.

Then, ifQ′′
2 = [qi j], we can write

Q′
2 =

























1 0
0 1

q11 0 q12 q13 q14 0
0 1 0 0 0 0

q21 0 q22 q23 q24 0
q31 0 q32 q33 q34 0
q41 0 q42 q43 q44 0
0 0 0 0 0 1

























, (12)

so that

T2

[

Q1 0
0 Q1

]

Q′
2 = T2Q2 =

















× ×
× 0
× × + 0 + 0 0 0
× × + 0 0 0 0 0

+ 0 + + 0 0
+ 0 0 0 0 0

















.

We obtain indices ¯r2 = 2, r2 = 2 and then there is also a vector of degree 1 in the minimal basis. Moreover
r̄2 = r2 = 2, so the rank of matrixA(s) is 2 and we stop. The columns of orthogonal matrixQ2 are given by

Q2 =

[

Q1(:,1) Q1(:,2) # Q1(:,4) # # # 0
0 0 # 0 # # # Q1(:,4)

]

.

It is easy to see thatZ(s) = [z1(s)z2(s)], wherez2 = Q2(1 : 4,7)s+Q2(5 : 8,7). Finally notice thatQ2(:, [4 8])
corresponds to the polynomial vectorssz1(s) andz1(s) which cannot be in the basis as we pointed out in the
proof of Proposition 3.1.

The blockedformulation explained above allows to reduce the number of operations required at each
step. In fact, the number of rows of the analyzed matrices is always equal tom(d + 1), and the number
of columns is smaller thanin at each step. More about algorithmic complexity is presented in section 4.3.
Next we describe the algorithm formally using a Matlab like pseudo-code.

Algorithm 1 (Blocked LQ algorithm)
Input: An m×n polynomial matrix A(s) of degree d.
Output: The rankρ of A(s), and a matrix Z(s) = [z1(s) z2(s) · · · zn−ρ(s)] where the zi(s) are vectors in a
minimal basis of the null-space of A(s), namely A(s)Z(s) = 0. As a sub-product, the algorithm returns the
structure at infinity of A(s).

1. Build matrix T1 and compute its LQ factorization T1Q1 = L1 searching first for pivots in the upper-
most row block of T1. Determine r1 andr̄1. If r1 < n then let Z= Q1(:, r1 +1 : n). If r1 = r̄1 then let
k = 0 and go to step f.

i. Construct matrix T′′i from Li−1 and L1 as exemplified in (10) and (11). Carry out the LQ factorization
T ′′

i Q′′
i = Li searching first for pivots in the uppermost row block of T′′

i . Construct matrix Q′i as
exemplified in (12), update matrix

Qi =

[

Qi−1 0
0 Q1

]

Q′
i

and determine ri andr̄ i . If xi−1 = r i−1− r i > 0 then update matrix

Z =

[

0 Qi(:,(i −1)n+ r i +1 : (i −1)n+ r i−1)
Z

]

.

If r i = r̄ i then let k= i −1 and go to step f.

f. The rank of A(s) is ρ = rk+1, and

Z(s) = Z(1 : n, :)sk +Z(n+1 : 2n, :)sk−1 + · · ·+Z((k−1)n+1 : kn, :)s1 +Z(kn+1 : (k+1)n, :).

As a sub-product notice that A(s) has xi = r̄ i+1− r̄ i chains containing i eigenvectors at infinity, for
i = 1,2, . . . ,q−1 where q is such that̄rq = ρ. Moreover, these eigenvectors can also be obtained in a
similar way from the orthogonal matrices computed at each step.

Example 3 Let

A(s) =

[

1 −2 s −2s2 −2+s3ł
2 s 2s s3 s+s3

]

.

At step 1 we compute the factorization T1Q1 = L1 where4

L1 =

























0.71 0.71 0.00 0.00 0.00
1.41 0.00 0.00 0.00 0.00

−1.41 1.41 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.89 0.39 −0.22
0.71 0.71 2.24 0.00 −0.00

−1.41 −1.41 −0.89 2.05 −0.00
−0.00 0.00 0.00 0.98 1.75

























and

Q1 =













−0.00 0.00 0.00 0.49 0.87
0.00 −0.00 0.45 −0.78 0.44
0.00 0.00 0.89 0.39 −0.22
0.71 −0.71 0.00 0.00 0.00
0.71 0.71 0.00 0.00 0.00













.

So r1 = 5 andr̄1 = 2. At step 2 we construct the matrix

T ′′
2 =

[

L1(3 : 8,3 : 5) L1

0

]

=

























0.00 0.00 0.00 0.71 0.71 0.00 0.00 0.00
0.00 0.00 0.00 1.41 0.00 0.00 0.00 0.00
0.89 0.39 −0.22 −1.41 1.41 0.00 0.00 0.00
2.24 0.00 −0.00 0.00 0.00 0.00 0.00 0.00

−0.89 2.05 −0.00 0.00 0.00 0.89 0.39 −0.22
0.00 0.98 1.75 0.71 0.71 2.24 0.00 −0.00
0.00 0.00 0.00 −1.41 −1.41 −0.89 2.05 −0.00
0.00 0.00 0.00 −0.00 0.00 0.00 0.98 1.75

























.

4Notice that no row permutations are performed and that pivots are searched first in the uppermost two rows of the analysed
Toeplitz matrices.

Then we compute T′′2 Q′′ = L2 and we obtain5 r2 = 4 andr̄2 = 2. Finally we update

Q2 =

[

Q1 0
0 Q1

]

Q′
2, where Q′

2 =

[

I2 0
0 Q′′

2

]

and Z= Q2(:,10).

At step 3 we construct

T ′′
3 =

[

L2(3 : 8,3 : 7) L1

0

]

.

Then we compute T′′3 Q′′
3 = L3 and we obtain̄r3 = 2 and r3 = 3. We update matrix

Q3 =

[

Q2 0
0 Q1

]

Q′
3

where

Q′
3 =









I4 0 0 0
0 Q′′

3(1 : 5,1 : 5) 0 Q′′
3(1 : 5,6 : 10)

0 0 1 0
0 Q′′

3(6 : 10,1 : 5) 0 Q′′
3(6 : 10,6 : 10)









and we update

Z =

[

0 Q3(:,14)
Z

]

.

At step 4 we construct

T ′′
4 =

[

L3(3 : 8,3 : 8) L1

0

]

and we compute T′′4 Q′′
4 = L4. We obtain̄r4 = 2, and r4 = 2, then we update

Q4 =

[

Q3 0
0 Q1

]

Q′
4

where

Q′
4 =

















I6 0 0 0 0 0
0 Q′′

4(1 : 3,1 : 3) 0 Q′′
4(1 : 3,4 : 6) 0 Q′′

4(1 : 3,7 : 11)
0 0 1 0 0 0
0 Q′′

4(4 : 6,1 : 3) 0 Q′′
4(4 : 6,4 : 6) 0 Q′′

4(4 : 6,7 : 11)
0 0 0 0 I2 0
0 Q′′

4(7 : 11,1 : 3) 0 Q′′
4(7 : 11,4 : 6) 0 Q′′

4(7 : 11,7 : 11)

















,

and we update

Z =

[

0 Q4(:,18)
Z

]

.

Finally, we stop since r4 = r̄4 = 2. The rank of A(s) is ρ = 2 and a minimal basis is given by

Z(s) = Z(1 : 5, :)s3 +Z(6 : 10, :)s2 +Z(11 : 15, :)s+Z(16 : 20, :)

=













−0.71s 0.70s −0.13s+0.08s3

0.00 −0.07s2 0.32+0.08s−0.60s2−0.04s3

0.71 −0.70 0.13+0.08s2+0.08s3

0.00 0.07 0.60−0.04s
0.00 0.00 −0.32−0.08s













.

Sincer̄1 = r̄2 = r̄3 = r̄4 = 2 = ρ, it follows that A(s) has no zeros at infinity. Moreover, since the sum of the
degrees of the vectors in the minimal basis Z(s) is 6 = ρd, we conclude that A(s) has no finite zeros either,
cf. equation (6).

5To save space we do not show computed matricesLi andQ′′
i . Row pivoting is performed as required by Algorithm 1 and no row

permutation is applied.

4 Algorithmic analysis

Now we analyze the features of the blocked LQ algorithm described in the previous section. The analysis
is divided in three parts. First we prove the numerical stability, then we argue about the accuracy of the
computed results and the pivoting strategy, finally we focuson the algorithmic complexity.

4.1 Numerical stability

We have seen in section 2.1 that the LQ factorization ofTi is backward stable. Showing the backward
stability of our blocked LQ algorithm is not difficult. One only has to consider the blocked process described
in the Remark 3 as a sequence of some particular Householder transformations and then apply the proof of
Theorem 18.3 in [27], as illustrated next.

Consider the computed LQ factorization

L̂1 = (T1 + Φ1)Ĥ1Ĥ2 · · · Ĥp = (T1 + Φ1)Q̂1

where‖Φ1‖2 ≤ φ1‖T1‖2. Hereφ1 = O(ε) is a small constant depending on the dimensions ofT1, the machine
precisionε, and the number of applied Householder reflections (§18.3 of[27]). Now, when computing the
LQ factorization ofT2 using the blocked process described above, we have

L̂2 = (T2 + Φ2)

[

Q̂1 0
0 Q̂1

][

I 0
0 Ĥp+1

]

· · ·

[

I 0
0 Ĥp+q

]

= (T2 + Φ2)Q̂2,

where‖Φ2‖2 ≤ φ2‖T2‖2. Similarly, an upper bound forφ2 = O(ε) can be computed as in §18.3 of [27].
Clearly, this bound for the backward error will be more pessimistic, which can be expected since we have
performedq more Householder reflections and the dimension of the matrices has increased. We summarize
these results in the following lemma.

Lemma 2 Consider that polynomial matrix A(s) has a vector of degreeδ in a basis of its null-space. The
application of the blocked LQ factorization to solve system(7) is backward stable, namely(Tδ+1 + ∆)Ẑδ =
0, ‖∆‖2 ≤ φ‖Tδ+1‖2, whereẐδ contains the computed coefficients of the vector in the null-space basis,
andφ = O(ε) is a small constant depending on the dimensions of Tδ+1, the machine precisionε, and the
number of applied Householder reflections.

This result shows that̂Zδ is the exact null-space of the slightly perturbed matrixTδ+1+∆. Nevertheless,
we require that vector ˆz(s), constructed fromẐδ, is the exact polynomial vector in the null-space of the
slightly perturbed matrixA(s)+∆(s), where∆(s) = ∆0 +∆1s+ · · ·+∆dsd, and‖∆(s)‖∗ ≤ O(ε)‖A(s)‖∗ for
some polynomial matrix norm‖ · ‖∗. Ideally we want

‖∆i‖2 ≤ O(ε)‖Ai‖2, i = 0,1, . . . ,d. (13)

The following result gives an upper bound for the error∆(s) when using the blocked LQ factorization to
solve (7), see also [39].

Theorem 1 Let A(s) be a polynomial matrix and suppose that it has a vector z(s) of degreeδ in a minimal
basis of its null-space. The computed vectorẑ(s), obtained from(7) via the blocked LQ algorithm, is the
exact null-space vector of the slightly perturbed matrix A(s)+ ∆(s) where

‖∆(s)‖∗ = ‖∆̄‖2 ≤ γ‖Tδ+1‖2 = γ‖A(s)‖∗, (14)

∆̄ =

















∆d
...

. . .
∆0 ∆d

. . .
...

∆0

















,

andγ = O(ε) is a small constant depending onε.

Proof: From Lemma 2 we know that(Tδ+1 +∆)Ẑδ = 0 with ‖∆‖2 ≤ φ‖Tδ+1‖2. Error matrix∆ has the
following (non block Toeplitz) general form:

∆ =

















∆0
d
...

. . .
∆0

0 ∆δ
d

. . .
...

× ∆δ
0

















where× represents possibly non zero blocks. However, note that we can apply row elementary operations
gathered in a left multiplierP such thatP(Tδ+1+∆)Ẑδ = (Tδ+1+ ∆̄)Ẑδ = 0. Existence ofP is equivalent to
having a matrixE with ‖E‖2 ≤ φ‖Tδ+1‖2, such thatP= I +E and thenP(Tδ+1+∆) = Tδ+1+∆+E(Tδ+1+
∆) = Tδ+1 + ∆̄, namely

∆ +E(Tδ+1+ ∆) = ∆̄. (15)

For the error analysis to make sense, we require that∆ and∆̄ do not modify the rank ofTδ+1 (since otherwise
the structure of the null-space would change and the problemwould be ill posed), so matrixE satisfying
(15) has infinite solutions. In consequence error matrix∆̄ is not unique, but we can always ensure that, to
first order,‖∆̄‖2 ≤ γ‖Tδ+1‖2 which is the expected result.

Theorem 1 and its proof seem to be incomplete whereas the value of γ is unknown. Obtaining exact
expressions for the backward error is out of the scope of thispaper, here we simply propose an expression
for γ using the standard definition of relative backward error as in [27], namely, we look for the smallest
value satisfying (14) in Theorem 1, i.e.

γ = min
{

ε
∣

∣

∣
(A(s)+ ∆(s))ẑ(s) = 0,

‖∆(s)‖∗ = ‖∆̄‖2 ≤ ε‖Tδ+1‖2 = ε‖A(s)‖∗
}

.
(16)

Taking the norm of the residualr(s) = r0+ r1s+ · · ·+ rksk given byr(s) = A(s)ẑ(s) =−∆(s)ẑ(s), we obtain
a lower bound forε, i.e. ‖r(s)‖∗ ≤ |ε|‖Tδ+1‖2‖ẑ(s)‖∗, so, the solution of (16) is

γ =
‖r(s)‖∗

‖Tδ+1‖2‖ẑ(s)‖∗
(17)

where‖r(s)‖∗ and‖ẑ(s)‖∗ are, similarly, equal to the Euclidean norms of the vector ofcoefficients in the

monomial basis, i.e.‖ẑ(s)‖∗ = ‖Ẑδ‖2, ‖r(s)‖∗ = ‖R ‖2 whereR =







rk
...
r0






.

Example 4 Let

A(s) =

[

s+1.0034 2.075 1.0034
s2 1 s2−0.4819277s

]

.

Its null-space, computed with Algorithm 1, is given by

ẑ(s) =





−0.6693113+3.563×10−35s
0.3225597s

0.6693113−3.563×10−35s



 .

The residual is

r(s) = A(s)ẑ(s) =

[

1.998×10−15s+3.563×10−35s2

9.437×10−16s+1.069×10−50s3

]

so the relative backward error is equal to

γ =
‖R ‖2

‖T2‖2‖Ẑ1‖2
= 7.298×10−16

.

Sharper bounds than (14) and (17), such as the one given by (13), can be expected from a component-
wise error analysis [40, 41], see also the second edition of [27]. An analysis with geometrical arguments
such as in [42, 43] can also be considered as a future line of research.

A similar analysis on stability can be done for the pencil algorithm to obtain the staircase form (3), see
[4] for some ideas. Nevertheless, the stability of the process explained in [11] to compute the searched
null-space basis from (3) is not guaranteed. On the other hand, reliable algorithms to compute descriptor
realizations are found in [17], however, no expressions foran upper bound of the backward error‖∆(s)‖
are presented there.

4.2 Accuracy and row pivoting

Theorem 1 shows that our Toeplitz algorithm has a bounded backward error. Nevertheless, the accuracy of
the obtained results depends not only on the backward stability of the algorithm but also on the conditioning
of the problem. It is well-known that the problem of detecting whether rankM = r is ill-posed6 or ∞-
conditioned whenr is less than the row or column dimension ofM. As an important implication, the
problem of finding the right null-space of a constant matrixM can be well-conditioned only ifM has full
row-rank. In that way, the problem of finding the null-space of a polynomial matrix is also ill-posed and the
forward error is not bounded. First, notice that the number and the degree of the computed vectors could be
different from those corresponding to the exact null-spaces. Second, for a given degreeδ, the coefficients
of the computed vector could be also different from the exactones because, in general, matrixTδ+1 has not
full row-rank.

Some strategies to render the problem well-posed can be formulated along the lines in [43], see also
[44]. Given a first approximation of the structure at infinityor the null-space ofA(s), we can think in some
kind of iterative refinement over some manifold where this structure is invariant, and hence over which
the problem is well-posed. Another possible way to improve the conditioning (posedness) of the matrix
can be a scaling along the lines in [45, 46]. The extension of all these results to the polynomial matrix
eigenstructure problem is however out of the scope of this paper.

Since these results are still missing, at least we must handle correctly the information obtained at each
step by the algorithms. With infinite precision, the rank ofTi computed by only one SVD or LQ factorization
is equal to the rank computed using the blocked process of Algorithm 1. Nevertheless, with finite precision
this may not be true. In this case, it is important to rememberthat what we want to obtain ultimately is the
infinite and null-space structures of a polynomial matrix, and not a series of ranks of some Toeplitz matrices
(rank determination is, after all, not only a problem in matrix computation, but an exercise of interpretation
of the numerical results). In the same order of ideas, with the following academic example we show how
the blocked process of Algorithm 1 with its particular row pivoting strategy could help to obtain results
which correspond to a valid eigenstructure of a given badly scaled polynomial matrix.

Example 5 Consider the full rank matrix

A(s) =





10−8s 10−8s2 1
20 10s 0
0 1+20s 108



 .

To compute the infinite structure of A(s), first we use Proposition 2 and a simple LQ factorization (without
the blocked process) as rank revealing method. MatrixT̄1 = A2 has exact rank 1. The rank computed with
the LQ factorization is also 1 (a pivot is chosen in the first row), so ˆ̄r1 = 1. Now, looking at matrixT̄2,
we can see that the exact rank is 2. The rank obtained by only one LQ factorization is also 2, sô̄r2 = 1.
Notice, that the LQ factorization in this case picks pivots in rows 6 and 4. Row 1 is now dependent because
the pivot was chosen in row 6 which has a larger norm. At step 3,while the exact rank of̄T3 is 5 (i.e.
r̄3 = rankA(s) = 3 which means that A(s) has 2 chains of 2 eigenvectors at infinity), the rank computedby

6In the classical sense of Hadamard which means that the solution of the problem does not depend continuously on the data orthe
parameters.

only one LQ factorization is only 4, sō̂r3 = 2. Now the pivot in row 4 is also lost, but there is no other
row to replace it. Finally, when computing the rank ofT̄4 we recover̂̄r4 = 3. This means that A(s) has one
computed chain of 2 eigenvectors and another one with 3 eigenvectors, namely 5 computed zeros at infinity,
which is far from the correct result.

A similar phenomena occur when obtaining also the null-space. Matrix T1 has exact rank 3. The rank
computed by an LQ factorization is also 3 but no pivot is chosen in the first 3 rows of T1, so r̂1 = 3 and
ˆ̄r1 = 0. Matrix T2 has exact rank 6, but the rank computed by only one LQ factorization is 5. In this case, a
pivot is chosen in row six, sôr2 = 2 and ˆ̄r2 = 1. At step 3, while the exact rank of T3 is 9, the computed rank
is only 7. Aditional pivots are chosen in rows 8 and 9, sor̂3 = 2 and ˆ̄r3 = 2. In summary, matrix A(s) has
a computed rank̂ρ = 2, one computed chain of 1 eigenvector at infinity, another onewith 2 eigenvectors at
infinity (namely ˆ̄mA = 3), and 1 vector of degree 1 in a minimal basis of its null-space(namelyd̂r = 1).

The computed null-space vector is

ẑ(s) =





3.236×10−18+0.4472136s
−0.8944272−3.388×10−25s
8.944×10−10+1.789×10−8s





with residual

r(s) =





8.944×10−10+1.789×10−8s−4.472×10−8s2−3.388×10−32s3

6.471×10−17−3.388×10−24s2

−3.331×10−16+0.0000002s−6.777×10−24s2



 .

From (17), the relative backward error is1.75×10−16, which is in the order of magnitude of the machine
precision, nevertheless this result does not correspond toa valid eigenstructure of A(s). First, ˆ̄r1 cannot
be 0 because this means that A2 = 0, namely that the degree of A(s) is only 1. Moreover, the determinant
of A(s) is exactly computed asdetA(s) = 20+ 400s−1000s2 which means that A(s) has two finite zeros
(namelyn̂f = 2), so the obtained structure is inconsistent since equation(6) cannot be satisfied̂ρd = 4 6=

n̂f + ˆ̄mA+ d̂r + d̂l for any value ofd̂l ≥ 0.

On the other hand, the lector could easily verify that the rowpivoting strategy proposed with the blocked
Algorithm 1 allows to recover the correct structure:ˆ̄r1 = ˆ̄r2 = 1, ˆ̄r3 = 3, and r̂1 = r̂2 = r̂3 = 3. This is
mainly because pivots are chosen first in the uppermost row block of the analysed matrices, and then they
are respected in the subsequent steps. Notice that (6) is nowsatisfied, the rank of A(s) is 3 and, in addition
to the 2 finite zeros, we have only 4 zeros at infinity.

4.3 Algorithmic complexity

The blocked LQ algorithm consists on the application of an LQfactorization to some Toeplitz matrices at
each step. The total amount of elementary floating point operations (flops) performed by the algorithm is
mainly the sum of the flops performed at each step. It depends on several factors such as the dimension and
degree of the analysed matrix, but also the structure of the null-space. Since the structure of null-space is
an outcome of the algorithm, it is impossible to obtain an exact expression for the number of operations. In
this section we derive an upper bound.

For notational ease, we restrict our analysis to a squaren×n polynomial matrixA(s) of degreed ≥ 1.
We always consider the worst case when combining the different factors that have an impact on the total
amount of operations. The objective is to obtain an upper bound expression of the typeO(nc1dc2 f c3) where
theci are integers to be determined andf is the maximum degree of a vector in the computed null-space
basis. So we assume thatf is a problem data, of the same nature asn andd.

Theorem 2 Let A(s) be a square polynomial matrix of degree d and dimension n, with a null-space basis
of degree at most f . Then the complexity of theblocked LQ algorithmcomputing a minimal basis of its
null-space is in O(n3d f3).

Proof: See the appendix.

A similar analysis on complexity can be done for the pencil algorithm to obtain the staircase form (3).
From [4, 47] the complexity of the pencil algorithm is inO(n3d3) when considering an average value for
the null-space degreef . Our analysis is finer in the sense that we incorporate a term depending on the null-
space degree. Iff is known and fixed, our complexity estimateO(n3d) compares favorably withO(n3d3),
and the weak dependency of our algorithm on the degreed could be seen as an advantage.

Another advantage of our algorithm arises when the null-space vectors are required. In this case the
amount of operations performed by the other part of the pencil algorithms, namely the process explained in
[11] to compute the searched null-space basis from (3), or the method to compute descriptor realizations,
should be taken into account. In conclusion, the blocked LQ algorithm is faster, see [26, 33] for some
practical and meaningful examples.

The extreme case when the analyzed matrix has only one vectorof degree(n− 1)d in its null-space,
i.e. it has no infinite or finite zeros, implies the largest upper bound for the number of steps performed by
our algorithm. If f = (n−1)d, then our algorithmic complexity estimate becomesO(n6d4). Fortunately, as
pointed out in the literature, this kind of matrices appearsrarely in practice. In control theory, for instance,
the number of steps is generally small since the analyzed polynomial matrices are usually not column-
reduced and have elementary divisors accounting for finite or infinite poles and zeros of the modeled linear
systems.

5 Concluding Remarks

We have presented a reliable algorithm to obtain a minimal basis of the null-space of an arbitrary polynomial
matrix, a problem with relevant applications in control theory. This algorithm can naturally be extended to
obtain the whole eigenstructure of a polynomial matrix [25], and thus it can be seen as a reliable alternative
to the pencil methods presented in [15]. Our algorithm processes numerically block Toeplitz matrices
readily constructed from polynomial matrix coefficients, and no elementary operations over polynomials
are needed. The dimension of the analyzed Toeplitz matricesis bounded and depends on the dimension
and the degree of the polynomial matrix. The number of steps performed by the algorithm is also bounded,
it is at most equal to the number of steps performed by the classical pencil algorithms presented in [4].
Our algorithm is based on the LQ factorization and has a blocked formulation. We showed that it is more
efficient than the similar algorithms presented recently in[23, 24]. Moreover, in this paper we presented a
full analysis of numerical stability and complexity.

Concerning algorithmic complexity, we can conclude that the weak dependency of our algorithm on the
degree of the analyzed polynomial matrix is an advantage with respect to the pencil algorithm. Another fea-
ture of our algorithm that has a positive impact on the final amount of performed floating point operations is
its blocked formulation. A major advantage of our algorithmis that we obtain, with the same computational
method, the structural indices and the associated eigenvectors.

Concerning numerical stability, we have proved the backward stability of our algorithm. We derived
a bound for the backward error produced in the coefficients ofthe analyzed polynomial matrix. Similar
bounds are obtained for the algorithm in [4], nevertheless,the stability of the process presented in [11] is
not guaranteed. On the other hand, reliable algorithms to obtain descriptor realizations are described in [17]
but no bounds for the backward error produced in the coefficients of the polynomial matrix are presented.
The bound for our backward error is given by equations (14) and (17). This bound is more pessimistic than
the ideal one given by equation (13). Sharper bounds can be expected from a component-wise error analysis
[27, 40]. An analysis with geometrical arguments such as in [42, 43] can also be considered as a future line
of research. The objective of such an analysis should be the derivation of exact first-order expressions for the
errors in the coefficients of the polynomial matrix due to theperturbations in the analyzed Toeplitz matrices.
In [45, 46], pre-conditioning techniques to reduce the backward error for the polynomial eigenvalue problem
are presented. Similar techniques for the whole polynomialeigenstructure problem are welcome.

Ill-posedness of the rank revealing problem renders the problem of obtaining the null-space, and in

general the eigenstructure of a polynomial matrix, also ill-posed or∞-conditioned. Ill-posed problems arise
in several fields of scientific computing and thus, representa challenge in numerical computations. As
explained in [44], a lot of meaningful ill-posed problems can be solved numerically very satisfactorily in
practice. In [43] some geometrical strategies allow to reformulate some ill-posed problems restoring the
well-posedness and even making them well-conditioned. So,another line of future research could be the
extension of these strategies to the polynomial eigenstructure problem. Before this is achieved, we expect
that our algorithm with its particular row pivoting strategy can give reliable results in most of the cases.

References

[1] G. D. Forney, Minimal bases of rational vector spaces with applications to multivariable linear sys-
tems.SIAM J. Control Optim.13:493–520 (1975).

[2] T. Kailath,Linear Systems. Prentice Hall, Englewood Cliffs, 1980.

[3] W. M. Wonham and A. S. Morse, Decoupling and pole assignment in linear multivariable systems: A
geometric approach.SIAM J. Control Optim.8:1–18 (1970).

[4] P. M. Van Dooren, The computation of Kronecker’s canonical form of a singular pencil.Linear Alge-
bra Appl.27:103–140 (1979).

[5] A. S. Morse, Structural invariants of linear multivariable systems.SIAM J. Control Optim.11:446–465
(1973).

[6] J. J. Loiseau, Sur la modification de la structure à l’infini par un retour d’état statique.SIAM J. Control
Optim.26:251–273 (1988).

[7] W. H. L. Neven and C. Praagman, Column reduction of polynomial matrices.Linear Algebra Appl.
188:569–589 (1993).

[8] V. Kučera,Discrete Linear Control: The Polynomial Equation Approach. John Wiley and Sons, Chich-
ester, 1979.

[9] V. Kučera, Diophantine equations in control–a survey.Automatica29:1361–1375 (1993).

[10] J. W. Polderman and J. C. Willems,Introduction to Mathematical Systems Theory: a Behavioral
Approach. Springer-Verlag, 1998.

[11] Th. G. J. Beelen and G. W. Veltkamp, Numerical computation of a coprime factorization of a transfer
function matrix.Systems Control Lett.9:281–288 (1987).

[12] E. Frisk, Residual Generation for Fault Diagnosis. Ph.D. Thesis manuscript 716, Linköping University,
Sweden, 2001.

[13] J. C. Zúñiga and D. Henrion, A Toeplitz algorithm for the polynomialJ-spectral factorization.Auto-
matica42(7):1085–1093 (2006).

[14] M. Grimble and V. Kučera (Eds.),A polynomial approach to H2 and H∞ robust control design.
Springer-Verlag, London, 1996.

[15] P. M. Van Dooren and P. Dewilde, The Eigenstructure of anArbitrary Polynomial Matrix. Computa-
tional Aspects.Linear Algebra Appl.50:545–580 (1983).

[16] A. Varga, Computation of least order solutions of linear rational equations. International Symposium
on Mathematical Theory of Networks and Systems, Leuven, Belgium, 2004.

[17] A. Varga, A Descriptor System Toolbox for Maltab. IEEE International Symposium on Computer
Aided Control System Design, Anchorage, Alaska, 2000.

[18] F. R. Gantmacher,Theory of Matrices I & II. Chelsea, New York, 1959.

[19] D. Henrion, Reliable Algorithms for Polynomial Matrices. Ph.D. Thesis, Institute of Information The-
ory and Automation, Academy of Sciences of the Czech Republic, Prague, 1998.

[20] D. Henrion and M.̌Sebek, Reliable numerical methods for polynomial matrix triangularization.IEEE
Trans. Automat. Control44:497–508 (1999).

[21] P. M. Van Dooren, P. Dewilde and J. Vandewalle, On the determination of the Smith-Macmillan form
of a rational matrix from its Laurent expansion.IEEE Trans. Circuit Systems26:180–189 (1979).

[22] L. Tan and A. C. Pugh, A novel method to determine the finite and infinite frequency structure of a
rational matrix.IMA J. Math. Control Inform.18:129–151 (2001).

[23] J. C. Basilio and M. V. Moreira, A robust solution of the generalized polynomial Bézout identity.
Linear Algebra Appl.385:287–303 (2004).

[24] E. N. Antoniou, A. I. G. Vardulakis and S. Vologiannidis, Numerical Computation of Minimal Poly-
nomial Bases: A generalized Resultant Approach.Linear Algebra Appl.405:264–278 (2005).

[25] J. C. Zúñiga and D. Henrion, Block Toeplitz Methods inPolynomial Matrix Computations. Interna-
tional Symposium on Mathematical Theory of Networks and Systems, Leuven, Belgium, 2004.

[26] J. C. Zúñiga and D. Henrion, On the application of displacement structure methods to obtain null-
spaces of polynomial matrices. IEEE Conference on Decisionand Control, Paradise Island, Bahamas,
2004.

[27] N. J. Higham,Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.

[28] P. J. Antsaklis and Z. Gao, Polynomial and rational matrix interpolation: theory and control applica-
tions.Internat. J. Control58:349–404 (1993).

[29] A. I. G. Vardulakis,Linear Multivariable Control. Algebraic Analysis and Synthesis Methods. Wiley,
Chichester, 1991.

[30] D. Henrion and J. C. Zúñiga, Detecting infinite zeros in polynomial matrices.IEEE Trans. Circuits
Systems II, 52(12):744–745 (2005).

[31] R. R. Bitmead, S. Y. Kung and B. Anderson, Greatest common divisors via generalized Sylvester and
Bezout matrices.IEEE Trans. Automat. Control23(6):1043–1047 (1978).

[32] Stefanidis, A. P. Papliński and M. J. Gibbard, Numerical operations with polynomial matrices: Appli-
cation to multi-variable dynamic compensator design. Lecture Notes in Control and Inform. Sci., 171,
Springer Verlag, New York, 1992.

[33] J. C. Zúñiga and D. Henrion, On the application of different numerical methods to obtain null-spaces
of polynomial matrices. Part 1 and 2. LAAS-CNRS Research Reports no. 04124 and 04125, Toulouse,
France, February 2004.

[34] T. Kailath and A. H. Sayed,Fast Reliable Algorithms for Matrices with Structure.SIAM, Philadelphia,
1999.

[35] G. H. Golub and C. F. Van Loan,Matrix Computations. The Johns Hopkins University Press, New
York, 1996.

[36] G. W. Stewart,Matrix Algorithms. SIAM, Philadelphia, 1998.

[37] N. J. Higham, Analysis of the Cholesky decomposition ofa semi-definite matrix.Reliable Numerical
Computations, Oxford University Press161–185 (1990).

[38] J. C. Zúñiga, Numerical Algorithms for Polynomial Matrices with Applications in Control. Ph.D.
Thesis, LAAS-CNRS Toulouse, 2005.

[39] J. C. Zúñiga and D. Henrion, Numerical stability of block Toeplitz algorithms in polynomial matrix
computations. IFAC World Congress on Automatic Control, Prague, Czech Republic, 2005.

[40] H. Zha, A component-wise perturbation analysis of the QR decomposition.SIAM J. Matrix Anal.
Appl.14(4):1124–1131 (1993).

[41] D. J. Higham and N. J. Higham, Structured backward errorand condition of generalized eigenvalue
problems.SIAM Matrix Anal. Appl.20(2):493–512 (1998).

[42] A. Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues.Math. Comput.
64:763–776 (1995).

[43] Z. Zeng, Computing multiple roots of inexact polynomials.Math. Comput.64:869–903 (2005).

[44] H. J. Stetter,Numerical Polynomial Algebra. SIAM, Philadelphia, 2004.

[45] H. Y. Fan, W. W. Lin and P. Van Dooren, A note on optimal scaling of second order polynomial
matrices.SIAM J. Matrix Anal. Appl.26:252–256 (2004).

[46] H. Zhang, Numerical condition of polynomials in different forms.Electron. Trans. Numer. Anal.
12:66–87 (2001).

[47] T. Beelen and P. M. Van Dooren, An improved algorithm forthe computation of Kronecker’s canonical
form of a singular pencil.Linear Algebra Appl.105:9–65 (1988).

Appendix: Proof of Theorem 2

Dimensions of the analysed constant block Toeplitz matrices at each step are as follows:

• At the first step of the algorithm, we apply an LQ factorization over the matrixT1 of dimensionm̄× n̄
wherem̄= n(d+1) andn̄ = n. It is clear thatm̄≥ n̄.

• At the second step, the analysed matrixT ′′
2 has dimensions ¯m= n(d+1) andn̄ = r1 + r1− r̄1. Now,

if m̄< n̄, thenn(d+1) < 2r1− r̄1. This implies that ¯r1 < 0 for d ≥ 1 which is impossible, so, ¯m≥ n̄.

• At step i, for i > 2, the analysed matrixT ′′
i has dimensions ¯m= n(d+ 1) andn̄ = r1 + Ri−1− R̄i−1,

whereRi = r1 + · · ·+ r i andR̄i = r̄1 + · · ·+ r̄ i . If m̄< n̄, then

n(d+1) < r1 +Ri−1− R̄i−1 (18)

which is possible in some cases. In the remainder of this appendix we consider that the numberf of
steps performed by the algorithm is decomposed asf = p+q wherep is such that ¯m< n̄ for i > p,
andm̄≥ n̄ for i ≤ p

The LQ factorization of a ¯m× n̄ matrix with m̄≥ n̄ involves 2m̄n̄2− 2
3n̄3 flops when orthogonal matrix

Q is not updated. We start with this analysis supposing that weonly require the structural indices and not
also the corresponding vectors. For simplicity we reduce last expression as 2 ¯mn̄2, we consider the worst
case, i.e. ¯n = n+ (i − 1)n− (i − 1) = in− (i − 1) and we also approximate ¯m = n(d + 1) ≈ nd. These
simplifications do not affect our analysis since we search for an upper bound onk, the total number of flops.

At step 1, the algorithm performs aboutk1 = 2nd(n2) operations. At step 2, the algorithm performs
aboutk2 = 2nd(2n−1)2 operations. Similarly, at stepi for i ≤ p the algorithm performs aboutki = 2nd[in−
(i −1)]2 operations. At stepp+1 dimensions of the analysed Toeplitz matrix: ¯m= n(d+1) andn̄ = (p+
1)n− p, are such that ¯m< n̄. So, we consider that the algorithm performs aboutkp = 2n2d2[(p+1)n− p]
operations. In general, at stepi for i > p, the algorithm performs aboutki = 2n2d2[in− (i −1)] operations.

In conclusion, the total amount of operations performed by the algorithm is about̄k = nd(g1n2−g2n+
g3)+n2d2(g4n−g5) where

g1 = 2∑p
i=1 i2 = 1

3 p(p+1)(2p+1)

g2 = 4∑p
i=1 i2−4∑p

i=1 i = 2
3 p(p+1)(2p+1)−2p(p+1)

g3 = 2∑p
i=1 i2−4∑p

i=1 i +2∑p
i=11 = 1

3 p(p+1)(2p+1)−2p(p+1)+2p
g4 = 2∑p+q

i=p+1 i = q(q+2p+1)

g5 = 2∑p+q
i=p+1 i −∑p+q

i=p+11 = q(q+2p−1)

It is clear thatg1n2 ≥ g1n2−g2n+g3 andg4n≥ g4n−g5, so we can writēk = g1n3d+g4n3d2. To obtain
the expected result we simply consider that ¯m≥ n̄ for all the steps, so that the algorithm performs about
k̂ = (g1 +g6)n3d operations, where

g6 = 2
p+q

∑
i=p+1

i2 =
1
3

q[6p(p+q+1)+q(2q+3)+1].

Now, for k̂ to be an upper bound of the total number of operations, we require thatk̄≤ k̂, i.e. g6 ≥ g4d. This
implies the following relation

1
3

q[6p(p+q+1)+q(2q+3)+1]≥ dq(2p+q+1). (19)

In the worst case (r i = n, r̄ i = 1) equation (18) yieldsn(d+1) < (p+1)n− p. So we can conclude thatp is
always greater thand, and so thatpq(2p+2q+2) > dq(2p+q+1). Therefore, inequality (19) is always
true andk≤ k̂ = Cn3d whereC = g1 +g6 = 1

3 f (f +1)(2 f +1).

Now we consider the case when the computed null-space vectors are also required. The LQ factorization
of a m̄× n̄ matrix with m̄≥ n̄ performs now 4 ¯m2n̄−2m̄n̄2 + 2

3n̄3 operations. It is clear that 4 ¯m2n̄≥ 4m̄2n̄−
2m̄n̄2+ 2

3n̄3, so for simplicity we reduce the complexity expression as 4 ¯m2n̄, we consider the worst case, i.e.
n̄ = n+(i−1)n− (i−1)= in− (i−1) and we also approximate ¯m= n(d+1)≈ nd. These simplifications
do not affect our analysis since we search for an upper bound on the total number of flops.

Following the same reasoning that above, we obtain that the total amount of operations performed by
the algorithm is about̄k = g7n3d2 +2g6n3d where

g7 = 4
p

∑
i=1

i = 2p(p+1).

Now, since (19) is true, notice that̄k > (g7 + 2g4)n3d2, andm̄ cannot be considered greater than ¯n for all
steps. So, we explore the other possibility, namely, when ¯m< n̄ for all the steps, and we takêk = 2(g1 +
g6)n3d. In this case we require thatg7d ≤ 2g1 for k̂ to be an upper bound, this implies that 2dp(p+ 1) ≤
2
3 p(p+1)(2p+1). This last inequality is not always valid, in particular it isnot verified whenp is near to
d > 2. So, to ensure we have an upper bound, we simply takek̂ = 3(g1+g6)n3d from which it follows that
g7d ≤ 3g1. Then,k≤ k̂ = 3Cn3d whereC = g1 +g6 = 1

3 f (f +1)(2 f +1).

So, the proof is complet, the complexity of our algorithm is in O(f 3n3d).

