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Abstract

Self — similar solutions of the equations for the Burgers hierarchy

are presented.

1 Introduction

The Burgers hierarchy can be written in the form [1–4]

ut +
∂

∂x

(

∂

∂x
+ u

)n

u = 0, n = 0, 1, 2, . . . . (1)

Assuming n = 1 in Eq. (1) we have the Burgers equation

ut + 2 u ux + uxx = 0. (2)

Eq. (2) was firstly introduced in [5]. It is well known that this equation can be
linearized by means of the Cole-Hopf transformation [6–8]. Exact solutions
of Eq.(2) were considered in many papers (see, for example, [9–12]).

Assuming n = 2 in Eq. (1) we obtain the Sharma - Tasso - Olver equation

ut + uxxx + 3 u2x + 3 u uxx + 3 u2 ux = 0. (3)

The Sharma - Tasso - Olver equation was derived in [1, 13]. Some exact
solutions of this equation were presented in [14–21].

At n = 3 and n = 4 we obtain the following fourth and fifth order partial
differential equations

ut + uxxxx + 10 uxuxx + 4 uuxxx + 12 uu2x+

+6 u2uxx + 4 u3 ux = 0,
(4)
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ut + uxxxxx + 10 u2xx + 15 uxuxxx + 5 uuxxxx + 15 u3x+

+50 uuxuxx + 10 u2uxxx + 30 u2u2x + 10 u3uxx + 5 u4ux = 0.
(5)

Assuming

x = Lx
′

, u = C0 u
′

, t = T t
′

, (6)

we have that Eq.(1) is invariant under the dilation group in the case

C0 L = 1, T = Ln+1. (7)

Assuming C0 = e−a in (7), we obtain the delation group for the Burgers
hierarchy (1) in the form

u
′

= e−a u, x
′

= ea x, t
′

= ea(n+1) t. (8)

From transformations (8) we have two invariants for Eq.(1)

I1 = u t
1

n+1 = u
′

(t
′

)
1

n+1 , I2 =
x

t
1

n+1

=
x

′

(t′)
1

n+1

. (9)

Therefore we look for the solutions of the Burgers hierarchy taking into
account the variables

u(x, t) =
A

t
1

n+1

f(z), z =
B x

t
1

n+1

. (10)

Substituting (10) into (1) we obtain the equation for f(z) at

A = B =
1

(n+ 1)
1

n+1

. (11)

in the form
(

d

dz
+ f

)n

f − z f + β = 0, (12)

where β is the constant of integration.
Solving Eq.(12) we obtain solutions of the Burgers hierarchy in the form

u(x, t) =
1

(n t+ t)
1

n+1

f(z), z =
x

(n t + t)
1

n+1

. (13)

Let us study the solutions of nonlinear ordinary differential equation (12).
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2 Exact solutions of equation(12)

First of all let us prove the following lemma.
Lemma 1. Equation (12) can be transformed to the linear equation of

(n + 1) - th order by means of transformation

f =
ψz

ψ
. (14)

Proof. The proof of this lemma can be given by means of the mathe-
matical induction method.

Using the transformation (14) we have

(

d

dz
+ f

)

f =
ψzz

ψ
,

(

d

dz
+ f

)2

f =
ψzzz

ψ
(15)

Assuming that there is equality

(

d

dz
+ f

)k

f =
ψk+1,z

ψ
, ψk+1,z =

dk+1ψ

d zk+1
. (16)

Differentiating Eq.(16) with respect to in z we have

d

dz

(

d

dz
+ f

)k

f =
ψk+2,z

ψ
− ψz ψk+1,z

ψ2
. (17)

From Eq.(17) we obtain the equality

(

d

dz
+ f

)k+1

f =
ψk+2,z

ψ
. (18)

Therefore we obtain the formula
(

d

dz
+ f

)n

f =
ψn+1,z

ψ
. (19)

Taking this formula into account we have the equality

(

d

dz
+ f

)n

f − z f + β =
1

ψ
(ψn+1,z − z ψz + β ψ). (20)

As result of this lemma we obtain that solutions of Eq. (12) can be found
by the formula (14), where ψ(z) is the solution of the linear equation

ψn+1,z − z ψz + β ψ = 0, (21)
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Let us consider the partial cases. Assuming β = 0 in Eq.(21) we have

ψn+1,z − z ψz = 0. (22)

Denoting ψz = y we obtain

yn,z − z y = 0. (23)

In the case n = 1 we get solution of Eq.(23) in the form

y(z) = C2 e
−

z2

2 . (24)

The general solution of Eq.(23) can be written as

ψ(z) = C3 + C2

∫ z

0

e−
ξ2

2 dξ, (25)

where C2 and C3 are arbitrary constants. In the case n = 2 we obtain the
general solution of Eq.(23) in the form

y(z) = C4

√
zJ 1

3

(

2

3
z

3

2

)

+ C5

√
z Y 1

3

(

2

3
z

3

2

)

, (26)

where J 1

3

and Y 1

3

are the Bessel functions.

In the case n > 2 solution of Eq.(23) has n solutions

yj(z) = zj−1E
n,1+ 1

n
,1+ j

n
(zn+1), j = 1, 2, . . . , n, (27)

where En,m,l is a Mittag - Leffler type special function defined by [22];

En,m,l(z) = 1 +

∞
∑

k=1

bk z
k, bk =

k−1
∏

s=0

Γ (n(ms+ l) + 1)

Γ(n(ms + l + 1) + 1)
(28)

In the case β 6= 0 solutions of Eq.(23) can be referred to the type of the
Laplace equations [23]. There are partial solutions ψ(z) = −zm of Eq.(21)
at β = m, where 0 < m ≤ n is integer. In the general case solutions of
equations (21) can be found using the Laplace transformation or taking the
expansions in the power series into account.

For a example let us solve the Cauchy problem for linear ordinary differ-
ential equation (21) at β = −1. We have the following problem

ψn+1,z − z ψz − ψ = 0,

ψ(z = 0) = b0, ψz(z = 0) = b1, . . . , ψn−2,z = bn−2 ψn−1,z = bn−1.

(29)
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Substituting

ψ(z) =
∞
∑

m=0

am z
m (30)

into Eq.(29), we obtain the solution in the form

ψ(z) = a0

∞
∑

k=0

znk
∏k

j=0 (n j + 1)

(nk + 1)!
+ a1

∞
∑

k=0

znk+1
∏k

j=0 (n j + 2)

(nk + 2)!
+

+2 a2

∞
∑

k=0

znk+2
∏k

j=0 (n j + 3)

(nk + 3)!
+ . . .+

+(n− 2)! an−2

∞
∑

k=0

znk+n−2
∏k

j=0 (n j + n− 1)

(nk + n− 1)!
+

+(n− 1)! an−1

∞
∑

k=0

znk+n−1
∏k

j=0 (n j + n)

(nk + n)!
.

(31)

The value of coefficients a0, a1, a2, . . . , an−2 and an−1 are determined by
the initial values b0, b1, b2, . . . , bn−2 and bn−1. We have

a0 = b0, a1 = b1, a2 =
b2

(2!)2
, . . . , an−1 =

bn−1

((n− 1)!)2
. (32)

Let us present the partial cases of solution for equation (29). In the case
n = 3 we have solution in the form

ψ(z) = a0

∞
∑

k=0

z3k
∏k

j=0 (3 j + 1)

(3k + 1)!
+ a1

∞
∑

k=0

z3k+1
∏k

j=0 (3 j + 2)

(3k + 2)!
+

+2 a2

∞
∑

k=0

z3k+2
∏k

j=0 (3 j + 3)

(3k + 3)!
.

(33)
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Assuming n = 4 we obtain

ψ(z) = a0

∞
∑

k=0

z4k
∏k

j=0 (4 j + 1)

(4k + 1)!
+ a1

∞
∑

k=0

z4k+1
∏k

j=0 (4 j + 2)

(4k + 2)!
+

+2 a2

∞
∑

k=0

z4k+2
∏k

j=0 (4 j + 3)

(4k + 3)!
+ 6 a3

∞
∑

k=0

z4k+3
∏k

j=0 (4 j + 4)

(4k + 4)!
.

(34)

One can show that these power series are conversed for any values z.
Therefore self-similar solutions of equations for the Burgers hierarchy are
found after substitution (34) into formula (14).

Author is grateful to Andrey Polyanin for useful discussion of nonlinear
differential equation Eq.(21).
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