Self - similar solutions of the Burgers hierarchy

Nikolay A. Kudryashov
Department of Applied Mathematics, National Research
Nuclear University MEPHI, 31 Kashirskoe Shosse, 115409
Moscow, Russian Federation

Abstract

Self — similar solutions of the equations for the Burgers hierarchy are presented.

1 Introduction

The Burgers hierarchy can be written in the form [1-4]

$$
\begin{equation*}
u_{t}+\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}+u\right)^{n} u=0, \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

Assuming $n=1$ in Eq. (11) we have the Burgers equation

$$
\begin{equation*}
u_{t}+2 u u_{x}+u_{x x}=0 . \tag{2}
\end{equation*}
$$

Eq. (2) was firstly introduced in [5]. It is well known that this equation can be linearized by means of the Cole-Hopf transformation [6-8]. Exact solutions of Eq.(2) were considered in many papers (see, for example, [9-12]).

Assuming $n=2$ in Eq. (1) we obtain the Sharma - Tasso - Olver equation

$$
\begin{equation*}
u_{t}+u_{x x x}+3 u_{x}^{2}+3 u u_{x x}+3 u^{2} u_{x}=0 \tag{3}
\end{equation*}
$$

The Sharma - Tasso - Olver equation was derived in [1, 13]. Some exact solutions of this equation were presented in [14-21].

At $n=3$ and $n=4$ we obtain the following fourth and fifth order partial differential equations

$$
\begin{gather*}
u_{t}+u_{x x x x}+10 u_{x} u_{x x}+4 u u_{x x x}+12 u u_{x}^{2}+ \\
+6 u^{2} u_{x x}+4 u^{3} u_{x}=0 \tag{4}
\end{gather*}
$$

$$
\begin{gather*}
u_{t}+u_{x x x x x}+10 u_{x x}^{2}+15 u_{x} u_{x x x}+5 u u_{x x x x}+15 u_{x}^{3}+ \\
+50 u u_{x} u_{x x}+10 u^{2} u_{x x x}+30 u^{2} u_{x}^{2}+10 u^{3} u_{x x}+5 u^{4} u_{x}=0 . \tag{5}
\end{gather*}
$$

Assuming

$$
\begin{equation*}
x=L x^{\prime}, \quad u=C_{0} u^{\prime}, \quad t=T t^{\prime}, \tag{6}
\end{equation*}
$$

we have that Eq.(1) is invariant under the dilation group in the case

$$
\begin{equation*}
C_{0} L=1, \quad T=L^{n+1} \tag{7}
\end{equation*}
$$

Assuming $C_{0}=e^{-a}$ in (7), we obtain the delation group for the Burgers hierarchy (1) in the form

$$
\begin{equation*}
u^{\prime}=e^{-a} u, \quad x^{\prime}=e^{a} x, \quad t^{\prime}=e^{a(n+1)} t . \tag{8}
\end{equation*}
$$

From transformations (8) we have two invariants for Eq.(1)

$$
\begin{equation*}
I_{1}=u t^{\frac{1}{n+1}}=u^{\prime}\left(t^{\prime}\right)^{\frac{1}{n+1}}, \quad I_{2}=\frac{x}{t^{\frac{1}{n+1}}}=\frac{x^{\prime}}{\left(t^{\prime}\right)^{\frac{1}{n+1}}} . \tag{9}
\end{equation*}
$$

Therefore we look for the solutions of the Burgers hierarchy taking into account the variables

$$
\begin{equation*}
u(x, t)=\frac{A}{t^{\frac{1}{n+1}}} f(z), \quad z=\frac{B x}{t^{\frac{1}{n+1}}} . \tag{10}
\end{equation*}
$$

Substituting (10) into (1) we obtain the equation for $f(z)$ at

$$
\begin{equation*}
A=B=\frac{1}{(n+1)^{\frac{1}{n+1}}} . \tag{11}
\end{equation*}
$$

in the form

$$
\begin{equation*}
\left(\frac{d}{d z}+f\right)^{n} f-z f+\beta=0 \tag{12}
\end{equation*}
$$

where β is the constant of integration.
Solving Eq.(12) we obtain solutions of the Burgers hierarchy in the form

$$
\begin{equation*}
u(x, t)=\frac{1}{(n t+t)^{\frac{1}{n+1}}} f(z), \quad z=\frac{x}{(n t+t)^{\frac{1}{n+1}}} . \tag{13}
\end{equation*}
$$

Let us study the solutions of nonlinear ordinary differential equation (12).

2 Exact solutions of equation (12)

First of all let us prove the following lemma.
Lemma 1. Equation (12) can be transformed to the linear equation of $(n+1)$ - th order by means of transformation

$$
\begin{equation*}
f=\frac{\psi_{z}}{\psi} . \tag{14}
\end{equation*}
$$

Proof. The proof of this lemma can be given by means of the mathematical induction method.

Using the transformation (14) we have

$$
\begin{equation*}
\left(\frac{d}{d z}+f\right) f=\frac{\psi_{z z}}{\psi}, \quad\left(\frac{d}{d z}+f\right)^{2} f=\frac{\psi_{z z z}}{\psi} \tag{15}
\end{equation*}
$$

Assuming that there is equality

$$
\begin{equation*}
\left(\frac{d}{d z}+f\right)^{k} f=\frac{\psi_{k+1, z}}{\psi}, \quad \psi_{k+1, z}=\frac{d^{k+1} \psi}{d z^{k+1}} . \tag{16}
\end{equation*}
$$

Differentiating Eq.(16) with respect to in z we have

$$
\begin{equation*}
\frac{d}{d z}\left(\frac{d}{d z}+f\right)^{k} f=\frac{\psi_{k+2, z}}{\psi}-\frac{\psi_{z} \psi_{k+1, z}}{\psi^{2}} \tag{17}
\end{equation*}
$$

From Eq.(17) we obtain the equality

$$
\begin{equation*}
\left(\frac{d}{d z}+f\right)^{k+1} f=\frac{\psi_{k+2, z}}{\psi} \tag{18}
\end{equation*}
$$

Therefore we obtain the formula

$$
\begin{equation*}
\left(\frac{d}{d z}+f\right)^{n} f=\frac{\psi_{n+1, z}}{\psi} \tag{19}
\end{equation*}
$$

Taking this formula into account we have the equality

$$
\begin{equation*}
\left(\frac{d}{d z}+f\right)^{n} f-z f+\beta=\frac{1}{\psi}\left(\psi_{n+1, z}-z \psi_{z}+\beta \psi\right) \tag{20}
\end{equation*}
$$

As result of this lemma we obtain that solutions of Eq. (12) can be found by the formula (14), where $\psi(z)$ is the solution of the linear equation

$$
\begin{equation*}
\psi_{n+1, z}-z \psi_{z}+\beta \psi=0 \tag{21}
\end{equation*}
$$

Let us consider the partial cases. Assuming $\beta=0$ in Eq.(21) we have

$$
\begin{equation*}
\psi_{n+1, z}-z \psi_{z}=0 . \tag{22}
\end{equation*}
$$

Denoting $\psi_{z}=y$ we obtain

$$
\begin{equation*}
y_{n, z}-z y=0 . \tag{23}
\end{equation*}
$$

In the case $n=1$ we get solution of Eq.(23) in the form

$$
\begin{equation*}
y(z)=C_{2} e^{-\frac{z^{2}}{2}} \tag{24}
\end{equation*}
$$

The general solution of Eq.(23) can be written as

$$
\begin{equation*}
\psi(z)=C_{3}+C_{2} \int_{0}^{z} e^{-\frac{\xi^{2}}{2}} d \xi \tag{25}
\end{equation*}
$$

where C_{2} and C_{3} are arbitrary constants. In the case $n=2$ we obtain the general solution of Eq.(23) in the form

$$
\begin{equation*}
y(z)=C_{4} \sqrt{z} J_{\frac{1}{3}}\left(\frac{2}{3} z^{\frac{3}{2}}\right)+C_{5} \sqrt{z} Y_{\frac{1}{3}}\left(\frac{2}{3} z^{\frac{3}{2}}\right), \tag{26}
\end{equation*}
$$

where $J_{\frac{1}{3}}$ and $Y_{\frac{1}{3}}$ are the Bessel functions.
In the case $n>2$ solution of Eq.(23) has n solutions

$$
\begin{equation*}
y_{j}(z)=z^{j-1} E_{n, 1+\frac{1}{n}, 1+\frac{j}{n}}\left(z^{n+1}\right), \quad j=1,2, \ldots, n, \tag{27}
\end{equation*}
$$

where $E_{n, m, l}$ is a Mittag - Leffler type special function defined by [22];

$$
\begin{equation*}
E_{n, m, l}(z)=1+\sum_{k=1}^{\infty} b_{k} z^{k}, \quad b_{k}=\prod_{s=0}^{k-1} \frac{\Gamma(n(m s+l)+1)}{\Gamma(n(m s+l+1)+1)} \tag{28}
\end{equation*}
$$

In the case $\beta \neq 0$ solutions of Eq.(23) can be referred to the type of the Laplace equations [23]. There are partial solutions $\psi(z)=-z^{m}$ of Eq.(21) at $\beta=m$, where $0<m \leq n$ is integer. In the general case solutions of equations (21) can be found using the Laplace transformation or taking the expansions in the power series into account.

For a example let us solve the Cauchy problem for linear ordinary differential equation (21) at $\beta=-1$. We have the following problem

$$
\begin{gather*}
\psi_{n+1, z}-z \psi_{z}-\psi=0 \\
\psi(z=0)=b_{0}, \quad \psi_{z}(z=0)=b_{1}, \ldots, \psi_{n-2, z}=b_{n-2} \quad \psi_{n-1, z}=b_{n-1} . \tag{29}
\end{gather*}
$$

Substituting

$$
\begin{equation*}
\psi(z)=\sum_{m=0}^{\infty} a_{m} z^{m} \tag{30}
\end{equation*}
$$

into Eq.(29), we obtain the solution in the form

$$
\begin{align*}
& \psi(z)=a_{0} \sum_{k=0}^{\infty} \frac{z^{n k} \prod_{j=0}^{k}(n j+1)}{(n k+1)!}+a_{1} \sum_{k=0}^{\infty} \frac{z^{n k+1} \prod_{j=0}^{k}(n j+2)}{(n k+2)!}+ \\
&+2 a_{2} \sum_{k=0}^{\infty} \frac{z^{n k+2} \prod_{j=0}^{k}(n j+3)}{(n k+3)!}+\ldots+ \\
&+(n-2)!a_{n-2} \sum_{k=0}^{\infty} \frac{z^{n k+n-2} \prod_{j=0}^{k}(n j+n-1)}{(n k+n-1)!}+ \tag{31}\\
&+(n-1)!a_{n-1} \sum_{k=0}^{\infty} \frac{z^{n k+n-1} \prod_{j=0}^{k}(n j+n)}{(n k+n)!} .
\end{align*}
$$

The value of coefficients $a_{0}, a_{1}, a_{2}, \ldots, a_{n-2}$ and a_{n-1} are determined by the initial values $b_{0}, b_{1}, b_{2}, \ldots, b_{n-2}$ and b_{n-1}. We have

$$
\begin{equation*}
a_{0}=b_{0}, \quad a_{1}=b_{1}, \quad a_{2}=\frac{b_{2}}{(2!)^{2}}, \ldots, a_{n-1}=\frac{b_{n-1}}{((n-1)!)^{2}} . \tag{32}
\end{equation*}
$$

Let us present the partial cases of solution for equation (29). In the case $n=3$ we have solution in the form

$$
\begin{gather*}
\psi(z)=a_{0} \sum_{k=0}^{\infty} \frac{z^{3 k} \prod_{j=0}^{k}(3 j+1)}{(3 k+1)!}+a_{1} \sum_{k=0}^{\infty} \frac{z^{3 k+1} \prod_{j=0}^{k}(3 j+2)}{(3 k+2)!}+ \\
+2 a_{2} \sum_{k=0}^{\infty} \frac{z^{3 k+2} \prod_{j=0}^{k}(3 j+3)}{(3 k+3)!} . \tag{33}
\end{gather*}
$$

Assuming $n=4$ we obtain

$$
\begin{align*}
& \psi(z)=a_{0} \sum_{k=0}^{\infty} \frac{z^{4 k} \prod_{j=0}^{k}(4 j+1)}{(4 k+1)!}+a_{1} \sum_{k=0}^{\infty} \frac{z^{4 k+1} \prod_{j=0}^{k}(4 j+2)}{(4 k+2)!}+ \\
& +2 a_{2} \sum_{k=0}^{\infty} \frac{z^{4 k+2} \prod_{j=0}^{k}(4 j+3)}{(4 k+3)!}+6 a_{3} \sum_{k=0}^{\infty} \frac{z^{4 k+3} \prod_{j=0}^{k}(4 j+4)}{(4 k+4)!} . \tag{34}
\end{align*}
$$

One can show that these power series are conversed for any values z. Therefore self-similar solutions of equations for the Burgers hierarchy are found after substitution (34) into formula (14).

Author is grateful to Andrey Polyanin for useful discussion of nonlinear differential equation Eq.(21).

References

[1] Olver P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys. 18 (1977), 1212 -1216
[2] Kudryashov N.A., Analitical theory of nonlinear differential equations, Moskow - Igevsk, Institute of computer investigations, 2004, (in Russian)
[3] Kudryashov N.A., Partial differential equations with solutions having movable forst - order singularities, Physics Letters A, 1992, 169: 237 42
[4] Kudryashov N.A., Sinelshchikov D.I., Exact solutions for equations of the Burgers hierarchy, Appl. Math. Comput., (2009), doi:10.1016/j.amc.2009.06.010
[5] J.M. Burgers, A mathematical model illustrating the theory of turbulance, Advances in Applied Mechanics. 1 (1948) 171-199.
[6] E. Hopf, The partial differential equation $u_{t}+u u_{x}=u_{x x}$, Communs. Pure Appl. Math. 3 (1950) 201-230.
[7] J.D. Cole, On a quasi-linear parabolic equation occuring in aerodynamics Quart. Appl. Math. 9 (1950) 225-236.
[8] N.A. Kudryashov, M.V. Demina, Traveling wave solutions of the generalized nonlinear evolution equations, Applied Mathematics and Computation, 210, (2009), 551-557
[9] M. Rosenblatt, Remark on the Burgers equation, Phys. Fluids. 9 (1966) 1247-1248.
[10] E.R. Benton, Some New Exact, Viscous, Nonsteady Solutions of Burgers' Equation, J. Math. Phys. 9 (1968) 1129-1136.
[11] W. Malfliet, Approximate solution of the damped Burgers equation, J. Phys. A. 26 (1993) L723-L728.
[12] E. S. Fahmy, K. R. Raslan, H. A. Abdusalam, On the exact and numerical solution of the time-delayed Burgers equation, International Journal of Computer Mathematics. 85 (2008) 1637-1648
[13] A. S. Sharma, H. Tasso, Connection between wave envelope and explicit solution of a nonlinear dispersive equation. Report IPP 6/158. 1977.
[14] W. Hereman, P.P. Banerjee, A. Korpel, G. Assanto, A. Van Immerzeele, A. Meerpoel, Exact solitary wave solutions of non-linear evolution and wave equations using a direct algebraic method, J. Phys. A Math. Gen. 19 (1986) 607-628.
[15] Z. J. Yang, Travelling wave solutions to nonlinear evolution and wave equations, J. Phys. A Math. Gen. 27 (1994) 2837-2855.
[16] Y. Shanga, J. Qina, Y. Huangb, W. Yuana, Abundant exact and explicit solitary wave and periodic wave solutions to the Sharma-Tasso-Olver equation, Applied Mathematics and Computation. 202 (2008) 532-538.
[17] S. Wang, X. Tang, S.-Y. Lou, Soliton fission and fusion: Burgers equation and Sharma-Tasso-Olver equation. Chaos, Solitons and Fractals. 21 (2004) 231-239.
[18] N.A. Kudryashov, N.B. Loguinova Extended simplest equation method for nonlinear differential equations, Applied Mathematics and Computation. 205 (2008) 396-402.
[19] N.A. Kudryashov, N.B. Loguinova, Be carefull with Exp - function method, Commun Nonlinear Sci Numer Simulat, 14 (2009), 1881-1890
[20] N.A. Kudryashov, On "new travelling wave solutions" of the KdV and the KdV - Burgers equations, Commun Nonlinear Sci Numer Simulat, 14 (2009), 1891- 1900
[21] N.A. Kudryashov, Seven common errors in finding exact solutions of nonlinear differential equations, Commun Nonlinear Sci Numer Simulat, 14 (2009), 3507-3509
[22] A.D. Polyanin, V.F. Zaittsev, Handbook of Exact Solutions for Ordinary Differential Equations, Chapman and Hall/CRC Press, 2003, 689-733
[23] A.D. Polyanin and A.V. Manzhirov, Handbook of Mathematics for Engineers and Scientists, Chapman and Hall/CRC Press, 2007, 518-522

