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equation by means of a polynomial, an over-determined system of linear algebraic equa-
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least-squares method. Several examples are examined in detail.
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1. Introduction

Integral equations can be viewed as equations which are results of transformation of points in a given vector space of
integrable functions by the use of certain specific integral operators to points in the same space. If, in particular, one is con-
cerned with function spaces spanned by polynomials for which the kernel of the corresponding transforming integral oper-
ator is separable being comprised of polynomial functions only, then several approximate methods of solution of integral
equations can be developed. Recently, Mandal and Bhattacharya [1] has described a special approximate method of solution
of Fredholm integral equations by using Bernstein polynomials which suits the integral equations associated with function
spaces spanned by polynomials only.

Varieties of integral equations have been solved numerically in recent times by several workers, utilizing various approx-
imate methods (see Mandal and Bhattacharya [1], Chakrabarti et al. [2], Chakrabarti and Mandal [3], Golberg and Chen [4],
Kanwal [5], Mandal and Bera [6] and Polyanin and Manzhirov [7]).

In the present note, we have developed a straightforward method involving expansion of the unknown function of a Fred-
holm integral equation of the second kind in terms of polynomials fxjgn

j¼0 and obtained an approximate solution of the given
integral equation by the use of the method of least-squares. Simple illustrative examples have been dealt with.

We consider here the problem of solving approximately the integral equation of the form
L/ ¼ f ; ð1:1Þ
with L being an integral operator of the type
L/ðxÞ ¼ /ðxÞ þ
Z b

a
kðx; tÞ/ðtÞdt; ða < x < bÞ; ð1:2Þ
where /ðtÞ is an unknown square-integrable function to be determined, kðx; tÞ is the known kernel which is a continuous and
square integrable function, and f ðxÞ is a known square-integrable function. We will assume that the integral Eq. (1.1) pos-
sesses a unique solution.

Recently, the integral equations of the above type have been solved approximately by Mandal and Bhattacharya [1], by
using the expansion of the solution function /ðxÞ, in the form
. All rights reserved.
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/ðxÞ ¼
Xnþ1

i¼1

ci�1Bi�1;nðxÞ; ð1:3Þ
where ci�1 ði ¼ 1;2; . . . ;nþ 1Þ’s are unknown constants and Bi�1;nðxÞ ði ¼ 1;2; . . . ;nþ 1Þ are Bernstein polynomials of degree
n defined on an interval ða; bÞ, and are given by
Bi�1;nðxÞ ¼
n

i� 1

� �
ðx� aÞi�1ðb� xÞn�iþ1

ðb� aÞn
; i ¼ 1;2; . . . ;nþ 1 ð1:4Þ
in standard notations.
Substitution of the relation (1.3) in the Eq. (1.1) gives rise to the relation
Xnþ1

i¼1

ci�1Wi�1ðxÞ ¼ f ðxÞ; a < x < b; ð1:5Þ
where,
Wi�1ðxÞ ¼ Bi�1;nðxÞ þ
Z b

a
kðx; tÞBi�1;nðtÞdt: ð1:6Þ
The determination of the solution (1.3) can then be completed by solving the over-determined system of linear algebraic
equations (1.5) for the unknown constants ci�1 ði ¼ 1;2; . . . ;nþ 1Þ.

The best solution of the over-determined system of Eq. (1.5) is obtainable by the method of least-squares giving rise to the
system of determinate linear algebraic equations, as given by:
Xnþ1

i¼1

ci�1Dij ¼ Bj; j ¼ 1;2; . . . ;nþ 1; ð1:7Þ
where
Dij ¼
Z b

a
Wi�1ðxÞWj�1ðxÞdx; ð1:8Þ

Bj ¼
Z b

a
f ðxÞWj�1ðxÞdx: ð1:9Þ
The above system of Eq. (1.7) is different from the one obtained by Mandal and Bhattacharya [1], which was derived by mul-
tiplying the relation (1.5) by Bj�1;nðxÞ and integrating.

We observe that the above procedure of the determination of the coefficients ci�1ði ¼ 1;2; . . . ;nþ 1Þ gives rise to compu-
tational difficulties because of the fact that a large number of integrals need to be evaluated which involve the Bernstein
polynomials, even by selecting n to be as small as n ¼ 4. We have avoided these difficulties by recasting the expression
(1.3) as
/ðxÞ ¼ a0 þ a1xþ a2x2 þ � � � þ an�1xn�1 þ anxn; ð1:10Þ
where, if a ¼ 0; b ¼ 1, we get
a0 ¼ c0;

a1 ¼ �nc0 þ nc1;

a2 ¼
nðn� 1Þ

2
fc0 þ c2g � nðn� 1Þc1;

� � �

an�1 ¼ ð�1Þn�1nc0 þ ð�1Þn�2nðn� 1Þc1 þ ð�1Þn�3 nðn� 1Þðn� 2Þ
2

c2 þ � � � þ ncn�1;

an ¼ ð�1Þnc0 þ ð�1Þn�1nc1 þ ð�1Þn�2 nðn� 1Þ
2

c2 þ � � � � ncn�1 þ cn:
We now make the following observations:
If an approximate solution of the Eq. (1.1) is expressed in the form of a polynomial, as given by
/ðxÞ ¼
XNþ1

i¼1

ai�1xi�1; ð1:11Þ
where ai�1ði ¼;1; . . . ;N þ 1Þ are unknown constants to be determined then it amounts to determining the values of /ðxÞ at N þ 1
points in its domain of definition (see interpolation formula). This forces us to approximate the integral term (see relations(1.1)
and (1.2)) of the integral equation by a suitable quadrature formula requiring the knowledge of these ðN þ 1Þ values of /.
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But, if the integral in the above Eq. (1.1) is replaced by a quadrature formula (see Fox and Goodwin [8]), we get
/ðxÞ þ
XN

k¼0

wk/ðtkÞkðx; tkÞ ¼ f ðxÞ; a < x < b; ð1:12Þ
where wk are the weights and tk’s are appropriately chosen interpolation points.
The Eq. (1.12) represents an over-determined system of linear algebraic equations for the determination of N þ 1 un-

knowns /ðtkÞ ðk ¼ 0; . . . ;NÞ.
So, if from theoretical considerations it is already known that the given integral Eq. (1.1) possesses a unique solution, then

varieties of methods can be used to cast the over-determined system of Eq. (1.12) into a system of ðN þ 1Þ equations and the
method of least-squares provides the most appropriate procedure to handle the situation completely.

Note that one can obtain exactly ðN þ 1Þ equations for the ðN þ 1Þ unknowns /0; . . . ;/N from the over-determined system
of Eq. (1.12) by selecting ðN þ 1Þ interpolating points x ¼ tk; k ¼ 0;1;2; . . . ;N; ð0 < x < 1Þ.

Substituting the approximate solution (1.11) into the integral Eq. (1.1) we obtain the relation
XNþ1

i¼1

ai�1wi�1ðxÞ ¼ f ðxÞ; a < x < b; ð1:13Þ
giving rise to an over-determined system of linear algebraic equations for the determination of the unknown constants
ai�1ði ¼ 1;2; . . . ;N þ 1Þ where
wi�1ðxÞ ¼ xi�1 þ
Z b

a
kðx; tÞti�1 dt; i ¼ 1;2; . . . ;N þ 1: ð1:14Þ
On using the least-squares method, we obtain the normal equations
XNþ1

i¼1

ai�1cij ¼ bj; j ¼ 1;2; . . . ;N þ 1: ð1:15Þ
where
cij ¼
Z b

a
wi�1ðxÞwj�1ðxÞdx; i ¼ 1;2; . . . ;N þ 1; j ¼ 1;2; . . . ;N þ 1; ð1:16Þ
and
bj ¼
Z b

a
f ðxÞwj�1ðxÞdx; j ¼ 1;2; . . . ;N þ 1: ð1:17Þ
The solution of the system of Eq. (1.15) along with the relation (1.11), finally determines an approximate solution /ðxÞ.
2. Illustrative examples

We illustrate the above procedure through the following examples.

Examples

(i) kðx; tÞ ¼ �ðxt þ x2t2Þ; f ðxÞ ¼ 1;a ¼ �1; b ¼ 1.
(ii) kðx; tÞ ¼ �ðx2 þ t2Þ; f ðxÞ ¼ x2;a ¼ 0; b ¼ 1.

(iii) kðx; tÞ ¼ �
ffiffiffi
x
p
þ

ffiffi
t
p� �

; f ðxÞ ¼ 1þ x;a ¼ 0; b ¼ 1.
(iv) kðx; tÞ ¼ �ðcos xþ cos tÞ; f ðxÞ ¼ sin x;a ¼ 0; b ¼ p.

It can be verified that all the above integral equations possess a unique solution, by examining the eigenvalues of the
associated operators.

Solution:
Using the method described in Section 1, if /ðxÞ is approximated by the relation (1.11), then we find that the constants

ai�1ði ¼ 1;2; . . . ;N þ 1Þ satisfy the system of Eq. (1.15) where
in example 2(i),
cij ¼
1� ð�1Þiþj�1

iþ j� 1
� 4

3
f1� ð�1Þiþ1gf1� ð�1Þjþ1g

ðiþ 1Þðjþ 1Þ � 8
5
f1� ð�1Þiþ2gf1� ð�1Þjþ2g

ðiþ 2Þðjþ 2Þ ; ð2:18Þ

bj ¼
1� ð�1Þj

j
� 2

3
f1� ð�1Þjþ2g

jþ 2
: ð2:19Þ
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By choosing N ¼ 2, we obtain the approximate solution as given by
/ðxÞ ¼ 1þ 1:1111x2; ð2:20Þ
which satisfies the integral Eq. (1.1).
Also, if we choose N P 3, we get the same approximate solution as obtained in Eq. (2.20).
This example was also considered in [1] where an approximate solution of the integral equation was determined by

choosing n ¼ 4.
Hence, we find that approximating the solution by means of a polynomial is better than the approximation by using Bern-

stein polynomials for n ¼ 2.
In example- 2(ii),
cij ¼
1

iþ j� 1
� 5

3iðjþ 2Þ �
5

3jðiþ 2Þ þ
1

5ij
þ 1
ðiþ 2Þðjþ 2Þ ; ð2:21Þ

bj ¼
1

jþ 2
� 1

5j
� 1

3ðjþ 2Þ : ð2:22Þ
By choosing N ¼ 2, we obtain the approximate solution as
/ðxÞ ¼ 0:8182þ 2:7273x2; ð2:23Þ
which satisfies the integral Eq. (1.1).
Now if we choose N P 3, we get the same solution.
In example – 2(iii),
the exact solution of the corresponding integral equation is given by
/ðxÞ ¼ �129
70

� 141
35

ffiffiffi
x
p
þ x: ð2:24Þ
For an approximate solution by least-squares method, we follow the procedure described in Section 1 and obtain
cij ¼
�3þ 13j� 10j2 þ ið13þ 14j� 16j2Þ þ 2i2ð�5� 8jþ 12j2Þ

6ið1þ 2iÞjðiþ j� 1Þð1þ 2jÞ ; ð2:25Þ

bj ¼
�1
15j
� 3

2jþ 1
þ 1

jþ 1
: ð2:26Þ
By choosing N ¼ 2, we obtain the approximate solution as given by
/ðxÞ ¼ /1ðxÞ ¼ �2:5277� 4:5208xþ 2:3003x2: ð2:27Þ
Now, if we assume that /ðxÞ ¼ a0 þ a1xþ a2x2 is an approximate solution to the integral Eq. (1.1), with the kernel of example
2(iii), we get
a0 � a0
2
3
þ

ffiffiffi
x
p� �

þ a1x� 1
10

a1 4þ 5
ffiffiffi
x
p� �
� 1

21
a2 6þ 7

ffiffiffi
x
p� �
þ a2x2 ¼ 1þ x: ð2:28Þ
Then, instead of using the least-squares method, we may derive a system of linear algebraic equations in an artificial manner,
as derived below:

Multiplying the Eq. (2.28) by 1, x and x2, and integrating from x ¼ 0 to x ¼ 1, we obtain
�1
3

a0 �
7

30
a1 �

11
63

a2 ¼
3
2
; ð2:29Þ

1
420
ð�98a0 � 28a1 � 11a2Þ ¼

5
6
; ð2:30Þ

1
1260

ð�220a0 � 33a1 þ 12a2Þ ¼
7

12
: ð2:31Þ
Solving the Eqs. (2.29)–(2.31), we get an approximation solution of the integral Eq. (1.1), in this case, as given by
/ðxÞ ¼ /2ðxÞ ¼ �2:5356� 4:5307xþ 2:2898x2: ð2:32Þ
To compare the least-squares solution /1 and the solution /2 obtained above, in an artificial way, with the exact solution /,
we have then calculated jj/� /1jj ¼ 0:0817197 and jj/� /2jj ¼ 0:0820618, where the norm, jj:jj is defined as
jj/jj2 ¼
Z 1

0
j/j2 dx: ð2:33Þ
Values of /ðxÞ and then the errors are calculated by using the exact expression (2.24) and the approximate expressions (2.27)
and (2.31) at the points x ¼ 0;0:25;0:5;0:75;1 and are presented in the Table 1.

From the values of the norms and the results in Table 1, it is observed that the least-squares solution is better than the one
obtained artificially.



Table 1
Exact and approximate solutions of integral equation given in example-2(iii).

x 0 0.25 0.50 0.75 1.00

/ðxÞ ðexact sol:Þ �1.8429 �3.6071 �4.1915 �4.5817 �4.8714
/1 ¼ /ðxÞ ðleast-squares sol:Þ �2.5277 �3.5141 �4.2130 �4.6244 �4.7482
/2 ¼ /ðxÞ ðsol: by artificial wayÞ �2.5356 �3.5252 �4.2285 �4.6456 �4.7765
j/� /1j 0.6848 0.0931 0.0215 0.0426 0.1233
j/� /2j 0.6927 0.0820 0.0369 0.0638 0.0950
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In example - 2(iv),
the exact solution of the corresponding integral equation is given by
/ðxÞ ¼ sin xþ 4
2� p2 cos xþ 2p

2� p2 : ð2:34Þ
Assuming the solution as /ðxÞ ¼ a0 þ a1x, we get
ð1� p cos xÞa0 þ ðxþ 2� p2

2
cos xÞa1 ¼ sin x; 0 6 x 6 p: ð2:35Þ
Applying least-squares method to the system (2.35), we obtain the normal equations as given by
1
2
pð2þ p2Þa0 þ 2pþ p

4
ð8þ 2pþ p3Þ

n o
a1 ¼ 2; ð2:36Þ

2pþ p
4
ð8þ 2pþ p3Þ

n o
a0 þ 4pþ 4p2 þ p3

3
þ p5

8

� �
a1 ¼ 4þ p: ð2:37Þ
Solving the system of Eqs. (2.36) and (2.37), we find an approximate solution as given by
/ðxÞ ¼ /1ðxÞ ¼
�4ð48� 12p� p2 þ 6p3Þ

pð�288þ 50p2 þ p4Þ þ 48ð�2þ p2Þ
pð�288þ 50p2 þ p4Þ x: ð2:38Þ
Now, multiplying the Eq. (2.35) by 1 and x, and integrating from x ¼ 0 to x ¼ p, we obtain
pa0 þ
1
2
pð4þ pÞa1 ¼ 2; ð2:39Þ

2pþ p2

2

� �
a0 þ 2p2 þ p3

3

� �
a1 ¼ p: ð2:40Þ
Solving the Eqs. (2.39) and (2.40), we get an approximation solution as given by
/ðxÞ ¼ /2ðxÞ ¼
2ð12þ pÞ
�48þ p2 þ

�48
pð�48þ p2Þ x: ð2:41Þ
As in the example-(iii), here also we find that jj/� /1jj ¼ 0:5509 and jj/� /2jj ¼ 0:5510, where the norm, jj:jj is same as gi-
ven by the relation (2.33) with the interval ½0;p�.

Here also, the values of /ðxÞ and then the errors are calculated by using the exact expression (2.24) and the approximate
expressions (2.27) and (2.31) at the points x ¼ 0;0:25;0:5;0:75;1 and are presented in the Table 2.

A better approximate solution of the form /ðxÞ ¼ a0 þ a1xþ a2x2, can also be derived easily. It is seen that the least-
squares solution is better than the solution obtained artificially.
3. Remark

(A) If the integral Eq. (1.1) has a unique solution then multiplying both sides of the relation (1.5) by any arbitrary function
and integrating with respect to x from x ¼ a to x ¼ b, gives rise to a linear system of equations of the formPnþ1

i¼1 ci�1dij ¼ bj; j ¼ 1;2; . . . ;nþ 1 which may be solvable only in certain special circumstances, depending heavily on the
kernel kðx; tÞ as well as the forcing term f ðxÞ.

(B) We emphasize that if we multiply the Eq. (1.5) by any arbitrary function and integrate, we may obtain a system of
linear algebraic equations giving rise to a matrix which may be singular for non-eigenvalues of the corresponding integral
equation. The following examples clarify this:

Example-I:
/ðxÞ � k
Z 1

0
a
ffiffiffi
x
p
þ

ffiffi
t
p� �

/ðtÞdt ¼ f ðxÞ; 0 6 x 6 1: ð3:42Þ



Table 2
Exact and approximate solutions of integral equation given in example-2(iv).

x 0 p=4 p=2 3p=4 p

/ðxÞ ðexact sol:Þ �1.3067 �0.4507 0.2016 0.2681 �0.2901
/1ðxÞ ðleast-squares sol:Þ �0.7838 �0.4721 �0.1603 0.1515 0.4633
/2ðxÞ ðsol: by artificial wayÞ �0.7942 �0.4795 �0.1648 0.1499 0.4646
j/� /1j 0.5228 0.0214 0.3619 0.1166 0.7534
j/� /2j 0.5125 0.0288 0.3664 0.1182 0.7548
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The eigenvalues of the integral equation are
k ¼
0:5 �12ðaþ 1Þ � 12

ffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ 0:5
p	 


a
; ða–0Þ; ð3:43Þ
and hence, for any non-eigenvalue l–k, the integral Eq. (3.42) has a unique solution.
Now, let /ðxÞ ¼ a0 þ a1x be an approximate solution to the Eq. (3.42). Substituting this approximate solution in the Eq.

(3.42), we obtain
a0 � l 2
3
þ a

ffiffiffi
x
p� �

a0 �
l
10

4þ 5a
ffiffiffi
x
p� �

a1 þ xa1 ¼ f ðxÞ; 0 6 x 6 1: ð3:44Þ
Multiplying the Eq. (3.44) by 1 and x and then integrating from x ¼ 0 to x ¼ 1, we get
�1
3
f�3þ 2ð1þ aÞlga0 �

1
30
f�15þ 2ð6þ 5aÞlga1 ¼ f1 ð3:45Þ
and
1
30
f15� 2ð5þ 6aÞlga0 þ

1
15
f5� 3ð1þ aÞlga1 ¼ f2; ð3:46Þ
where
f1 ¼
Z 1

0
f ðxÞdx; f 2 ¼

Z 1

0
xf ðxÞdx: ð3:47Þ
Eqs. (3.45) and (3.46) are solvable if and only if the determinant of their coefficients is non-zero which leads to
l–
0:125 �50ð1þ aÞ � 50

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 0:5068
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ 1:9732
p	 


a
; ða–0Þ; ð3:48Þ
showing that there exists a value of l–k for which the matrix of the system of Eqs. (3.45) and (3.46) becomes singular.
Example-II:
/ðxÞ � k
Z p

0
ða sin xþ cos tÞ/ðtÞdt ¼ f ðxÞ; 0 6 x 6 p: ð3:49Þ
The eigenvalues of the integral Eq. (3.49) are
k ¼ 1
2a

; ða–0Þ: ð3:50Þ
If /ðxÞ ¼ a0 þ a1x is an approximate solution of the Eq. (3.49), we obtain
ð1� lap sin xÞa0 þ xþ 2l� p2

2
la sin x

� �
a1 ¼ f ðxÞ; 0 6 x 6 1: ð3:51Þ
Then, multiplying the Eq. (3.51) by x and x2 and integrating from x ¼ 0 to x ¼ p, we get
p2

2
� ap2l

� �
a0 þ �p3

2
alþ 1

3
p2ð3lþ pÞ

� �
a1 ¼ f3 ð3:52Þ
and
p3

3
þ 4apl� ap3l

� �
a0 þ

p2

4
þ 2ap2lþ 2

3
p3l� 1

2
ap4l

� �
a1 ¼ f4; ð3:53Þ
where
f3 ¼
Z p

0
xf ðxÞdx; f 4 ¼

Z p

0
x2f ðxÞdx: ð3:54Þ
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For the solvability of the system of Eqs. (3.52) and (3.53), we must have
l–
0:00977909 �75:3982a� 75:3982

ffiffiffi
a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ 1:11547
p� �

a
; ða–0Þ; ð3:55Þ
showing the existence of a value of l, different from k ¼ 1
2a –l, giving rise to difficulties.

(C) Since the relation (1.5) (see also (1.13)) represents an over-determined system of linear equations, if we apply the
least-squares method then a solvable determinate system of linear equations (see the Eqs. (1.7)–(1.9) and (1.15)–(1.17))
can be obtained.

(D) Though the above method of least-squares solution is expected to work well enough for Fredholm integral equations
of the second kind, it may give rise to non-unique solutions of integral equations of the first kind involving varieties of ker-
nels, as illustrated by the following examples:

(a)
R 1

0 ð1þ xtÞ/ðtÞdt ¼ x; 0 6 x 6 1.

(b)
R 1

0 ðxþ tÞ/ðtÞdt ¼ 1; 0 6 x 6 1.

Solution:
Using the method described in Section 1, if /ðxÞ is approximated by the relation (1.11), then we find that

ai�1ði ¼ 1;2; . . . ;N þ 1Þ satisfy the system of normal Eqs. (1.15) where
For example (a):
cij ¼
1
ij
þ 1

2jðiþ 1Þ þ
1

2iðjþ 1Þ þ
1

3ðiþ 1Þðjþ 1Þ ; ð3:56Þ

bj ¼
1
2j
þ 1

3ðjþ 1Þ : ð3:57Þ
By choosing N ¼ 1, we find that an approximate solution is given by
/ðtÞ ¼ �6þ 12t: ð3:58Þ
It is verified that this /ðtÞ satisfies the integral equation exactly.
Again, by choosing N ¼ 2, we observe the above matrix ½cij� is singular.
For example (b):
cij ¼
1

3ij
þ 1

2jðiþ 1Þ þ
1

2iðjþ 1Þ þ
1

ðiþ 1Þðjþ 1Þ ; ð3:59Þ

bj ¼
1
2j
þ 1
ðjþ 1Þ : ð3:60Þ
By choosing N ¼ 1, we find that an approximate solution is given by
/ðtÞ ¼ �6þ 12t: ð3:61Þ

It is verified that this /ðtÞ satisfies the integral equation exactly.

Again, if we choose N ¼ 2, we encounter the same situation giving rise to a singular matrix as obtained in example (a).
The reason for encountering such singular matrices in these examples is to be attributed to the fact that the integral equa-

tions here are of the first kind, which generally produce non-unique solutions. In fact /ðxÞ ¼ �24xþ 36x2 is another solution
of both the integral equations considered in the above examples. Though we have found in the above examples that singular
systems occur for integral equations of the first kind for the special choices of the order N of the polynomial solutions where
exact solutions become available for N � 1, it is not straight forward to establish the opposite fact in general.

4. Conclusion

In order to solve a special class of Fredholm integral equations of the second kind the unknown function is approximated
by a polynomial and the least-squares method is used to solve the resulting over-determined system of equations. Several
illustrative examples are examined in detail.
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