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Abstract. We turn ‘the’ Church-Turing Hypothesis from an ambiguous source of sensational specula-
tions into a (collection of) sound and well-defined scientific problem(s):

Examining recent controversies, and causes for misunderstanding, concerning the state of the Church-
Turing Hypothesis (CTH), suggests to study the CTH relativeto an arbitrary but specific physical
theory—rather than vaguely referring to “nature” in general. To this end we combine (and compare)
physical structuralism with (models of computation in) complexity theory. The benefit of this formal
framework is illustrated by reporting on some previous, andgiving one new, example result(s) of com-
putability and complexity in computational physics.
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1 Introduction

In 1937 Alan Turing proposed, and thoroughly investigated the capabilities and fundamental limitations
of, a mathematical abstraction and idealization of a computer. This Turing machine (TM) is nowadays
considered the most appropriate model of actual digital computers, reflecting what a common PC (say) can
do or cannot, and capturing its fundamental in-/capabilities in computability and complexity classes: any
computation problem that can in practice be solved (efficiently) on a PC belongs to∆1 (to P ); and vice
versa. In this sense, the TM is widely believed to be universal; and problemsP 6∈ P , or the Halting problem
H 6∈ ∆1, have to be faced up to as principally unsolvable in reality.

1.1 Turing Universality in Computer Science and Mathematics

Indeed there is strong evidence for this belief:

• There exists a so-calleduniversalTuring machine (UTM), capable of simulating (with at most poly-
nomial slowdown) any other given TM.

• Several other natural, yet seemingly unrelated models of computation have turned out as equivalent to
the TM: WHILE-programs,λ–calculus etc. Notice that these correspond to real-world programming
languages likeLisp!

We qualify those evidence ascomputer scientific—in contrast to the followingmathematicalevidence:

• An integer functionf is TM-computable iff it isµ-recursive;
that is, f belongs to the least class of functions

– containing the constant function 0,
– the successor functionx 7→ x+1,
– the projections(x1, . . . ,xn) 7→ xi ,
– and being closed under composition,
– under primitive recursion,
– and under so-calledµ-recursion.

Observe that this is a purely (and natural, inner-) mathematical notion indeed.

1.2 Turing Universality in Physics

The⋆ Church-Turing Hypothesis (CTH) claimsthat every function which would naturally be regarded as
computable is computable under his[i.e. Turing’s] definition, i.e. by one of his machines[Klee52, p.376].
Its strongversion claims thatefficientnatural computability corresponds topolynomial-timeTuring com-
putability. Put differently, CTH predicts a negative answer to the following

Question 1.Does nature admit the existence of a system whose computational power strictly exceeds that
of a TM?

Notice that the CTH transcends computer science; in fact, itinvolvesphysicsas the general analysis of
nature. Hence, if the answer to Question 1 turned out to be negative, this would establish a third in ad-
dition to the above two, computer scientific and mathematical, dimensions of Turing universality (cmp.
[Benn95,Svoz05]):

• The class of (efficiently) physically computable functionscoincides with the class of (polynomial-time)
Turing computable ones.

Indeed, a TM can be built, at least in principle⋆⋆, and hence constitutes a physical system; whereas a
negative answer to Question 1 means that, conversely,everyphysical ‘computer’ can be simulated (maybe
even in polynomial time) by a TM. Such an answer is supported by long experience in two ways:

⋆ To be honest, this is justone out of a large variety of interpretations of this hypothesis; see, e.g. [Ord02, SEC-
TION 2.2], [Cope02], or [LoCo08]

⋆⋆ it is for instance realized (in good approximation) by any standard PC
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– the constant failure to physically solve the Halting problem and
– the success of simulating a plethora of physical systems on aTM,

namely inComputational Physics.

However so far all attempts have failed to prove the CTH, i.e.have given at best bounds on thespeedof
calculations but not on the general capabilities of computation, based e.g. on the laws of thermodynamics
[BeLa85,Fran02] or the speed of light (special relativity)[Lloy02]. In fact it has been suggested that the
Church-Turing Hypothesis be included into physics as anaxiom: just like the impossibility of perpetual
motion as a source of energy first started as a recurring experience and was then postulated as the Second
Law of Thermodynamics. Either way, whether axiomatizing ortrying to prove the Church-Turing Thesis,
one first needs a formalization of Question 1.

1.3 Summary

The CTH is the subject of a plethora of publications and of many hot disputes and speculations. The present
work aims to put some reason into the ongoing, and often sensational [Kie03b,Lloy06], discussion. We are
convinced that this requires formalizing Question 1. However it seems unlikely to reach consensus about
one single formalization. In fact we notice that most, if notall, disputes about the state of the Church-Turing
Hypothesis arise from disagreeing, and usually only implicit, conceptions of how to formalize it. So what
I propose is aclassof formalizations, namely one for each physical theory.

Manifesto 2. a) Describing the scientific laws of nature is the purpose andvirtue of physics. It does so
by means of various physical theoriesΦ, each of which ‘covers’ some part of reality (but becomes
unrealistic on another part).

b) Consequently, instead of vaguely referring to ‘nature’,any claim concerning (the state of) the CTH
should explicitly mention the specific physical theoryΦ it considers;

c) and criticism against such a claim as ‘based on unrealistic presumptions’ should be regarded as di-
rected towards the underlying physical theory (and stipulate re-investigation subject to anotherΦ,
rather than dismissing the claim itself).

d) Also the input/output encoding better be specified explicitly when referring to some “CTHΦ”: How is
the argument~x, of natural or real numbers, fed into the system; i.e. how does itspreparation (e.g. in
Quantum Mechanics) proceed operationally; and how is the ‘result’ to be read off (e.g. what ‘question’
is the system to answer)?[Ship93, SECTION I]

The central Item b) explains for the title of the present work; the suggestion to consider physically-
relativized Church-Turing Hypotheses “CTHΦ” bears the spirit of the related treatment of the famous
“P = N P?” Question in [BGS75].

Section 3 below expands on the concept (and notion within thephilosophy of science) of a physical
theoryΦ and its analogy to a model of computation in computer science. We turn Manifesto 2b) into a
research programme (Section 5.1) and illustrate its benefitto computational physics. Before, Section 2
reports on previous attempts to disprove the CTH by examplesof hypercomputers purportedly capable
of solving the Halting problem, and the respective physicaltheories they exploit. We then significantly
simplify one such example to carefully inspect its source ofcomputational power and, based on this insight,
are in Section 4.2 led to extend the above

Manifesto 2 (continued).

e) The term “exist” in Question 1 must be interpreted in the sense of constructivism.

2 Physical Computing

Common (necessarily informal) arguments in favor of the Church-Turing Hypothesis usually proceed along
the following line: A physical system is mathematically described by an ordinary or partial differential
equation; this can be solved numerically using time-stepping—as long as the solution remains regular:
whereas a singular solution is unphysical anyway and/or toounstable to be harnessed for physical comput-
ing.
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On the other hand, the literature knows a variety of suggestions for physical systems of computational
power exceeding that of a TM; for instance:

Example 3 i) General Relativity might admit for space-times such that the clock of a TM M following
one world-line seems to reach infinity within finite time according to the clock of an observer O starting
at the same event but following another world-line; O thus can decide whether M terminates or not
[EtNe02].
However it is not known whether such space-times actuallyexist in our universe; and if they do, how
to locate them and how far off from earth they might be in orderto be used for solving the Halting
problem. (Notice that the closest known Black Hole, namely next to starV4641, takes at least1600
years to travel to). Finally it has been criticized that, in this approach, a TM would have to actually
run indefinitely—and use corresponding amounts of storage tape and energy.

ii) While ‘standard’ quantum computers using a finite numberof qubits can be simulated on a TM (al-
though possibly at exponential slowdown),Quantum Mechanics (QM) supports operators oninfinite
superpositions which may be exploited to solve the Halting problem[CDS00,Kie03a,ACP04,Zieg03].
On the other hand, already finite⋆ ⋆ ⋆ quantum parallelism is in considerable doubt of practicality due
to issues ofdecoherence, i.e. susceptibility to external, classical noise (a kind of instability if you like);
hence how much more unrealistic be infinite one!

iii) Certain theories ofQuantum Gravitation involve, already in their mathematical formulation, combi-
natorial conditions which are known undecidable to a TM[GeHa86].
These, however, are still mere (and preliminary) theories.. .

iv) A light ray passing through a finite system of mirrors corresponds to the computation of a Turing
machine; and by detecting whether it finally arrives at a certain position, one can solve the Halting
problem[RTY94].
The catch is that the ray must adhere toGeometric Optics, i.e. have infinitely small diameter, be
devoid of dispersion, and propagate instantaneously; alsothe mirrors have to be perfect.

v) The above claim that singular solutions can be ruled out isput into question by the discovery of non-
collision singularities inNewtonian many-body systems[Yao03,Smi06a].
On the other hand, the construction of these singularities heavily relies on the moving particles being
idealpoints obeying Newton’s Law (with the singularity at 0) up toarbitrarysmall distances.

vi) EvenClassical Mechanics has been suggested to allow for physical objects which can beprobed
in finite time to answer queries “n∈ X” for any fixed set X⊆ N (and in particular for the Halting
problem)[BeTu04].

Notice that each approach is based on, and in fact exploits sometimes beyond recognition, some (more of
less specific) physical theory. Also, the indicated reproaches against each approach to hypercomputation in
fact aim at, and thus challenge the correctness of, the physical theory it is based on.

3 Physical Theories

have been devised for thousands of years as the scientific means for objectively describing, and predicting
the behavior of, nature. We nowadays may feel inclined to patronize e.g. ARISTOTLE’s eight books, but
his concept ofElements(air, fire, earth, water) constitutes an important first steptowards putting some
structure into the many phenomena experienced†

Since Aristotle, a plethora of physical theories of space-time has evolved (cf. e.g. [Duhe85]), associated
with famous names like GALILEO GALILEI , PTOLEMY, NICOLAUS COPERNICUSJOHANNES KEPLER,
SIR ISAAC NEWTON, HENDRIK LORENTZ, and ALBERT EINSTEIN. Moreover theories of electricity and
magnetism have sprung and later became unified (JAMES CLERK MAXWELL ) with GAUSSian Optics.

⋆⋆⋆ The present world-record seems to provide calculations on only 28 qubits; and even that is rather questionable
[Pont07]

† Even more, closer observation reveals that an argument like“A rock flung up will fall down,becauseit is a rock’s
nature to rest on earth.” is no less circular than the following two more contemporary ones: “A rock flung up will
fall down,becausethere is a force pulling it towards the earth.” and Electrons in an atom occupy different orbits,
becausethey are Fermions.
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And there are various‡ quantum mechanical and field theories. Then the unification process continued:
Electricity andMagnetism, been merged intoElectrodynamics, were joined byQuantum Mechanics
to make upQuantumelectrodynamics (QED), and then withWeak Interaction formedElectroweak
Interaction; moreoverGravitation andSpecial Relativity becameGeneral Relativity.

Remark 4 (Analogy between a Physical Theory and a Model of Computation). Each such theory has
arisen, or rather been devised, in order to describe with sufficient accuracy some part of nature—while nec-
essarily neglecting others. (Quantum Mechanics for instance is aimed at describing elementary particles
moving considerably slower than light; whereas RelativityTheory focuses on very fast yet macroscopic ob-
jects.) We point out the analogy of a physical theory to a model of computation in computer science: Here,
too, the goal is to reflect some aspects of actual computing devises while being unrealistic with respect
to others. (A Turing machine has unbounded working tape and hence can decide whether a 4GB-memory
bounded PC algorithm terminates; whereas the canonical model for computing devises with finite memory,
a DFA is unable to decide the correct placement of brackets.)

But what exactlyis a physical theory? Agreement on this issue is, in addition toa means for clearing up
misunderstandings as indicated in Footnote‡, a crucial prerequisite for treating important further questions
like:

Are Newton’s Laws an extension of Kepler’s?[Duhe54]Does Quantum Mechanics imply Classical
Mechanics—and if so, in what sense exactly?

To us, such intertheory relations [Batt07,Stoe95] are in turn relevant in view of the above Manifesto 2 with
questions as the following one:

Do the computational capabilities of Quantum Mechanics include those of Classical Mechanics?

3.1 Structuralism in Physics

Just like a physical theory is regularly obtained by trying to infer a simple description of a family of em-
pirical data points obtained from experimental measurements, ameta-theory of physics takes the variety of
existing physical theories as empirical data points and tries to identify their common underlying structure.
Indeed the philosophy of science knows several meta-theories of physics, that is, conceptions of what a
physical theory is [Schm08]:

• SNEED focuses on their mathematical aspects [Snee71]; STEGMÜLLER suggests to formalize physical
theories in analogy to theBourbaki Programme in mathematics [Steg79,Steg86].

• C.F. V. WEIZSÄCKER envisions the success of unifying previously distinct theories (recall above) to
continue and ultimately lead into a “Theory of Everything” [Weiz85,Sche97]. To this perspective,
any other physical theory (like e.g. Newton Mechanics) is merely a tentative draft [Wein94].

• M ITTELSTAEDT emphasizes plurism in physical theories, that is, various theories equally appropriate
to describe the same range of phenomena [Mitt72, SECTION 4]. Also [Hage82] points out (among
many other things) that any physical theory, ormodel, is a mere approximation and idealization of
reality.

• LUDWIG [Ludw90] and, building thereon, SCHRÖTER [Schr96] propose the, for our purpose, most
appropriate and elaborated formalization, based on the following (meta-)

Definition 5 (Sketch).A physical theoryΦ consists of

– a description of a part of nature it applies to (WB)
– a mathematical theory as the language to describe it (MT)
– and mapping between physical and mathematical objects (AP).

‡ Remember how scientists regularly get into a fight when starting to talk about (their conception of) Quantum Me-
chanics
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Note that, in this setting, each physical theory has a specific and limited range of applicability (WB): a quite
pragmatic approach, compared to the almost eschatologicalconception of von Weizsäcker and Weinberg.
The only hope implicit in Definition 5, on the other hand, is that the variety of physical theories keeps
augmenting such as their WBs (=images of MTs under APs) eventually ‘cover’ and describe whole nature:
just like a mathematicalmanifold being covered and described by the images of Euclidean subsets under
charts [Miln97].

3.2 On the Reality of Physical Theories

The purpose of a physical theoryΦ is to describe some part of nature. Hence, if and when some better
descriptionΦ′ is found, a ‘revolution’ occurs andΦ gets disposed of [Kuhn62]. However this it seems to
have happenedlege artisonly very rarely (and is one source of criticism against Kuhn): more commonly,
the new theoryΦ′ is applied to those parts of nature which the old one would notdescribe (sufficiently
well) while keepingΦ for applications where it long has turned as appropriate.

Example 6 a) Classical/Continuum Mechanics (CM) for instance is often heard of as ‘wrong’—because
matter is in fact composed from atoms circled by electrons onstable orbits—yet it still constitutes the
theory which most mechanical engineering is based on.

b) Similarly, audio systems are successfully designed using Ohm’s Law for (complex) electrical resis-
tance: in spite of Maxwell’s Equations being a more accuratedescription of alternating currents, not
to mention QED.

In fact, QM (which the reader might feel tempted to suggest as‘better’, in the sense of more realistic, a
theory than CM) has been proven tonot include or imply CM [Ludw85]—although such claims regularly
re-emerge particularly in popular science. Moreover, evenQM itself is again merely§ an approximation to
parts of nature, unrealistic e.g. at high velocities or in the presence of large masses.

These observations urge us to enhance Manifesto 2a+c):

Manifesto 7. A physical theoryΦ (like, e.g. CM) constitutes an ontological entity of its own: It existsno
less than “points” or “atoms” do. In particular, it advisable to investigate the computational power of,
and within, such aΦ (and not dismiss it on the grounds of being unrealistic: a tautological feature of
any theory). Again we stress the analogy to theoretical computer science (Remark 4) studying the compu-
tational power of models of computation M (e.g. finite automata, nondeterministic pushdown automata,
linear-bounded nondeterministic Turing machines: the famousChomsky Hierarchy of formal languages)
althougheach such M is unrealistic insomerespect.

4 Hypercomputation in Classical Mechanics?

Let us exemplify Example 3vi) with an alternative ‘hypercomputer’ similar to the one presented in [BeTu04]
yet stripped down to purely exhibit, and make accessible forfurther study, the core idea.

Example 8 Consider a solid body, a cuboid into which has been carved a ‘comb’ with infinitely many teeth
of decreasing width and distance, cf. Figure 1. Moreover, having broken off tooth no.n iff n6∈ H, we arrive
at an encoding of the Halting problem into a physical object in CM.

This very object (together with some simple mechanical control) is a hypercomputer! Indeed it may be
read off, and used to decide for each n∈ N the question “n∈ H?”, by probing with a wedge the presence
of the corresponding tooth.

A first reproach against Example 8 might object that the described system, although capable of solving
the Halting problem, is no hypercomputer: because it cannot do anything else, e.g. simulate other Turing
machines. But this is easy to mend: just attach the system to auniversal TM, realized in CM [FrTo82].

§ In particular we disagree with the, seemingly prevalent, opinion that Quantum Theory is somehow salient or even
universal in some sense [HaHa83,Holl96]
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Fig. 1. Infinite comb with a wedge to probe its teeth

The second deficiency of Example 8 is more serious: the concept of a solid body in CM is merely
an idealization of actual matter composed from a very large but still finite number of atoms—bad news
for an infinite comb. However, as pointed out in Section 3.2, we are to take for serious, and study the
computational power of and within, CM as a physical theory.

But even then, there remains an important

Observation 9 (Third issue about Example 8)Even within CM, i.e. granting the existence of ideal solids
and infinite combs, how are we to get hold of one encoding H? Obviously one cannotconstructit from a
blank without solving the Halting problem in the first place.Hence our only chance is to simplyfind one
(e.g. left behind by some aliens[Clar68,StSt71]) without knowing how to create one ourselves.

4.1 Existence in Physics

In order to formalize the Church-Turing Hypothesis (a prerequisite for attempting to settle it), we thus
cannot help but notice an ambiguity about the word “exist” in Question 1 pointed out already in [Zieg03,
REMARK 1.4]: For a physical object to exist within a physical theory, does that mean that

A) one has to actuallyconstructit?
B) its non-existence leads to a contradiction?
C) or that itsexistencedoesnot lead to a contradiction (i.e. is consistent)?

These three opinions correspond in mathematics to the points of view taken by aconstructivist, aclassical
mathematician (working e.g. in theZermelo-Fraenkel framework), and one ‘believing’ in theAxiom
of Choice, respectively. And at least the last standpoint (C) is well known to lead to counter-intuitive
consequences when taken in the physical realm of CM:

Example 10 (Banach-Tarski Paradoxon)For a solid ball (say of gold) of unit size in 3-space, there ex-
ists a partition into finitely many (although necessarily not Lebesgue-measurable) pieces that, when put
together appropriately (i.e. after applying certain Euclidean isometries), then formtwo solid balls of unit
size.

Note that this example is in no danger of causing inflation: onthe one hand, because actual material gold
is not infinitely divisible (cmp. the second deficiency of Example 8); but evenwithin CM, because the
partition of the ball ‘exists’ merely in the above Sense C).

Hence, in order to avoid both ‘obviously’ unnatural (counter-) Examples 8 and 10 while sticking to
Manifesto 7, we are led to transfer and adapt the constructivist standpoint from mathematics to and for
physics.
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4.2 Constructivism into Physical Theories!

As explained above, the “existence” of some physical objectwithin a theoryΦ is to be interpreted con-
structively. Let us, similar to [CDCG95], distinguish two ways of introducing constructivism into a physical
theoryΦ = (MT,AP,WB):

α) By interpreting the mathematical theoryMT constructively; compare [BiBr85,Kush84,BrSv00,Flet02]
and [DSKS95, SECTION III].

β) By imposing constructivism onto the side of physical objectsWB.

It seems that Methodα), although meritable of its own, does not quite meet our goalof making aphysical
theory constructive:

Example 11 Consider the condition for a function f: X →Y between normed spaces to beopen; or even
simpler: that of the image f[B(0,1)]⊆Y of the unit ball in X to be an open subset of Y.

∀u∈ f [B(0,1)] ∃ε > 0 ∀y∈ B(u,ε) ∃x∈ B(0,1) : f (x) = y . (1)

A constructivist would insist thatboth existential quantifiers be interpreted constructively; whereas in a
setting of computation on real numbers by rational approximation, applications suffice that onlyε be com-
putable from u, while the existence of x depending on y need not: compare[Zieg06].

4.2.1 Constructing Physical Objects
The conception underlyingβ) is that every object in nature (or more precisely: that partof nature described
by WB) is

• either a primitive one (e.g. a tree, modeled inΦ as a homogeneous cylinder of densityρ = 0.7g/cm3;
or, say, some ore, modeled asCuFeS2)

• or the result of some technological process applied to such primitive objects.

The latter may for instance include crafting a tree into a wheel or even a wooden gear; or smelting ore to
produce bronze.

Notice also how such a process—the sequence of operations from cutting the tree, cleaning, saw-
ing, carving; or of melting, reducing, and alloying copper—constitutes analgorithm (and crucial cultural
knowledge passed on from carpenters or redsmiths to their apprentices). More modern and advanced sci-
ence, too, knows (and teaches students) ‘algorithms’ for constructing physical objects: e.g. in mechanical
engineering (designing a gear, say) or in QM (using a furnacewith boiling silver and some magnets to cre-
ate a beam of spin-1

2 particles as in the famous STERN and GERLACH Experiment and thus operationally
constructa physical object corresponding viaAP to a certain wave functionψ as a mathematical object in
MT).

We are thus led to extend Definition 5:

Definition 12 (Meta-). TheWB of a physical theoryΦ consists of

• a specific collection ofprimitive objects (PrimOb)
• and all so-calledconstructibleobjects,

i.e., that can be obtained from primitive ones by a sequence(oi) of preparatory operations.

• The latter are elements o from a specified collectionPrepOp.
• Moreover, the sequence(oi) must be “computable”.

The first two items of Definition 12 are analogous to a mathematical theoryMT consisting ofaxioms(i.e.
claims which are true by definition) andtheorems: claims which follow from the axioms by a sequence of
arguments. The last requirement in Definition 12 is to prevent the body in Example 8 from being “con-
structed” by repeated¶ “breaking off a tooth” as preparatory operations. On the other hand, we seem to be

¶ Like me first, the reader may be tempted to admit only finite sequences of preparatory operations. However this
would exclude woodturning a handrail out of a wooden cylinder by letting the carving knife follow a curve, i.e. a
continuous sequence
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heading for a circular notion: trying to formally capture the computationalcontents of a physical theory
Φ required to restrict to ‘constructible’ objects, which in turn are defined as the result of acomputable
sequence of preparatory operations. That circle is avoidedas follows

Definition 12 (continued).“Computability” here means relative to a pre-theoryϕ to, and to be specified
with, Φ.

4.2.2 Pre-Theories: Ancestry among Physical Theories
Recall the above example from metallurgy of redoxing an ore:this may described by thephlogiston theory
(an early form of theoretical chemistry, basically extending Aristotle’s concept of fourElements by a fifth
resembling what nowadays would be considered oxygen). Sucha ‘chemical’ theoryϕ of its own is required
to formulate (yet does not imply) metallurgyΦ, and in particular the algorithm therein that yields to bronze:
ϕ is apre-theory to Φ.

We give some further, and more advanced, examples of pre-theories:

Example 13. a) The classicalHall Effect relies onOhm’s law of electrical direct current as well as on
Lorentz’ force law.

b) The Stern-Gerlach experiment, and the quantum theory of spin Φ it spurred, is based on
– a classical, mechanical theory of a spinning top and precession;
– some basic theory of (inhomogeneous) magnetism and in particular of Lorentz force onto a dipole
– an atomic theory of matter (to explain e.g. the particle beam)
– and even a theory of vacuum (TORRICELLI, VON GUERICKE).

c) In fact, any quantum theory of microsystems requires [Ludw85] some macroscopic pre-theory in order
to describe the devices (furnaces, scintillators, amplifiers, counters) for preparing and measuring the
microscopic ensembles under consideration.

d) BARDEEN, COOPER, and SCHRIEFFER’s Nobel prize-winning BCS-Theory of superconductivity is
essentially based on QM

e) whereas superconducting magnets, in turn, are essentialto many particle accelerators used for explor-
ing elementary particles.

The reader is referred to [Schr96, DEFINITION 4.0.8] for a more thorough, and formal, account of this
concept.

Observation 14 Technological progress can be thought of as a directed acyclic graph: a node u corre-
sponds to a physical theoryΦ; and may be based on (one or more) predecessor nodes, pre-theoriesϕ to
Φ. Put differently, physical theories formnetsor logical hierarchies; cmp.[Schr96, VERMUTUNG 14.1.2]
and[Stoe95].

5 Applications to Computational Physics

Computer simulations of physical systems have over the lastfew decades become (in addition to exper-
imental, applied, and theoretical) an important new discipline of physics of its own. It has, however, re-
ceived only very little support on behalf of Theoretical Computer Science. Specifically, scientists working
in this area (typically highly-skilled programmers with anextensive education in, and excellent intuition
for, physics) are highly interested in, and generally ask

Question 15.Why is a specific (class of) physical systems to hard (in the sense of computing resources like
CPU-time) to simulate? Are our algorithms optimal for them,and in what sense? Which are the principal
limits of computer simulation?

Answers to such questions for various physical systemsΦ (more precisely: theories in the sense of Sec-
tion 3) are highly appreciated in Computational Physics; answers given of course in the language of, and
using methods from, Computational Complexity Theory [Papa94], namely locatingΦ in some complexity
(or recursion theoretic) classandproving it complete for that class.
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We observe that, apart from sensational attempts [Lloy06],there are rather few serious and rigorous an-
swers to such questions to-date [FLS05,Wolf85,Moor90,Ship93,Svoz93,ReTa93,RTY94,PIM06,Loff07].
One reason therefor might be that, as opposed to classical problems considered in computational com-
plexity, those arising in Computational Physics naturallyinvolve real numbers [PERi89,WeZh02,WeZh06]
where uncomputability easily occurs without completeness[Grze57,Wolf85,Moor90,Smi06a,MeZi06]. On
the other hand, there is a well-established theory of bit-complexity and (e.g.N P–) completeness overR
[Frie84,Ko91] Moreover for problemsdefinedover real numbers but restricted to rational inputs, the situa-
tion can become quite subtle (and interesting): see, e.g., [CCK*04] or [Zieg06, PROPOSITION30].

5.1 Sketch of A Research Programme

We propose a systematic exploration of the computational power (i.e. completeness) of a large variety of
physical theories. The first goal is a general picture of physically-relativized Church-Turing Hypotheses,
that is, on the boundary between decidability and Turing-completeness; later one may turn to lower com-
plexity classes likeEX P , P SPAC E , N P , P , andN C . The focus be on a thorough investigation, starting
from simplest, decidable theories and slowly proceeding towards more complex ones (not necessarily in
historical order) rich enough to admit a Turing- (i.e.∆2-) complete system therein. In particular, it seems
advisable to begin with rather modest (rather than straightaway with sexy ‘new’) physics:

5.2 Celestial Mechanics

Recall the historical progress of describing and predicting the movement of planets and stars observed in
sky from Eudoxus/Aristotle via Ptolemy, Copernicus, and Kepler to Newton and Einstein. Indeed, these de-
scriptions constitute (not necessarily comparable, in thesense of reduction) physical theories! The present
subsection exemplifies our proposed approach by investigating and reporting on the computational com-
plexities of two of them. (We admit that, lacking any option for preparation, celestial mechanics is of
limited use as a computational system in the sense of Manifesto 2d).

5.2.1 Newton
Consider a physical theoryΦ of N points moving in Euclidean 3-space under mutual attractingforce
proportional to distance−2 (inverse-square law). This is the case forElectrostatics (Coulomb) as well as
for Classical Gravitation (Newton). Some questions, in the sense of Manifesto 2d), mayask:

1. Does point #1 reach within one second the unit ballB centered at the origin?
2. Does some point eventually escape to infinity?
3. Do two points (within 1sec or ever) collide?

It has been argued that Question c) makes not much sense, because a ‘collision’ of ideal points (recall
Manifesto 7) can be analytically continued to just pass through each other. Note that Question a) is not
‘well-posed’ in case the point just touches the boundary ofB; it is therefore usually accompanied by the
promisethat point #1 either meets the interior ofB within one second or avoids the blown-up ball 2B for
two seconds; and shownP SPAC E -hard in this case [ReTa93]. Question b) has only recently been shown
to make sense in that a positive answer is actually possible [Xia92]; and it has been shown undecidable
[Smi06a]—however for input configurations described by (possibly transcendental)real numbers given as
infinite sequences of rational approximations: for such encodings, mere discontinuity is known to trivially
imply uncomputability without completeness [Grze57].

5.2.2 Planar Eudoxus/Aristotle
An early theory of celestial mechanics originates from ancient Greece. An important purpose of it, and also
of its successors (see Section 5.2.4 below), was to describeand predict the movement, and in particular
conjunctions, of planets and stars. Let us captures this, distinguishingshort-term from long-term behavior
[Ship93, SECTION I], in the following

Question 16. 1. Will certain planets attain perfect conjunction, ever?
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2. or within a given time interval?
3. or reach an approximate conjunction, i.e. meet up to some prescribed angular distanceε?

According to ARISTOTLE (BookΛ of Metaphysics) and EUDOXUS OFCNIDUS, earth resides in the center
of the universe (recall the beginning of Section 3) and is circled bycelestial spheresmoving the celestial
bodies.

Definition 17. Let Φ denote the physical theory (which we refrain from fully formalizing in the sense of
Definition 5 or even[Schr96]) parameterized by the initial positions ui of planets i= 1, . . . ,N, and their
constant directions~di and velocities vi of rotation.

By Φ′, we mean a two-dimensionally restricted version: planets rotate on circles perpendicular to one
common direction; compare Figure 2. Moreover, initial positions and angular velocities are presumed
‘commensurable‖’, that is, rational (multiples ofπ).

Fig. 2. Celestial orbs as drawn in PETERAPIAN’s Cosmographia(Antwerp, 1539)

Recall thatN C ⊆ P is the class of problems solvable in polylogarithmic parallel time on polynomially
many processors; whereasP–hard problems (w.r.t.logspace-reductions, say) presumably do not admit
such a beneficial parallelization. The greatest common divisor gcd(a,b) of two given (say,n-bit) integers
can be determined∗∗ in polynomial time; it is however not known to belong toN C nor beP -hard; the
same holds for the calculation of a extended Euclidean representation “a · y+ b · z= gcd(a,b)”, i.e. of
(y,z) = gcdex(a,b) [GHR95, B.5.1].

After these preliminaries, we are able to state the computational complexity of the above theoryΦ′;
more precisely: the complexity, in terms ofΦ′s parameters, of the decision problems raised in Question 16:

Theorem 18. Let k≤ n∈ N and u1, . . . ,un,v1, . . . ,vn ∈Q be given initial positions and angular velocities
(measured in multiples of2π) of planets#1, . . . ,#n in Φ′.

‖ We don’t want anybody to get drowned like, allegedly, HIPPASUS OFMETAPONTUM. Also, since rational numbers
are computable, we thus avoid the issues from Section 4.2.

∗∗ The attentative reader will connive our relaxed attitude concerning decision versus function problems
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a) Planets#1and#2will eventually appear in perfect conjunction iff v1 6= v2 ∨u1 = u2.
b) Planets#1 and#2 appear closer thanε > 0 to each other within time interval(a,b) iff it holds, in

interval notation:
/0 6= Z ∩

(
(a,b) · (v1− v2)+u1−u2+(−ε,+ε)

)
.

This can be decided withinN C
1.

c) The question of whetherall planets#1, . . . ,#n will ever attain a perfect conjunction, can be decided in
N C

gcd;
d) and if so, the next time t for this to happen can be calculated in N C

gcdex.
e) Whether there exist k (among the n) planets that ever attain a perfect conjunction, isN P –complete a

problem.

5.2.3 Proofs
The major ingredient is the following tool concerning the computational complexity of problems about
rational arithmetic progressions:

Definition 19. For u,v∈Q, let u÷ v := (a÷b)/q andgcd(u,v) := gcd(a,b)/q where a,b,q∈ Z are such
that u= a/q and v= b/q and1= gcd(a,b,c); similarly for uremv andlcm(u,v).

For a,α ∈Q, write Pa,α := {α+a ·v : z∈ Z}.

Lemma 20. a) Given a,α ∈Q, the unique0≤α′ < a with Pa,α =Pa,α′ can be calculated asα′ := α rema

within complexity classN C
1.

b) Given a,α and b,β, the question whether Pa,α ∩Pb,β = /0 can be decided inN C
gcd

c) and, if so, c,γ with Pa,α ∩Pb,β = Pc,γ can be calculated inN C
gcdex.

d) Items b) and c) extend from two to the intersection of k given arithmetic progressions.
e) Given n and a1,α1, . . . ,an,αn, determining the maximum number k of arithmetic progressions P(i1) :=

Pai1,αi1
, . . . ,P(ik) := Paik

,αik
that have nonempty common intersection, isN P–complete.

A result similar to the last item has been obtained in [MaHa94]. . .

Proof. a) Notice thatPa,α =Pa,α′ ⇔α−α′ ∈Pa,0. Hence there exists exactly one suchα′ in [0,a), namely
α′ = α rema. Moreover, integer division belongs toN C [BCH86,CDL01].

b) Observe thatPa,α∩Pb,β 6= /0 holds iff gcd(a,b) dividesα−β. Indeed, the extended Euclidean algorithm
then yieldsz′1,z

′
2 ∈Zwith gcd(a,b)=−a·z′1+b·z′2; thenα−β=−a·z1+b·z2 yieldsPa,α ∋α+a·z1=

β+b ·z2 ∈ Pb,β. Converselyα+a ·z1 = β+b ·z2 ∈ Pa,α ∩Pb,β implies thatα−β =−a ·z1+b ·z2 is a
multiple of any (and in particular the greatest) common divisor ofa andb.

c) Notice thatc = lcm(a,b) = a ·b/gcd(a,b); and, according to the proof of b),γ := α+a · z1 will do,
wherez1,z2 ∈ Z with α−β = −a ·z1+b ·z2 result from the extended Euclidean algorithm applied to
(a,b).

d) Notice that
x∈ Pa1,α1 ∩·· ·∩Pak,αk ⇔ x≡ αi (mod ai), i = 1, . . . ,k . (2)

According to theChinese Remainder Theorem, the latter congruence admits such a solutionx
iff gcd(ai ,a j) dividesαi −α j for all pairs(i, j).
In order to calculate such anx, notice that a straight-forward iterativePa1..k−1,α1..k−1 ∩Pak,αk fails as
it does not parallelize well, and also the numbers calculated according to c) in may double in length
in each of thek steps. Instead, combine thePai ,αi in a binary way first two tuplesPa2 j,2 j+1,α2 j,2 j+1 of
adjacent ones, then on to quadruples and so on. At logarithmic depth (=parallel time), this yields the
desired resultx=: α0 anda0 := lcm(a1, . . . ,ak) satisfyingPa0,α0 =

Tk
i=1Pai ,αi .

e) It is easy to guessi1, . . . , ik and, based on d), verify in polynomial time thatP(i1)∩ . . .∩P(ik) 6= /0.
We establishN P–hardness by reduction fromClique [GaJo79]: Given a graphG = ([n],E), choose
n · (n− 1)/2 pairwise coprime integersqi,ℓ ≥ 2, 1≤ i < ℓ ≤ n; for instanceqi,ℓ := pi+n·(ℓ−1) will
do, wherepm denotes them-th prime number, found in time polynomial inn≤ |〈G〉| (thoughnot in
|〈pm〉| ≈ logm+ loglogm) by simple exhaustive search. Then calculateai := ∏ℓ 6=i qi,ℓ and observe that
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gcd(ai ,a j) = qi, j for i 6= j. Now start withα1 := 0 and iteratively forℓ = 2,3, . . . ,n determineαℓ by
solving the following system of simultaneous congruences:

αℓ ≡

{
αi (mod qℓ,i) for (ℓ, i) ∈ E

1+αi (mod qℓ,i) for (ℓ, i) 6∈ E
, 1≤ i < ℓ (3)

Indeed, as theqℓ,i are pairwise coprime, the Chinese Remainder Theorem asserts the existence of a
solution—computable in time polynomial inn, regarding thatαℓ can be bounded by∏i, j qi, j having a
polynomial number of bits). The thus constructed vector(αi)i satisfies:

αi ≡ α j (mod gcd(ai ,a j)
︸ ︷︷ ︸

=qi, j

) ⇔ (i, j) ∈ E

because, for(i, j) 6∈ E, Equation (3) impliesαi ≡ α j+1 (mod qi, j).
We claim that this mappingG 7→ (ai ,αi : 1≤ i ≤ n) constitutes the desired reduction: Indeed, according
to Equation (2), any sub-collectionP(i1), . . . ,P(ik) has non-empty intersection (i.e. a common element
x) iff αiℓ ≡ αi j (mod gcd(aiℓ ,ai j )), i.e., by our construction, iff(iℓ, i j) ∈ E; hence cliques ofG are
in one-to-one correspondence with subcollections of intersecting arithmetic progressions. ⊓⊔

Proof (Theorem 18).At time t, planet #i appears at angular positionui + t · vi mod 1; and an exact con-
junction between #i and #j occurs wheneverui + t ·vi = u j + t ·v j + z for somez∈ Z, that is iff

t ∈
{u j −ui

vi − v j
+ z·

1
vi − v j

}

= P(i, j) := Pai, j ,αi, j whereai, j :=
1

vi − v j
,αi, j :=

u j −ui

vi − v j
. (4)

Therefore, planets #1, . . . ,#n attain a conjunction at some timet iff t ∈
Tn

i=1P(1,i). The existence of sucht
thus amounts to the non-emptiness of the joint intersectionof arithmetic progressions and can be decided in
the claimed complexity according to Lemma 20b+d). Moreover, Lemma 20a+c+d) shows how to calculate
the smallestt.

ConcerningN P–hardness claimed in Item f), we reduce from Lemma 20e): Given n arithmetic pro-
gressionsP(i) = Pai ,αi , let ui := −αi ·ai , vi := 1/ai, andu0 := 0=: v0. Then conjunctions between #0 and
#i occur exactly at timest ∈ P(i); andP(i1), . . . ,P(ik) meet iff (and when/where) #0,#i1, . . . ,#ik do.

Approximate conjunction up toε in time interval(u,v) means:

∃t ∈ (u,v) ∃z∈ Z : (v2− v1)t +u2−u1+ z∈ (−ε,+ε)

which is equivalent to Claim b). The boundaries of the interval (a,b) · (v1− v2)+u1−u2+(−ε,+ε) can
be calculated inN C

1. ⊓⊔

5.2.4 General Eudoxus/Aristotle; Ptolemy, Copernicus, and Kepler
Proceeding from the restricted 2D theoryΦ′ to Eudoxus/Aristotle’s fullΦ obviously complicates the com-
putational complexity of the above predictions; and it seems desirable to make that precise, e.g. with the
help of [ACG93,GaOv95,BrKi98]. Moreover alsoΦ in turn had been refined: PTOLEMY introduced addi-
tional so-calledepicyclesanddeferents, located and rotating on the originally earth-centered spheres. This
allowed for a more (parameters to fit in order to yield an) accurate description of the observed planetary
motions. Copernicus relocated the spheres (and sub-spheres thereon) to be centered around the sun, rather
than earth. And Kepler replaced them with ellipses in space.Again, the respective increase in complexity
is worth-while investigating.

5.3 Opticks

There is an abundance of (physical theories giving) explanations for optical phenomena; cmp. e.g.The
Book of Opticsby IBN AL -HAYTHAM (1021) or NEWTON’s book providing the title of this section. We are
specifically interested in the progression from geometric via Gaussian (taking into account dispersion) over
HUYGENS and FOURIER (diffractive, wave) optics to Maxwell’s theory of electromagnetism; and even, in
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order to describe the various kinds of scattering observed,to quantum and quantum field theories. Note that
this sequence of optical theoriesΦi reflects their historical succession, butnot a logical one in the sense
thatΦi+1 ‘implies’ (and hence is computationally at least as hard as)Φi .

Our purpose is thus to explore more thoroughly the computational complexities of these theories. In
fact their computational relations may happen to be similar, unrelated, or just opposite to their historical
ones! Consider for example geometric optics versus Electrodynamics:

5.3.1 Geometric Optics considers light rays as ideal geometric objects, i.e., of infinitesimal section
proceeding instantaneously and straightly until hitting a, say, mirror. Now depending on the kind of mirrors
(straight or curved, with rational or algebraic parameters) and the availability of further optical devices
(lenses, beam splitters), [RTY94] has developed a fairly exhaustive taxonomy of the induced computational
complexities of ray tracing ranging fromP SPAC E to undecidable!

5.3.2 Electrodynamicson the other hand treats light as a vector-valued wave obeying a system of linear
partial differential equations named after JAMES CLERK MAXWELL . Their solution, from given initial
conditions, is computable, even over real numbers [WeZh99]!

5.4 Quantum Mechanics

is, since RICHARD P. FEYNMAN ’s famousLectures on Computation [FLS05], of particular interest
to the theory of computation and has, in connection with the work of PETER SHOR’s, initiated Quan-
tum Computation as a now fashionable and speculative [Kie03a] research topic lacking a general picture
[Smi06b,Myrv95,WeZh06]. Speaking in complexity theoretic terms, the (as usual highly ambiguous) ques-
tion raised by the strong CTH (recall Section 1.2) asks to locate the computational power of QM somewhere
among (or between)P , P IntegerFactorization, N P , and∆2. And it seems worth-while to further explore how the
answer depends on the underlying Hamiltonians being un-/bounded as indicated in [PERi89, CHAPTER 3]?

In order for a sound and more definite investigation, our approach suggests to start exploring well-
specified sub- and pre-theories of QM. These may for instancebe the BOHR-SOMMERFELD theory of
classical electron orbits with integral action-angle conditions.

Another promising direction considers computational capabilities of, and complexity in,Quantum
Logic:

5.4.1 Quantum Logic arises as an abstraction of the purely algebraic structure exhibited by the col-
lection ofeffectoperators introduced by G. LUDWIG on a Hilbert space (i.e. certain quantum mechanical
observables); cf. e.g. [Svoz98]. This discipline has flourished from the comparison with (i.e. systematic and
thorough investigation of similarities and differences to) Boolean logic. In particular the axioms satisfied
by operations “∧,∨,¬,≤” differ from the classical case, depending on which quantumlogic one considers.

It seems interesting to devise a theory of computational complexity similar to that of Boolean circuits
[Papa94, SECTIONS4.3 and 11.4] with classical gates replaced by quantumlogicones. A first important and
non-trivial result has been obtained in [DHMW05, SECTION 3] and may be interpreted as: the satisfiability
problem for quantum logic gates is decidable.
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