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1. Introduction to the fourth-order discrete problem

Recently there has been a large amount of attention paid to fourth-order differential equations that arise from various
beam problems [4,6,11,16-19,21]. Similarly there has been a parallel interest in results for the analogous discrete fourth-or-
der problem, for example [5,20], and in particular the discrete problem with Lidstone boundary conditions [1,12-15]. In
what follows we seek to enrich the discussion found in the above cited literature by exploring two additional aspects of
the discrete fourth-order Lidstone problem heretofore not considered, namely explicit dependence on two parameters
and a semipositone result (relaxing the nonnegative assumption on the nonlinearity).

With this goal in mind, we introduce the nonlinear discrete fourth-order Lidstone boundary value problem with explicit
parameters 8 and 4 given by

A'y(t—2) - pA%y(t 1) = i (t.y(), tela+1,b—1],,
y(@)=0=~A%(@a-1), yb)=0=A%yb-1),

where A is the usual forward difference operator given by Ay(t) = y(t + 1) — y(t), A"y(t) = A" ' (Ay(t)), [c,d], == {c,c +1,...,

d —1,d},and g > 0 and / > 0 are real parameters; specific assumptions on the nature of the nonlinearity f will be made clear

in the sequel. Boundary value problem (1.1) can be viewed as a discretization of the differential equations case studied in the

papers cited previously and the references therein. Indeed, over the real unit interval [0, 1], the boundary value problem (1.1)
becomes

{y“) — By =if(ty), 0<t<l,
y(0)=0=y"(0), y(1)=0=y"(1).

In our discrete version we will employ a symmetric Green’s function approach, and apply fixed point theorems due to Kra-
snosel’skii, and Leggett and Williams.

(1.1)
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The paper will proceed as follows: In Section 2 we construct the necessary Green’s functions. Section 3 gives existence
results for at least one, two, or no solutions of (1.1) in terms of A. The existence of at least three solutions is discussed in
Section 4, followed by an existence result for a related semipositone problem in Section 5.

2. Preliminary results

In this section we will find symmetric expressions for the corresponding Green’s functions for a factored form of the dif-
ference equation in the first line of (1.1) with boundary conditions in the second line of (1.1) in such a way that we can find
bounds on it for later use. The kernel of the summation operator will have explicit dependence on the parameter f, a first for
this type of discussion.

Lemma 2.1. Let h: [a+ 1,b — 1], — R be a function. Then the linear discrete fourth-order Lidstone boundary value problem

A'y(t —2) — pA’y(t — 1) =h(t), tela+1,b-1], 21
(@) =0=A%(@a-1), y(b)=0=Aa%(b-1), '
has solution
b b1
y(t) = Z Z Gy(t,5)Gi(s,2)h(z), tela—1,b+1],, (2.2)
s=a z=a+1
where G;(t,s) given by
1 {t,a)l(b,s): t<s,
Gy (t,8) = ——r7— t -1,b+1 b 2.3
2(65) = 77, 0yeh, @ {Z(s,a)f(b,t) . s<p, (B ela-bbrll x(abl, (23)
with £(t,s) = ut=s — 5=t for u = lasasVellas) VZWM) is the Green’s function for the second-order discrete boundary value problem
2 _
{ ~(A'y(c- 1D - py() =0, tefabl, 24
y(a)=0=y(b),
and G (s,z) given by
1 (s—a)b-2): s<z
Gi(s,2) = m{ (z—a)b—s): z<s, (s,z) € [a,b], x [a+1,b—1], (2.5)
is the Green’s function for the second-order discrete boundary value problem
2 — —_
—Au(s—1)=0, sefa+1,b-1],, (2.6)
u(a) = 0 =u(b).

If h is symmetric on [a+ 1,b — 1],, then the solution (2.2) is likewise symmetric on [a — 1,b + 1],.

Proof. Let y be a solution of boundary value problem (2.1). Note that the difference equation in the top line of (2.1) can be
written as

A? (Azy(t —2)— py(t— 1)) =h(t), tela+1,b—1],.
If we let u(t) = —(A%y(t — 1) — By(t)), then A*u(t — 1) = —h(t), with u(a) = 0 and u(b) = 0 and
~(ye-1)-py©) =u®), y(@ =0=y(b).

By [7, Example 6.12], the Green’s function for (2.6) is given by (2.5), so that

b-1

u(t)= Y Gi(t,2)h(z), tela,bl,.

z=a+1

Now let

f(t,S) — Ht—s _ ‘us—t for ,U _ ﬁ + 2 + \2/ ﬁ(ﬁ + 4) , (27)

and consider

b t—1 b
¥ =3 Gatt.syu(s) = 20 S s, apuis) + 5D S b syues),

s=a s=a s=t
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where L = ¢(1,0)¢(b, a). Using the product rule for differences, we have

b
A Mthz M(t’a)zabsus
L s=t+1
from which it follows that
u(t) 1 =l
Ny(t = 1) = py(t) = > [((t. )AL, &) — (b, DAU(E @) + [Azz(b — peb, ) ] Us
17,5 b
7 A0 —1,a) - pec. a)} ;é(b,s)u(s).
By the definition of ¢ in terms of p this simplifies to
Ry(e-1) - py(©) =D e aeip. e+ 1) — v, yete + 1.0 = D~ )

The result follows. O

Lemma 2.2. Let h:[a+ 1,b— 1], — R be a function, and let y be the solution of (2.1). Then
y(t) = ally|l fortea+1,b-1],,
where [|y|| = MaXca-15+1, [y(t)] and
B 4/%(1,0)¢(b,a+1)
~ (b—a)’¢(b,a)*(b/2,a/2)’

where { is given in (2.7) in terms of .

Proof. Let h: [a+1,b— 1], — R be a function, and let y be the solution of (2.1). By Lemma 2.1 we have that
b-1  b-1
yt)=>" > Glt,;5)Gi(s,2)h(z), tela—1,b+1],
s=a+1 z=a+1
since

Gy(t,a)Gi(a,z) =0 = Gy(t,b)Gy(b,z) forall (t,z)eja—1,b+1], x[a+1,b—1],.

Since y(a) =y(b) =0, y(a—1) = —-y(a+ 1) and y(b+ 1) = —y(b — 1), the maximum of y occurs on [a+ 1,b — 1],. Thus for
(t,s,z) € [a+1,b — 1] we have that

#(b/2,a/2) . b—a

(1,0)¢(b,a) 4 °

where we are allowing ¢ to be evaluated as a function over the real line, not just over the integers. Likewise

G (£,9)G1(S,2) < Ga(S,5)G1(2,2) <

min{/(t,a),{(b,t)}
(b, ) Ga(s,9)

(1,0)¢b,a+1) 1
= . .
(b, a) b—a

min{s — a,b — s} £(1,0)

Galt, )G (5.2) > S Giz7) >

1
'mcl (z,2)

Thus, if we define

o (100, 1) 29)
(b—a)¢“(b,a)
and
(b—a)*(b/2,a/2)
4/(1,0)¢(b,a)

M= (2.10)

then
m
y(O) = vl =olyl, tela+1,b-1],

and the proof is complete. O
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3. Existence of one or two solutions

Let # denote the Banach space of real-valued functions on [a — 1,b + 1], with the maximum norm ||y|| = maXeca—1,5+1y,
| y(t) |. For ¢ as in (2.8), define the cone 2 C & via

?={yes:y(a)=0=y(b),y#0,y(t) > allyl.t € [a+1,b—1],}. 3.1)
Define for t € [a — 1,b + 1], the functional operator A, by
b b-1
t):=2Y > Glt,9)Gi(s,2)f(2,y(2),
s=a z=a+1
where G,(t,s) and G;(s,z) are the Green’s functions given in (2.3) and (2.5), respectively. Since
Gy(t,a)Gi(a,z) =0 = Gy(t,b)Gy(b,z) forall (t,z)eja—1,b+1], x[a+1,b-1],,

we have

b-1 —
=iy ZGztsGszf(zy()) (3.2)

s=a+1 z=a+1

and by Lemma 2.1 the fixed points of A; are solutions of boundary value problem (1.1). We first employ below the following
theorem, due to Krasnosel’skii [8].

Theorem 3.1. Let . be a Banach space, % C % be a cone, and suppose that Q,, Q, are bounded open balls of ¥ centered at the
origin, with By C Q,. Suppose further that .o/ : 2 N (B \ 2,) — 2 is a completely continuous operator such that either

l<Zul| < ull,ue 2NdQy and |</ul| = |jull,u € 2N oy,
or
l<Zul| = Jul,ue 2NoRy and |<Zu| < ||ull,u € 2N o,
holds. Then .« has a fixed point in 2 N (B, \ Q1).
Before we proceed to our first results we must mention some of the conditions we will impose on the nonlinearity f in

(1.1). We note here that in the remainder of this section we assume some combination of

(Hqy) f:la+1,b—1], x [0,00) — [0,00) is continuous with f(-,y) > 0 fory > 0;

(Hy) f(t,y) = g(t)w(y), where g:[a+1,b—1], — [0,00) with > aﬂg(z) >0, and w: [0,00) — [0,00) is continuous with
w(y) >0 fory > 0;

(H3) f(t,y) = g(t)w(y), where g as in (Hz), w: [0,00) — (0, 00) is continuous and nondecreasing, and there exists 6 € (0,1)
such that w(ky) > k’w(y) for k € (0,1) and y € [0, o).

Theorem 3.2. Assume (H;). Suppose further that there exist positive numbers 0 < r < R < oo such that forallt € [a+ 1,b — 1],
the nonlinearity f satisfies

(Hs) f(t.y) < ez fory € [0.1], and f(t.y) > 2 fory € [R,o0).

/o'mb a—

Then (1.1) has a nontrivial solution y such that, for ¢ as in (2.8),
or<y(t)<R/o, tela+1,b-1],.
Proof. If y € 2, then A;y(a) =0 =A,y(b) by Lemma 2.1, and A,y(t) > o |A)y | for t € [a+ 1,b — 1], by Lemma 2.2. Conse-

quently, A;(2) C 2. Moreover, A; is completely continuous using standard arguments. Define bounded open balls centered
at the origin by

Q={yecs:yl<r}, Q={yecs:|yl<R},
where R := MR/m. Then 0 € Q; C Q,. Fory € # N0, so that | y |=r, we have

b-1 b-1 210 b-1 b— -1  b—
Ay =2 Y G(t,5)Gi(5,2f(z.y(2) < 'im > Z fzy(z b a1 > Z y(2) <yl
s=a+1 z=a+1 s=a+1 z=a+1 - s=a+1 z=a+1

fort € [a+1,b—1],. Thus, | A;y |<|y | for y € 2 N 0. Similarly, let y € 2N 00Q;,, so that | y |= R’ Then

y2) = alyl = R =R zefa+1b-1,,
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and

b-1 b-1

b-1 —
)mz > flzy@) o a_122 ZY = Iyl

s=a+1 z=a+1 s=a+1 z=a+1

Consequently, [|A;y|| = |ly|| fory € 2 N dQ,. By Theorem 3.1, A; has a fixed pointy € 2 N (B, \ @), which is a nontrivial solu-
tion of (1.1), such that r < ||y|| < R'. Using the fact that y € 2 and the definition of ¢ in (2.8), the bounds on y follow. O

The proof of the next theorem is similar to that just completed.
Theorem 3.3. Assume (H;). In addition, suppose that there exist positive numbers 0 <r <R < oo such that for all
t € [a+ 1,b — 1],, the nonlinearity f satisfies

(He) f(t.y) < e for y € [R,0), and f(t,y) > 7 fory € 10,7].

y
iom(b—a—1)
Then (1.1) has a nontrivial solution y such that

or <y(t)<R/o, tela+1,b-1],.

With an additional assumption one can prove the existence of at least two nontrivial solutions to (1.1). The proofs are mod-
ifications of the proof in Theorem 3.2and are omitted.

Theorem 3.4. Assume (Hy). In addition, suppose that there exist positive numbers 0 <1 <N < R < oo such that for all
t € [a+1,b — 1], the nonlinearity f satisfies

(Hy) f(t,y) < Mo 12fory € [oN,N], and f(t,y) = mfory € [0,r]U[R, o0).

Then (1.1) has at least two nontrivial solutions y, y, such that ||y,|| < N < ||y, ||, and
or <y,(t) <N, oN<y,(t)<R/g, tela+1,b-1],.

Theorem 3.5. Assume (H;). In addition, suppose that there exist positive numbers 0 <r <N <R < oo such that for
t € l[a+1,b—1],, the nonlinearity f satisfies

(Hs) f(t.y) > mfory € [oN,N], and f(t.y) < s52= for ¥ € [0, 1] U[R, o).

Then (1.1) has at least two nontrivial solutions y,, y, such that ||y;|| < N < ||y, and
or <y,(t) <N, oN<y,(t)<R/o, tea+1,b-1],.

The next theorem allows us to summarize the above results thus far in terms of A.
Theorem 3.6. Assume (Hq). For t € [a+ 1,b — 1],, define

fod) = tim LEX g ) = fim IV (33)

y—0" Yy y—oo Y

Then we have the following statements for t € [a+ 1,b — 1],.

(a) If fo(t) = 0 and f..(t) = oo, then (1.1) has a nontrivial solution for all & € (0, o).

(b) If fo(t) = oo and f..(t) = 0, then (1.1) has a nontrivial solution for all 2 € (0, c0).

(c) If fo(t) = foo(t) = oo, then there exists Jo > 0 such that (1.1) has at least two nontrivial solutions for 0 < 1 < 4.
(d) If fo(t) = fu(t) = O, then there exists 4o > O such that (1.1) has at least two nontrivial solutions for /. > Jo.

(e) If fo(t),fo(t) < oo, then there exists /o > 0 such that (1.1) has no nontrivial solutions for 0 < A < Ao.

(f) If 0 < fo(£),foo (t), then there exists iy > O such that (1.1) has no nontrivial solutions for i > Jo.

Proof. If fo(t) =0 and f..(t) = oo for all t € [a+1,b — 1],, then (Hs) is satisfied for sufficiently small r > 0 and sufficiently
large R > 0. If fo(t) = 00 and f(t) =0 for all t € [a+1,b— 1],, then (Hg) is satisfied. Likewise if fo(t) = f.(t) = oo for all
t €la+1,b—1],, then (H;) holds for 2 > 0 sufficiently small, and if fo(t) = f..(t) =0 forall t € [a+ 1,b — 1],, then (Hg) holds
if 2 is sufficiently large. To see (e), since fo(t) and f..(t) < oo for all t € [a + 1,b — 1],, there exist positive constants #;, #,, I,
and R such that r < R and

flt,y)<my forye[0,r],
f(t,y)<my forye[R o0)



528 D.R. Anderson, F. Minhés/Applied Mathematics and Computation 214 (2009) 523-533

foralltea+1,b—1],. Let n > 0 be given by

U:max{%ﬂz, max M}

€lrRtela+1b-1, Y

Then f(t,y) < ny forall y € (0,00) and all ¢t € [a+ 1,b — 1],. If x is a nontrivial solution of (1.1), then since A;x = x, we have

b-1 —
Xl = AX] < M Y Z <nM(b —a—1)*|xI| < ||

s=a+1 z=a+1
for 0 < 2 < 1/(nM(b — a — 1)?), a contradiction. The proof of part (f) is similar and thus omitted. [
The final two theorems in this section allow us to substitute either hypothesis (H,) or (Hs) for (Hy).
Theorem 3.7. Assume (H;). For t € [a + 1,b — 1], define

wp := lim M, W, := lim M (3.4)

y—0t Yy Yoo Y

Then we have the following statements.

(a) If wg = 0 or w,, = 0, then there exists 4o > 0 such that (1.1) has a nontrivial solution for /. > io.

(b) If wp = oo or w,, = oo, then there exists /o > 0 such that (1.1) has a nontrivial solution for 0 < A < Ao.

(c) If wo = w,, = 0, then there exists /o > 0 such that (1.1) has at least two nontrivial solutions for A > Z.

(d) If wg = w,, = oo, then there exists Ao > 0 such that (1.1) has at least two nontrivial solutions for 0 < A < Jo.
(e) If wo, Wy < oo, then there exists iy > 0 such that (1.1) has no nontrivial solutions for 0 < J < .

(f) If wo, w,, > 0, then there exists .y > 0 such that (1.1) has no nontrivial solutions for i > Jo.

Theorem 3.8. Assume (Hs). Then, for any 4 € (0,00), (1.1) has a unique solution y,. Furthermore, such a solution y, satisfies the
following properties:

(i) y, is nondecreasing in A;
(ii) lim, o+ [ly,|l = 0 and lim;_[[y,|| = oo
(iii) y; is continuous in 2, that is, if 2 — Ao, then ||y, -y, | — 0.

Proof. This proof is modelled after [3, Theorem 2.2]. We first show that (1.1) has a solution for any fixed 4 € (0, 00). From
(H3) we see that A, is nondecreasing, and for t € [a, b], satisfies

b-1 b-1 b—1 _
ARY(E) =2 Y Gao(t,5)Gi(s,2)8@W(Ky(2) = K'2 ) Z G2(t,9)Gi(5,2)8(2)w(y(2)) = K'Ay(t) (3.5)
s=a+1 z=a+1 s=a+1 z=a+1
fory € 2. Let
b-1
Li=ib—a-1) Z g(z (3.6)
z=a+1

and let
-L,: t=a-1,b-1
yit)y=40: t=a,b,
L,: teja+1,b-1j,.
Theny € # and y(t) > 0 for t € [a+ 1,b — 1],. By (Hs) we have w(0) > 0 with w nondecreasing. Thus for t € [a+ 1,b — 1],

1 b1
Ay(t) = imw(0 ZZg

s=a+1 z=a+1
for m in (2.9) and L, in (3.6), and

b—-1 b-1
Ay(t) < IMw(y g(z) = Mw(y)L,

s:a+1 z=a+1

for M in (2.10). Thus
W(O)L, < A/y(t) < MW(L/)L/, te [Cl + ],b — 1]2
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Define ¢* and d, via
c-=sup{x:xL, <A;y(t)} and d.=inf{x:A;y(t) <xL;}.
Clearly ¢* > mw(0) and d, < Mw(L;). Choose c and d such that

0O<c< min{l,(c*)ﬁ} and max{l,(d*)ﬁ} <d < oo.

Define two sequences {u(t)};2; and {v(t)},2; via
—cL;: t=a-1,b-1,
u(t)=+¢ 0: t=a,b, U1 (0) = A (t), tela—1,b+1],,keN,
cl,: tela+1,b-1],,

and
—dL;: t=a-1,b-1,
vi(t) =< 0: t=a,b, Va1 (E) =A,i(t), tela—1,b+1],,keN.
dL,: tela+1,b-1],
From the monotonicity of A; and (3.5) we see that on [a + 1,b — 1], we have
L=t << <Y< < B << vy < vy =dly (3.7)
Let 6 = c/d € (0,1). We claim that
w(t) > 8" vi(t), telabl, (3.8)
Clearly uy = 6v; on [a — 1,b + 1],. Assume (3.8) holds for k = n; then, from the monotonicity of A; and (3.5) we obtain
n n\ ¢ n-+
U (€) > Atta(t) > A (6" 2a(6)) = (6") Asoalt) = " v (0)
for t € [a, b],. It follows from mathematical induction that (3.8) holds. From (3.7) and (3.8) we have
0 < Ut (£) — tg(t) < wa(t) — welt) < (1 - 50k) 0(t) = (1 - 50k)dL,;
for t € [a, b],, where | is a nonnegative integer. Hence
Jutsr = el < 21— e < (1= 6" )dL.
As a result, there exists a function y € 2 such that
limug(t) = lim v(6) = y(t), tela—1,b+1],,

and y is a nontrivial solution of (1.1). If there exist two nontrivial solutions y, and y, of (1.1), then A;y,(t) = y,(t) and
A;y,(t) =y,(t) for t €[a—1,b+ 1],. Then there exists an « > 0 such that y, > oy, on [a,b],; set op = sup{o:y,(t) >
oy, (t)}. Then o € (0,00), and y; (t) = ooy, (t) for t € [a,b],. If oo < 1, then, from (Hs), w(ogy, (t)) > aow(y,(t)) on [a, b],. This,
together with the monotonicity of w, implies that

Y1) = Ayi(8) = Ai(00y, () > Ay, () = ooy, (), tela+1,b-1],.

Thus, we can find 7 > 0 such that y,(t) > (a0 + 7)y,(t) on [a, b],, which contradicts the definition of «,. Hence, y,(t) > y,(t)
for t € [a, b],. Similarly, we can show that y,(t) > y,(t) for t € [a, b],. Therefore, (1.1) has a unique solution.

Using exactly the same argument as in the second part of the proof of [10, Theorem 6], we can show that (i), (ii), and (iii)
hold. The details are omitted here. This completes the proof of the theorem. [

4. Existence of three solutions

In this section we employ the Leggett—Williams Theorem [9] to establish the existence of at least three nontrivial solu-
tions to (1.1). Before proceeding to the theorem, however, we first introduce some notation.
A map ¢ is a nonnegative continuous concave functional on a cone 2 if it satisfies the following conditions:

(i) ¥ : 2 — [0,00) is continuous;
(i) y(x+ (1 =Qy) = ) + (1= Oy(y) forallx,y € 2 and 0 < ¢ < 1.
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Take the same cone 2 in (3.1) as before, and let
Pe={ye?: Iyl <c}

and
2,q,d):={y e Z:q<y(y), Iyl <d}.

The following theorem is due to Leggett and Williams [9].

Theorem 4.1. Let 2 be a cone in the real Banach space &, A: 2. — ?. be completely continuous and  be a nonnegative
continuous concave functional on 2 with y(y) < ||y|| for ally € 2.. Suppose there exists 0 < p < q < d < c such that the following
conditions hold:

(i) {y e 2(¥.q.d) : y(y) > q}#0 and y(Ay) > q for ally € Z(y, q,d);
(ii) [|Ay|l <p for [ly] < p;
(iii) Yw(Ay) > q fory € 2(y, q,c) with ||Ay| > d.

Then A has at least three fixed points y;, y,, and y; in 2. satisfying:

Iyill <p, ¥(,)>q, p<lysll withy(y;) <q.

Let the nonnegative continuous concave functional  : 2 — [0, c0) by defined by

yly)= _min y(t), yeZ (4.1)

tela+1,b-1],
note that for y € 2, 0 < y/(y) < |ly|| by the choice of cone 2 in (3.1).
Theorem 4.2. Assume (H;). Suppose that there exist constants 0 < p < q < q/0 < c such that, fort € [a+1,b — 1],
(Ho) f(t,y) < M(bf iz v €10.p),

(Hy )f(ty)>/(b l>zzfye[qq/0']
(Hi) f(t.y) < b“zlfye[Oc}

where m and M are as defined in (2.9) and (2.10), respectively, and ¢ = m/M as in (2.8). Then the boundary value problem (1.1)

has at least three nontrivial solutions y,, y,, ¥3 satisfying

il <p,  qa<y@2). [yl >p withy(ys) <q,
where  is given in (4.1).
Proof. Define the operatorA; : # — % as in (3.2). As mentioned in the proof to Theorem 3.2,A; : # — 2 and A; is completely

continuous. We now show that all of the conditions of Theorem 4.1 are satisfied. For all y € 2 we have y(y) < ||ly|. If y € Z.,
then |ly|| < c and assumption (H;;) implies f(z,y(z)) < ¢/(AM(b —a —1)*) for z € [a+ 1,b — 1],. As a result,

b-1  b- b-1  b-1
c
lA; x| = max A Gy(t,5)G1(5,2)f (z2,y(2)) < ———————— max Gy (t,9)Gq(s,2)
tela+1.b-1]; sza;l zza;l (b —a- ])2 tefa+1.b-1]; 52;1 z;l
cM(b—a— 1)
Ny
Mb-a-1)

Therefore A; : 2, — 2. In the same way, if y € 2, then assumption (Hy) yields f(t,y(t)) < fortefa+1,b-1],;as

p
M(b—a—1)?
in the argument above, it follows that A; : #, — 2,. Hence, condition (ii) of Theorem 4.1 is satisfied. To check condition (i) of
Theorem 4.1, choose y,(t)=q/o for tefa+1,b—1],. Then y, € 2(,q,q/0) and ¥ (y,) =y(q/0) >q, so that {y e
2(¥,q,q9/0) : y(y) > q}#0. Consequently, if y € 2(y,q,q/0), then q < y(z) < q/c for z€ [a+ 1,b — 1],. From assumption
(H10) we have that

q
2y2)>———
fz,y(2)) mb—a— 1)
forall ze [a+1,b— 1],; we see that

b-1  b-1

YAy)= min 23" 3" G(t,5)Gi(5,2)f(z.y(2)) >

tela b1, T S

Jmqb—a—1)y°
Jmb—a—-1)*

Thus we have
vAYy) >4, y<2(¥,q,9/0),
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so that condition (i) of Theorem 4.1 holds. Lastly we consider Theorem 4.1 (iii). Suppose y € 2(y,q, ¢) with ||A;y|| > q/o. By
the definitions of y and the cone 2,

Y(Ay)= min_  Ay(t) = oAyl > o0q/0 =q.

tela+1,b-1],

An application of Theorem 4.1 yields the conclusion. O

5. Semipositone result

In this section we establish the existence of at least one nontrivial solution for the boundary value problem (1.1), with
modified conditions on the nonlinearity f given as follows:

(Hi2) f:la+1,b—1], x [0,00) — [0,00) is continuous, and there exist t;,t, € (a+ 1,b — 1), such that

limJM: 00
y—oo Y

uniformly on [t1, t2],; (Hi3) there exists B > 0 such that f(t,y) > —Bforalltea+1,b—1],and ally > 0.
We remark that (H;) is a superlinear type of condition, whereas (Hi3) allows f(t, y) to be semipositone. The next lemma is
needed in the derivation of the main result of this section. These techniques are modeled after Bai and Xu [2].

Lemma 5.1. Let y; be the unique nontrivial solution of the linear boundary value problem

{A4y(t—2)—ﬁA2y(t—1)_1, tela+1,b-1], 5.1)
y(@)=0=~A%(@a—1), yb)=0=A%yb-1).
Then,

yi(t) <M?(b—a—1)’c/m, tela+1,b-1], (5.2)

where o is given in (2.8), m is given in (2.9), and M is given in (2.10).

Proof. The conclusion is immediate from Lemma 2.2. O

We will now apply Theorem 3.1 to obtain our main result in this section. Again let the Banach space be denoted .# and the
cone Z as in (3.1).

Theorem 5.2. Assume (Hy;) and (H;3). Let r > 0O, and take y; as in Lemma 5.1. If

. r rm
0 < A< min , , 52
{’<r||y1|| Mz(b—a—l)zB} (5-2)
where
ky = sup f(t,y) +B, (5.3)
te[a+1,b-1];, O<y<r
then the boundary value problem (1.1) has a nontrivial solution y*.
Proof. Let x(t) = 2By, (t). We will show that the following boundary value problem
A'y(t—2) - BAPy(t — 1) = ZF(t,y(t) = x(t)), tela+1,b-1], (5.4)
y(@)=0=~A%(@a-1), yb)=0=~A%yb-1), ’
where
: = 0,
F(t.w) = {f(nw) +B: w=0
f(t,0)+B: w<Q0,

has a nontrivial solution. Thereafter we will obtain a nontrivial solution for the boundary value problem 1.1. The problem
(5.4) is equivalent to the fixed point equation A;y(t) = y(t) for A, given in (3.2). We will prove, by Theorem 3.1, that A;
has a fixed point in 2.

We proceed as in the proof of Theorem 3.2. Let Q1 = {y € & : |ly|| < r}; for y € 2N 024, we have |y|| =r and

S5

-1

53

-1 (53) b-1  b-1 (5.2)
Ay(t) =4 Go(t,5)G1 (5, 2)F(2,y(2) = x(2)) < 2kr Y Y Galt,9)Gi(5,2) = ke () < 2ke|lys || < 7= |lyl-
s=a+1 z=a+1 s=a+1 z=a+1
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Thus, ||Ay| < |ly|| for y € 2 N 9Q;. Now let K be a positive real number such that

1
EMK< max Zb—lZGztsclsz) > 1. (5.5)

clatlb-1], S =
In view of (Hyy), there exists J > 0 such that for all w > J and t € [ty, t5],,
F(t,w) = f(t,w) + B > Kw. (5.6)
Set @, ={y € & : |ly|| <R}, where
R= r+max{2A”M2(b—a— 1)23/m,2j/a}, (5.7)
For y € 2 N 0Q,, we have |ly|| = R and
x(t) = /By, (t) < IM*(b —a — 1)’Bo/m < iM*(b —a — 1)*B- R

This implies for t € [a+ 1,b — 1], that

y(t) — x(t) > (1 —)LMZ(b—a—l)ZB%)y(t) > (1 —AMZ(b—a—UZB%)aR;

by (5.7) it follows for t € [t1, t;], that

y(t) — x(t) > (1 —IM*(b—a— 1)23%)0'1? > %JR > ] (5.8)
Hence, by (5.6) and (5.8), we see that for z € [t1, t3],,
F(z,y(z) — x(z)) = Ky(z) — x(2)) > 1O'KR. (5.9)

2
Applying (5.5) and (5.9), we find

b-1  b-1 b-1 &

IAyl =7 _max > Y Gt,9)Gi(5,2F(Z,y(2) —x(2) = 4 max Y Y Gy(t,5)Gi(5,2)F(z,y(2) - x(2))

tela+1,b-1], seatl z—an1 tefa+1,b-1]; scan1 =0
b-1
1 2

>5/0KR max > > Gy(t,5)Gi(s,2) > R

2 tela+1,b-1]; seat1 =1

This shows that ||A;y|| = R = |ly|| for y € 2 N 9Q,. It now follows from Theorem 3.1 that A; has a fixed point u* € 2 with
r < ||u*|] < R. Further, using (5.2) and Lemma 2.2, we get for t € [a+ 1,b — 1], that

u'(t) = o|ju|| = ro = IM*(b—a—1)’Ba/m > By, (t) = x(t).
Therefore, let us define

y(t):=u(t)—x(t) 20, tela+1,b-1],.
We will prove that y* is in fact a nontrivial solution of the boundary value problem (1.1). To see this, we have for
tea+1,b-1], that A,u*(t) = u*(t), or

b-1  b-1

Y Galt,)Gi (5. 2)[f (2" (2) - x(2)) + B] = ' (8),

s=a+1 z=a+1

which, noting that y, (t) = 322! a1 a+1GZ(t 5)G1 (s, 2), gives

b-1 —
iy Z Gy(t,5)Gi(s,2)f (z,u*(2) — x(2)) + 2By, (t) = w*(¢),

s=a+1 z=a+1
or equivalently

b—1  b-1
Y Gat,5)Gi(s.2)f (z.u' (2) — x(2) = u'(£) — x() = y* (0.

s=a+1 z=a+1

The proof is complete. O
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