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Abstract

A five-dimensional symmetry algebra consisting of Lie point symmetries is firstly
computed for the nonlinear Schrödinger equation, which, together with a reflection
invariance, generates two five-parameter solution groups. Three ansätze of transfor-
mations are secondly analyzed and used to construct exact solutions to the nonlinear
Schrödinger equation. Various examples of exact solutions with constant, trigono-
metric function type, exponential function type and rational function amplitude are
given upon careful analysis. A bifurcation phenomenon in the nonlinear Schrödinger
equation is clearly exhibited during the solution process.
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1 Introduction

We are concerned with the cubic nonlinear Schrödinger (NLS) equation

iut + uxx + µ|u|2u = 0, (1.1)

where u = u(x, t) is a complex-valued function of two real variables x, t and µ is a non-zero

real parameter. The physical model of the NLS equation (1.1) and its generalized ones occur

in various areas of physics such as nonlinear optics, water waves, plasma physics, quantum

mechanics, superconductivity and Bose-Einstein condensate theory [1, 2]. In optics, the

NLS equation (1.1) models many nonlinearity effects in a fiber, including but not limited to
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self-phase modulation, four-wave mixing, second harmonic generation, stimulated Raman

scattering, etc. For water waves, the NLS equation (1.1) describes the evolution of the

envelope of modulated nonlinear wave groups. All these physical phenomena can be better

understood with the help of exact solutions when they exist for particular values of the

parameter µ.

It is well known that the NLS equation (1.1) admits the bright soliton solution [3]:

u(x, t) = k

√

2

µ
sech(k(x− 2αt)) ei[αx−(α2

−k2)t], (1.2)

where α and k are arbitrary real constants, for the self-focusing case µ > 0, and the dark

soliton solution [4]:

u(x, t) = k

√

−2

µ
tanh(k(x− 2αt)) ei[αx−(α2+2k2)t], (1.3)

where α and k are arbitrary real constants, for the de-focusing case µ < 0. These solutions

are valid under the localized traveling wave assumption. The n-soliton solutions to both

the self-focusing NLS equation and the de-focusing NLS equation can be computed by the

inverse scattering transform, the Darboux transformation and the Hirota bilinear method

(see, say, [5, 6, 7]). Moreover, ũ(x, t) = u(ix,−t) offers a Bäcklund transformation between

the self-focusing NLS equation and the de-focusing NLS equation.

A considerable amount of research has been devoted to the study of exact solutions

including traveling wave solutions of the NLS equation (see, say, [8]-[25]). Both numerical

and analytical methods have been used in dealing with the related problems. Generally,

exact solutions to nonlinear equations are hard to come by, but it is significantly important

in mathematical physics to find new ideals or approaches to discover solitary wave solutions

of nonlinear equations. Recently, several interesting studies have been published to show

that the NLS equation (1.1) has many new types of exact solutions (see, for instance,

[19]-[25]).

In this paper, we would like to present some direct search approaches to exact solutions

of the NLS equation (1.1) and construct its exact solutions over some region of R2, including

analytical solutions on the whole plane of x and t. In what follows, on one hand, a five-

dimensional symmetry algebra is presented and used to generate the corresponding five

one-parameter solution groups. On the other hand, three ansätze of transformations are

analyzed, and various examples of exact solutions with constant, trigonometric function

type, exponential function type and rational function amplitude are calculated in detail,

covering many known exact solutions in the literature. The presented ansätze are direct but

powerful, particularly in getting traveling wave type solutions. A few concluding remarks

are given in the final section.
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2 Symmetry algebra and solution groups

We would like to present a five-dimensional symmetry algebra and its corresponding one-

parameter solution groups.

Obviously, the linearized equation of the NLS equation (1.1) is given by

iσt + σxx + 2µ|u|2σ + µu2σ̄ = 0, (2.1)

where σ̄ is the complex conjugate of σ. It is direct to check that there are five local Lie-point

symmetries:

σ1 = iu, σ2 = ux, σ3 = ut, σ4 = ixu − 2tux, σ5 = u+ xux + 2tut, (2.2)

namely, the five functions σi, 1 ≤ i ≤ 5, satisfy the linearized equation (2.1) when u solves

the NLS equation (1.1). These are special reductions of symmetries of the general AKNS

systems [26].

Let us recall that the commutator of vector fields is defined by

[K1, K2] = K ′

1(u)[K2]−K ′

2(u)[K1], (2.3)

where K ′(u)[S] denotes the Gateaux derivative K ′(u)[S] = ∂
∂ε

∣

∣

ε=0
K(u+ εS). The symme-

tries σi, 1 ≤ i ≤ 5, constitute a five-dimensional Lie algebra over the complex field under the

commutator of vector fields, and the non-zero commutators among [σr, σs], 1 ≤ r < s ≤ 5,

are as follows:

[σ2, σ4] = σ1, [σ2, σ5] = σ2, [σ3, σ4] = −2σ2, [σ3, σ5] = 2σ3, [σ4, σ5] = −σ4. (2.4)

The symmetries σ1, σ2, σ3 correspond to the u-scale invariance, the x-translational invari-

ance and the t-translational invariance, respectively. The symmetries σ4 and σ5 are two of

so-called τ -symmetries [27], obtained from Galilean invariance and general scale invariance.

The general symmetry algebra of the NLS equation (1.1) contains Lie Bäcklund symmetries

and other but non-local τ -symmetries.

It is evident to see that the symmetries σi, 1 ≤ i ≤ 5, generate five one-parameter

solution groups as follows:


































ũ1(x, t) = eiεu(x, t),

ũ2(x, t) = u(x+ ε, t),

ũ3(x, t) = u(x, t+ ε),

ũ4(x, t) = ei(εx−ε2t)u(x− 2εt, t),

ũ5(x, t) = eεu(xeε, te2ε),

(2.5)
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where u solves the NLS equation (1.1) and ε is a free real group parameter. Taking ε = π, π
2
,

the first solution group ũ1 yields two special solutions −u and iu, respectively.

Note that the NLS equation (1.1) also has a reflection symmetry. A coordinate reflec-

tion about the t-axis generates a new solution u(−x, t) from a known one u(x, t). Therefore,

we can conclude the following two five-parameter solution groups:

ũδ(x, t) = ei(αxe
β
−α2te2β+η0)+βu(δxeβ − 2δαte2β + ξ0, te

2β + ζ0), (2.6)

where δ = ±1, and the five free parameters η0, ξ0, ζ0, α, β correspond to the five symmetries

σ1, σ2, σ3, σ4, σ5, respectively. These two solution groups can be used to construct various

new solutions from known ones.

3 Transformations and exact solutions

We would, in this section, like to discuss three ansätze to transform the NLS equation (1.1)

into real simplified systems of differential equations and construct exact solutions through

those transformed NLS equations resulting from the three ansätze.

3.1 First ansatz

We look for solutions by appending a phase factor to a real-valued function. More precisely,

we make an ansatz:

u(x, t) = v(x, t)eiη, η = αx+ γt, (3.1)

where v is a real-valued function, and α, γ are two real constants. This way, the NLS

equation (1.1) becomes a real system:

vt + 2αvx = 0, vxx − (γ + α2)v + µv3 = 0. (3.2)

If we set v = g/f , then the system (3.2) is put into

{

fgt − ftg + 2α fgx − 2α fxg = 0,

f 2gxx − 2ffxgx + 2f 2
xg − ffxxg − (γ + α2)f 2g + µ g3 = 0.

(3.3)

The first equation is bilinear while the second one is trilinear. This setup brings us a direct

approach to searching for exact solutions. We can guess the type of functions f and g first,

and then look for exact solutions, especially by computer algebra systems. For instance,

a direct computation with Maple can show that there is no multiple traveling wave type
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solutions among the set of functions u = (g/f)eiη with

f =
n

∑

m=0

am ekmx+ωmt, g =
n

∑

m=0

bm ekmx+ωmt,

where am, bm, km, ωm 1 ≤ m ≤ n, are real constants.

Let us remark that if we look for solutions v = v(ξ) with ξ = k(x− 2αt), where k 6= 0

and α are real constants, the transformed NLS equation (3.2) reduces to

k2vξξ − (γ + α2)v + µv3 = 0. (3.4)

This equation is integrable, and it can be integrated as follows:

∫ v(ξ)

v(ξ0)

1
√

2(γ + α2)v2 − µv4 + C
dv =

√
2

2k
(ξ − ξ0), (3.5)

where C and ξ0 are arbitrary real constants. The resulting solutions contain both elemen-

tary function and Jacobi elliptic function solutions.

In what follows, we would like to find exact solutions of the NLS equation (1.1) with

elementary function amplitude.

3.1.1 Solutions with constant amplitude

A constant solution v = v0 of (3.4) leads to a class of exact uniform solutions of the NLS

equation (1.1):

u(x, t) = v0 e
i[αx+(µv02−α2)t], (3.6)

where v0 and α are arbitrary real constants. This solution corresponds to a plane wave in

water waves and α corresponds to a simple shift of carrier-wave wave number [10]. The

special case of (3.6) with v0 = 1 was also analyzed by other ansätze [19, 23].

3.1.2 Solutions with trigonometric function type amplitude

Among the functions

u(x, t) = (c sec ξ + d csc ξ) eiη, ξ = k(x− 2αt), η = αx+ γt,

where c, d, k, α, γ are real constants, we have the following solutions with sec- and csc-

function amplitude:

u(x, t) = k

√

−2

µ
(sec ξ) eiη, u(x, t) = k

√

−2

µ
(csc ξ) eiη, (3.7)
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where ξ = k(x− 2αt), η = αx− (α2 + k2)t, and k and α are arbitrary real constants.

Among the functions

u(x, t) =
b0 + b1 tan ξ + b2 tan

2 ξ

a0 + a1 tan ξ
eiη, ξ = k(x− 2αt), η = αx+ γt,

where ai, bi, k, α, γ are real constants, we have the following three solutions with tan-

function type amplitude. The first solution is

u(x, t) = k

√

−2

µ

a0 tan ξ − a1
a0 + a1 tan ξ

eiη, (3.8)

where ξ = k(x− 2αt), η = αx− (α2− 2k2)t, and a0, a1, k, α are all arbitrary real constants

satisfying a20 + a21 6= 0. This solution contains exact solutions with tan- and cot-function

amplitude, which correspond to a1 = 0 and a0 = 0, respectively. The second and third

solutions are

u =
k
√−2µ

µ
(cot ξ + tan ξ) eiη (3.9)

with ξ = k(x− 2αt) and η = αx− (α2 + 4k2)t, and

u =
k
√−2µ

µ
(− cot ξ + tan ξ) eiη (3.10)

with ξ = k(x− 2αt) and η = αx− (α2− 8k2)t, where k and α are arbitrary real constants.

Those two solutions (3.9) and (3.10) can be simplified to the solution (3.7) with csc-function

amplitude and the solution (3.8) with a0 = 0, respectively.

3.1.3 Solutions with exponential function type amplitude

If we focus on the set of functions v = g/f with

f =
n

∑

m=0

am emξ, g =
n

∑

m=0

bm emξ, ξ = k(x− 2αt),

where am, bm, 1 ≤ m ≤ n, are real constants, we obtain the following solutions with

exponential function type amplitude.

The non-constant solution of first order (i.e., n = 1) is

v(x, t) =
k

2

√

−2

µ

eξ − a0
eξ + a0

, (3.11)

where ξ = k(x− 2αt) and γ = −(α2 + k2

2
) in (3.4). It thus follows that the corresponding

solution reads

u(x, t) =
k

2

√

−2

µ

eξ − a0
eξ + a0

eiη, (3.12)
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where ξ = k(x − 2αt), η = αx− (α2 + k2

2
)t, and a0, k and α are arbitrary real constants.

This solution contains solutions with tanh- and coth-function amplitude, in particular, the

dark soliton solution. It also gives the solutions presented in [25] since cos(2 tan−1 eξ̃) =

(1− e2ξ̃)/(1 + e2ξ̃).

The first non-constant solution of second order (i.e., n = 2) is

v(x, t) =
8a0b1k

2eξ

8a20k
2 + µb21e

2ξ
=

8ck2eξ

8k2 + µc2e2ξ
, (3.13)

where ξ = k(x − 2αt) and γ = −α2 + k2 in (3.4). It thus follows that the corresponding

solution reads

u(x, t) =
8ck2eξ

8k2 + µc2e2ξ
eiη, (3.14)

where ξ = k(x − 2αt), η = αx − (α2 − k2)t, and c, k and α are arbitrary real constants.

This solution contains a special solution with sech-function amplitude including the bright

soliton solution if µ > 0, and a special solution with csch-function amplitude if µ < 0 [21].

It also suggests that we can show that the self-focusing NLS equation (1.1) does not have

any exact solution with csch-function amplitude.

The second non-constant solution of second order (i.e., n = 2) is

v(x, t) =
k(−2

√−2µµ+ 4ckµ eξ + c2k2
√−2µ e2ξ)

2µ(2µ+ c2k2 e2ξ)
, (3.15)

where ξ = k(x − 2αt), γ = −(α2 + k2

2
) in (3.4) and c = a1/b0. It thus follows that the

corresponding solution reads

u(x, t) =
k(−2

√−2µµ+ 4ckµ eξ + c2k2
√−2µ e2ξ)

2µ(2µ+ c2k2 e2ξ)
eiη, (3.16)

where ξ = k(x− 2αt), η = αx− (α2 + k2

2
)t, and c, k and α are arbitrary real constants.

3.1.4 Solutions with rational function amplitude

Among the set of functions v = g/f with

f =
2

∑

r,s=0

arsx
rts, g =

2
∑

r,s=0

brsx
rts,

where ars, brs are real constants, we have the following class of exact solutions with rational

function amplitude:

v(x, t) =
−2b0,0

√−2µα−√−2µx+ 2
√−2µαt+ 2a0,1

4b0,0
2µα2 + 4b0,0µαx− 8b0,0µα2t+ µx2 − 4µαxt+ 4µα2t2 + 2a0,12

, (3.17)
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where b0,0, a0,1, α are arbitrary constants and γ = −α2 in (3.2). It thus follows that the

corresponding solution reads

u(x, t) = v(x, t) ei(αx−α2t), (3.18)

with v being defined by (3.17). Taking b0,0 = 0 leads to

u(x, t) =
−√−2µ x+ 2

√−2µαt+ 2a0,1
µx2 − 4µαxt+ 4µα2t2 + 2a0,12

ei(αx−α2t). (3.19)

A further reduction with a0,1 = 0 yields a special solution:

u(x, t) =

√

−2

µ

1

x− 2αt
ei(αx−α2t),

which, upon selecting µ = −2 and α = −2ξ, gives the solution presented by a limiting

process in [15].

3.2 Second ansatz

We make the second ansatz

u(x, t) = [p(x, t) + i q(x, t)] eiγt, (3.20)

where p and q are two real-valued functions and γ is a real constant. This way, the NLS

equation (1.1) becomes

{

pt + qxx − [γ − µ(p2 + q2)]q = 0,

qt − pxx + [γ − µ(p2 + q2)]p = 0.
(3.21)

It can be transformed into a system of two trilinear equations if taking p = g/f and

q = h/f . A solution with constant amplitude is

u(x, t) = (c+ i d) eiµ(c
2+d2)t, (3.22)

where c and d are arbitrary real constants. Another special solution with p = c (a constant)

is

u(x, t) = [c+ i d tan(

√−2µd

2
x+ cdµt)] eiµ(c

2
−d2)t, (3.23)

where c and d are arbitrary real constants.

If we search for solutions with q = 0, then p = p(x) and so, the transformed NLS

equation (3.21) reduces to

pxx − γp+ µp3 = 0.
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The other case with p = 0 can be transformed into this case by using the auto-Bäcklund

transformation u 7→ iu. The first ansatz with α = 0 provides solutions for the above case.

For example, the class of solutions (3.12) with α = 0 leads to

u(x, t) =
k

2

√

−2

µ

ekx − a0
ekx + a0

e−i k
2

2
t. (3.24)

This further gives the solutions with the tanh- and coth-function amplitude [21]:

u(x, t) =
k

2

√

−2

µ
tanh(

k

2
x) e−i k

2

2
t, u(x, t) =

k

2

√

−2

µ
coth(

k

2
x) e−i k

2

2
t,

which correspond to a0 = 1 and a0 = −1, respectively.

A special solution of the system (3.21) with non-constant p and q is given by

p(x, t) =
a ek(x−2αt) cosαx

b+ c e2k(x−2αt)
, q(x, t) =

a ek(x−2αt) sinαx

b+ c e2k(x−2αt)
, (3.25)

where µa2 = 8k2bc and γ = −α2 + k2 in (3.21), and thus, a particular solution of the NLS

equation (1.1) reads

u(x, t) = [p(x, t) + iq(x, t)] ei(−α2+k2)t, (3.26)

which includes two solutions ũ(x, t) = u(ix,−t) with u(x, t) defined by (1.2) and (1.3).

Other two solutions of the NLS equation (1.1) within this ansatz are

u(x, t) =

√

2

µ

[

2ab2 cosh(2a2bct) + 2iabc sinh(2a2bct)

2 cosh(2a2bct)±
√
2 c cos(

√
2 abx)

− a

]

e2ia
2t, c =

√
2− b2 , (3.27)

where a and b ≤
√
2 are arbitrary real constants. Those solutions were generated by the

inverse scattering transform in [9]. Taking a limiting reduction of b → 0, the solution (3.27)

with the minus sign gives an interesting solution [10, 28]:

u(x, t) =

√

2

µ

3a− 16a5t2 − 4a3x2 + 16ia3t

1 + 16a4t2 + 4a2x2
e2ia

2t,

a special case of which was also analyzed by using the Adomian decomposition method

[20].

3.3 Third ansatz

We make the third ansatz

u(x, t) = [p(x, t) + i q(x, t)] eiαx, (3.28)
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where p and q are two real-valued functions, and α is a real constant. This way, the NLS

equation (1.1) becomes

{

pt + 2αpx + qxx − [α2 − µ(p2 + q2)]q = 0,

qt + 2αqx − pxx + [α2 − µ(p2 + q2)]p = 0.
(3.29)

It also can be transformed into a system of two trilinear equations if taking p = g/f and

q = h/f . A solution with constant amplitude is

u(x, t) = (c+ id) ei
√

µ(c2+d2)x, (3.30)

where c and d are arbitrary real constants.

If we search for solutions with q = 0, then the transformed NLS equation (3.29) reduces

to

pt + 2αpx = 0, pxx − α2p+ µp3 = 0. (3.31)

The other case with p = 0 can be put into this case by using the auto-Bäcklund trans-

formation u 7→ iu. A special solution of the NLS equation (1.1) through (3.31) is given

by

u = p(ξ) eiαx, ξ = k(x− 2αt),

if the function p solves

k2pξξ − α2p+ µp3 = 0,

where k and α are real constants. The first ansatz with γ = 0 provides solutions for this

case.

The following several special solutions of the system (3.29) with non-constant p and q

can be obtained immediately, based on our analysis within the first ansatz:

p = k cos[(µk2 − α2)t], p = k sin[(µk2 − α2)t], (3.32)

p = k

√

−2

µ
f(ξ) cos[(α2 + k2)t], q = −k

√

−2

µ
f(ξ) sin[(α2 + k2)t], f(ξ) = sec ξ or csc ξ,

(3.33)

p = k

√

−2

µ
g(ξ) cos[(α2−2k2)t], q = −k

√

−2

µ
g(ξ) sin[(α2−2k2)t], g(ξ) = tan ξ or−cot(ξ),

(3.34)

and

p =
8ck2eξ

8k2 + µc2e2ξ
cos[(α2 − k2)t], q = − 8ck2eξ

8k2 + µc2e2ξ
sin[(α2 − k2)t], (3.35)

where ξ = k(x − 2αt), and k, α and c are arbitrary real constants. Another interesting

solution of the NLS equation (1.1) in the form (3.28) with non-constant p and q is given
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by

u(x, t) = (p+ iq) eiαx, p =

√

α2 − 2k2

µ
, q = k

√

−2

µ
tan(kx− d(t)), (3.36)

where d(t) = [2kα+ k
√

2(2k2 − α2) ] t, and k and α are arbitrary real constants satisfying

2k2 ≥ α2.

4 Concluding remarks

We have analyzed a five-dimensional symmetry algebra and three ansätze of transforma-

tions for the NLS equation. Five one-parameter solution groups are explicitly presented,

and various exact solutions with constant, trigonometric function type, exponential func-

tion type and rational function amplitude are computed in detail, covering many exact

solutions generated in the literature. Our solution analysis also provides clear information

about a bifurcation phenomenon between the self-focusing and the de-focusing NLS equa-

tions. There are several solutions, like (3.6), (3.14) and (3.26), which works for both the

self-focusing case and the de-focusing case. Only a few solutions, like (3.27) and (3.30),

are valid for the self-focusing case, and most of the presented solutions are valid for the

de-focusing case.

We remark that the first ansatz can be put into the second ansatz [or the third ansatz],

upon absorbing the phase factor eiαx [or eiγt] into the amplitude function p + iq in (3.20)

[or (3.28)]. Therefore, all solutions in the first ansatz also provide solutions within the

second ansatz and the third ansatz. But the later two ansätze are more general than the

first one. Further applications of the three ansätze and combinations of the three ansätze

with the solution groups in (2.6) can engender other exact solutions to the NLS equation

(1.1). The three ansätze can also be used to construct exact solutions to other nonlinear

equations in mathematical physics, for example, the Davey-Stewartson equation [29] and

the generalized NLS equations [30, 31].

As discussed for many typical integrable equations (see, for example, the KdV equation

[32, 33], the Toda lattice [34, 35], the Boussinesq equation [36, 37], and the 2D Toda

lattice [38]), we will adopt the determinant techniques to construct different kinds of exact

solutions to the NLS equation in a future publication. All the working methods of solutions,

including the inverse scattering transform [1], Darboux transformation [39], the algebro-

geometric method [40] and the Hirota method [41] and the determinant techniques, help

us exploit the diversity of exact solutions of the NLS equation.
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37 (1973) 823–828 (translated from Zh. Èksper. Teoret. Fiz. 64 (1973) 1627–1639).

[5] G. Neugebauer, R. Meinel, General N -soliton solution of the AKNS class on arbitrary background,
Phys. Lett. A 100 (1984) 467–470.

[6] A.D. Polyanin, V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman &
Hall/CRC, Boca Raton, 2004.

[7] D.Y. Chen, Introduction to Solitons, Science Press, Beijing, 2006.

[8] A.R. Its, V.P. Kotljarov, Explicit formulas for solutions of a nonlinear Schrödinger equation, Dokl.
Akad. Nauk Ukrain. SSR Ser. A 1976 965–968, 1051.

[9] Y.C. Ma, The perturbed plane-wave solutions of the cubic Schrödinger equation, Stud. Appl. Math.
60 (1979) 43–58.

[10] D.H. Peregrine, Water waves, nonlinear Schrödinger equations and their solutions, J. Austral. Math.
Soc. Ser. B 25 (1983) 16–43.
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