
ar
X

iv
:1

10
4.

16
98

v1
 [

cs
.S

C
]

 9
 A

pr
 2

01
1

About the generalized LM-inverse and

the Weighted Moore-Penrose inverse

Milan B. Tasić∗, Predrag S. Stanimirović, Selver H. Pepić

University of Nǐs, Faculty of Sciences and Mathematics,

Vǐsegradska 33, 18000 Nǐs, Serbia
†

E-mail: milan12t@ptt.rs, pecko@pmf.ni.ac.rs, p selver@yahoo.com

Abstract

The recursive method for computing the generalized LM - inverse of a constant rectangular ma-
trix augmented by a column vector is proposed in [16, 17]. The corresponding algorithm for the
sequential determination of the generalized LM -inverse is established in the present paper. We
prove that the introduced algorithm for computing the generalized LM inverse and the algorithm
for the computation of the weighted Moore-Penrose inverse developed by Wang in [23] are equiv-
alent algorithms. Both of the algorithms are implemented in the present paper using the package
MATHEMATICA. Several rational test matrices and randomly generated constant matrices are tested
and the CPU time is compared and discussed.

AMS Subj. Class.: 15A09, 68W30.

Key words: Generalized inverses, LM-inverse, Weighted Moore-Penrose inverse, rational matrices,
MATHEMATICA, Partitioning method.

1 Introduction

As usual, let C be the set of complex numbers, Cm×n be the set of m × n complex matrices, and
Cm×n

r ={X ∈ Cm×n : rank(X)=r}. For any matrix A ∈ Cm×n and positive definite matrices M and
N of the orders m and n respectively, consider the following equations in X , where ∗ denotes conjugate
and transpose:

(1) AXA = A (2) XAX=X
(3M) (MAX)∗ = MAX (4N) (NXA)∗=NXA.

The matrix X satisfying equations (1), (2), (3M) and (4N) is called the weighted Moore-Penrose

inverse of A, and it is denoted by X = A†
M,N . Especially, in the case M = Im and N = In, the matrix

X = A†
M,N becomes the Moore-Penrose inverse of A, and it is denoted by X = A†.

Various methods for computing the Moore-Penrose inverse of a matrix are known. The main methods
are based on the Cayley-Hamilton theorem, the full-rank factorization and the singular value decom-
position (see the example [1]). The Greville’s partitioning method , introduced in [4], is one of the most
efficient algorithms for computing the Moore-Penrose inverse. Two different proofs for the Greville’s
method were presented in [2, 24]. Udwadia and Kalaba gave an alternative and a simple constructive

∗Corresponding author
†The authors gratefully acknowledge support from the research project 144011 of the Serbian Ministry of Science.

1

http://arxiv.org/abs/1104.1698v1

2 M.B. Tasić, P.S. Stanimirović, S.H. Pepić

proof of Greville’s formula in [19]. In [3] Fan and Kalaba determined the Moore-Penrose inverse of
matrices using dynamic programming and the Belman’s principle of optimality. Sivakumar in [12] used

the Greville’s formula for A†
k = [Ak−1 |ak]

† and just verified that it satisfies the four Penrose equations.
This provides a proof of the Greville’s method by the verification.

The Greville’s algorithm is used in various computations, where its dominance is verified over various
direct methods for the pseudoinverse computation. The computational experience presented in [7]
is: ”When applied to a square, fully populated, non-symmetric case, with independent columns, the
Greville’s algorithm was found that the approach can be up to 8 times faster than the conventional
approach of using the SVD; rectangular cases are shown to yield similar levels of speed increase”. The
Greville’s method has been used as a benchmark for the calculation of the pseudo-inverse.

Due to its computational dominance, this method has been extensively applied in many mathemat-
ical areas, such as statistical inference, filtering theory, linear estimation theory, optimization and more
recently analytical dynamics [20] (see also [6]). An application in a direct approach for computing the
gradient of the pseudo-inverse is presented in [7]. It has also found wide applications in database and
the neural network computation [8]. In the paper [5], the sequential determination of the Moore-Penrose
inverse by dynamic programming is applied to the diagnostic classification of electromyography signals.

There is a lot of extensions of the partitioning method. Wang in [23] generalized Greville’s method
to the weighted Moore-Penrose inverse. Also, the results in [23] are proved by using a new technique.
Udwadia and Kalaba developed the recursive relations for the different types of generalized inverses
[21, 22]. Finally, the Greville’s recursive principle is generalized to various subsets of outer inverses and
extended to the set of the one-variable rational and polynomial matrices in [15].

The algorithm for the computation of the Moore-Penrose inverse of the one-variable polynomial
and/or rational matrix, based on the Greville’s partitioning algorithm, was introduced in [13]. The
extension of results from [13] to the set of the two-variable rational and polynomial matrices is introduced
in the paper [10].

The Wang’s partitioning method from [23], aimed in the computation of the weighted Moore-Penrose
inverse, is extended to the set of the one-variable rational and polynomial matrices in the paper [14].
Also the efficient algorithm for computing the weighted Moore-Penrose inverse, appropriate for the
polynomial matrices where only a few polynomial coefficients are nonzero, is established in [9].

In the paper [6] the authors derived a formula for the computation of the Moore-Penrose inverse of
M∗M and obtained sufficient conditions for its nonnegativity, where M = [A | a].

On the other side, there are a few articles which are interested in with computation of the generalized
LM -inverse. The definition of the LM -inverse and the recursive algorithm of the Greville’s type (for a
matrix augmented by a column vector) are given in [16, 17]. The recursive relations in [16, 17] are proved
by direct verification of the four conditions of the generalized LM -inverse. Also, these formulae are
particularized to obtain recursive relations for the generalized L-inverse of a general matrix augmented
by a column [17]. The recursive relations for the determination of the generalized Moore-Penrose
M -inverse are derived in [18]. Separate relations for the situations when the rectangular matrix is
augmented by a row vector and when such a matrix is augmented by a column vector are considered
in [18]. The alternative proof for the determination of the generalized Moore-Penrose M -inverse of
a matrix through the direct verification of the four properties of the Moore-Penrose M -inverse are
presented in [11].

It is not difficult to verify that the conditions which characterize the generalized LM -inverse are
equivalent with the corresponding equations characterizing the weighted Moore-Penrose inverse. More-
over, the matrix norms minimization used in (3) and (4) in the article [16] also characterizes the weighted
Moore-Penrose inverse. Therefore, the generalized LM -inverse and the weighted Moore-Penrose inverse

About the generalized LM -inverse and the Weighted Moore-Penrose inverse 3

are identical. In the present paper we compare the corresponding algorithms. It is realistic to predict
that algorithm for computing the weighted Moore-Penrose inverse from [23] and the algorithm for the
computation of the generalized LM -inverse, introduced in the present paper and based on the results
from [16, 17] are the same. Verification of this prediction is the main result of the present paper.
Therefore, the present paper is continuation of the papers [9, 13, 14, 16, 17].

The structure of the present paper is as follows. In the second section we restate the representation
of the generalized LM -inverse from [16, 17] as well as the representation and algorithm for computing
the weighted Moore-Penrose from [23]. We also introduce an effective algorithm for construction of the
generalized LM -inverse directly using its representation proposed in [16, 17]. In the third section we
provide a proof that two algorithms from the second section are equivalent. Implementation of both
algorithms and a few illustrative examples are presented.

2 Preliminaries and motivation

The recursive determination of the weighted Moore-Penrose inverse A†
M,N is established in [23].

Let A ∈ C
m×n and Ak be the submatrix of A consisting of its first k columns. For k = 2, . . . , n the

matrix Ak is partitioned as
Ak = [Ak−1 | ak] , (2.1)

where ak is the k-th column of A.

Theorem 2.1 (G.R. Wang, Y.L. Chen [23]). Let A ∈ Cm×n and Ak be the submatrix of A consisting of
its first k columns. For k = 2, . . . , n the matrix Ak is partitioned as in (2.1), and the matrix Nk ∈ Ck×k

is the leading principal submatrix of N , and Nk is partitioned as

Nk =

[
Nk−1 lk
l∗k nkk

]
. (2.2)

Let the matrices Xk−1 and Xk be defined by

Xk−1 = (Ak−1)
†
M,Nk−1

, Xk = (Ak)
†
M,Nk

, (2.3)

the vectors dk, ck be defined by

dk = Xk−1ak (2.4)

ck = ak −Ak−1dk = (I −Ak−1Xk−1) ak. (2.5)

Then

Xk=

[
Xk−1−(dk + (I −Xk−1Ak−1)N

−1
k−1lk)b

∗
k

b∗k

]
, (2.6)

where

b∗k =





(c∗kMck)
−1

c∗kM, ck 6= 0

δ−1
k (d∗kNk−1 − l∗k)Xk−1, ck = 0,

(2.7)

and δk = nkk + d∗kNk−1dk − (d∗klk + l∗kdk(s))− l∗k (I −Xk−1Ak−1)N
−1
k−1lk.

According to the above theorem the next Algorithm 2.1 is introduced in [23].

4 M.B. Tasić, P.S. Stanimirović, S.H. Pepić

Algorithm 2.1 Computing the weighted M-P inverse A†
M,N using algorithm from [23].

Require: Let A ∈ Cm×n, M and N be p.d. matrices of the order m and n respectively.
1: A1 = a1.
2: if a1 = 0, then
3: X1 = (a∗1Ma1)

−1a∗1M ;
4: else

5: X1 = 0.
6: end if

7: for k = 2 to n do

8: dk=Xk−1ak,
9: ck = ak −Ak−1dk,

10: if ck 6= 0, then
11: b∗k = (c∗kMck)

−1c∗kM, goto Step 16,
12: else

13: δk = nkk + d∗kNk−1dk − (d∗klk + l∗kdk)− l∗k(I −Xk−1Ak−1)N
−1
k−1lk,

14: b∗k = δ−1
k (d∗kNk−1 − l∗k)Xk−1,

15: end if

16: Xk =

[
Xk−1 − (dk + (I −Xk−1Ak−1)N

−1
k−1lk)b

∗
k

b∗k

]
.

17: end for

18: return A†
MN = Xn.

Also, the next auxiliary Algorithm 2.2, required in Algorithm 2.1 is stated in [23].

Algorithm 2.2 Computing the inverse matrix N−1.

Require: Let Nk =

[
Nk−1 lk
l∗k nkk

]
∈ Ck×k be the leading principal submatrix of p.d. matrix N .

1: N−1
1 = n−1

11 .
2: for k = 2 to n do

3: gkk=(nkk − l∗kN
−1
k−1lk)

−1,

4: fk = −gkkN
−1
k−1lk,

5: Ek−1 = N−1
k−1 + g−1

kk fkf
∗
k ,

6: N−1
k =

[
Ek−1 fk
f∗
k gkk

]
.

7: end for

8: return N−1 = N−1
n .

The definition of the generalized LM -inverse is given in [16], and it is based on the usage of the
linear equation Ax = b, where A is an m×n matrix, b is an m-vector and x is an n-vector. The matrix
A†

LM is such that the vector x, uniquely given by x = A†
LMb, minimizes both of the following two vector

norms (conditions (3) and (4) from [16])

G =‖ L1/2(Ax− b) ‖2=‖ Ax− b ‖2L,

H =‖ M1/2x ‖2=‖ x ‖2M ,

where L is an m×m symmetric positive-definite matrix and M is an n× n symmetric positive-definite
matrix.

About the generalized LM -inverse and the Weighted Moore-Penrose inverse 5

The recursive formulae for determining the generalized LM -inverse A†
L,M of any given matrix A are

introduced in [16, 17], and they are restated here for the sake of completeness.

Theorem 2.2 (F.E. Udwadia, P. Phohomsiri [16, 17]). The generalized LM -inverse of any given matrix
B = [A | a] ∈ Cm×n is determined using the following recursive relations:

B†
L,M = [A | a]†L,M =





[
A†

L,M −A†
L,M a d†L − p d†L
d†L

]
, d =

(
I − AA†

L,M

)
a 6= 0;

[
A†

L,M −A†
L,M ah− p h

h

]
, d =

(
I − AA†

L,M

)
a = 0,

(2.8)

where A is an m× (n− 1) matrix, a is a column vector of m components,

d†L =
dTL

dTLd
, h =

qTMU

qTMq
,

U =

[
A†

L,M

01×m

]
, q =

[
v + p
−1

]
, v = A†

L,M a

and
p =

(
I −A†

L,M A
)
M−1m̃.

Note that L is a symmetric positive definite m×m matrix, and

M =




M m̃

m̃T m̄



 , (2.9)

where M is a symmetric positive-definite n×n matrix, M is a symmetric positive-definite (n−1)×(n−1)
matrix, m̃ is a column vector of n− 1 components, and m̄ is a scalar.

Theorem 2.2 assumes in B = [A | a] that the matrix B is obtained augmenting the matrix A by
an appropriate column vector a. In the rest of the paper we assume that B = [A | a] is just the
partitioning (2.1): B = Ak, A = Ak−1, a = ak. Moreover, it is clear that the following notations
immediately follows from Algorithm 2.1:

B†
L,M = Xk, A† = Xk−1.

Also, we use the following denotation for the matrix M defined in (2.9):

M =




Mk−1 m̃k

m̃T
k mk,k


 , (2.10)

Finally, the vector d corresponding to the first k columns of A is denoted by dk.

According to the above Theorem 2.2 we introduce the next algorithm.

6 M.B. Tasić, P.S. Stanimirović, S.H. Pepić

Algorithm 2.3 Computing the LM -inverse A†
LM using the representation from [16].

Require: Let A ∈ Cm×n, L and M be p.d. matrices of order m and n respectively.
1: A1 = a1.
2: if a1 = 0 then

3: X1 = (a∗1La1)
−1a∗1L

4: else

5: X1 = 0.
6: end if

7: for k = 2 to n do

8: dk = (I −Ak−1Xk−1) ak,
9: p = (I −Xk−1Ak−1)M

−1
k−1m̃k,

10: if dk 6= 0 then

11: b∗k =
d∗
k
L

d∗
k
Ldk

goto Step 17

12: else

13: q =

[
Xk−1ak + p

−1

]
,

14: U =

[
Xk−1

0

]
,

15: b∗k = q∗

q∗Mkq
MkU ,

16: end if

17: Xk =

[
Xk−1 −Xk−1akb

∗
k − p b∗k

b∗k

]
.

18: end for

19: return A†
L,M = Xn.

It is clear from restated definitions that the generalized LM -inverse is just the weighted Moore-
Penrose inverse. Therefore, Algorithm 2.3 and algorithms 2.1, 2.2 together produce identical result -
the weighted Moore-Penrose inverse of the given m × n matrix. In the next section we compare the
described algorithms.

3 Comparison of algorithms

Theorem 3.1. Algorithm 2.3 is equivalent to algorithms 2.1 and 2.2.

Proof. In order to ensure unambiguous, during the proof we assume that the symbol W in a superscript
denotes terms from the Wang’s algorithm; similarly we use the convention that U , as a superscript,
denotes terms from the Udwadia’s algorithm, elsewhere it is necessary. Since the LM -inverse is just the
weighted Moore-Penrose inverse, we conclude that the matrix M in Algorithm 2.1 is just the matrix L
in Algorithm 2.3 and the matrix N in Algorithm 2.1 is analogous with the matrix M in Algorithm 2.3.
Therefore, it is not necessarily to mark the matrices L,M,N and A by appropriate superscript.

We prove the theorem by verifying the equivalence of the outputs from the corresponding algorithmic
steps of mentioned algorithms. The proof proceeds by the mathematical induction.

The proof for the case k = 1 in view of Step 3 in both algorithms is trivial. Assume that the
statement is valid for the first k − 1 columns, i.e.

XU
k−1 = XW

k−1 = (Ak−1)
†
M,Nk−1

= A†
LM . (3.11)

About the generalized LM -inverse and the Weighted Moore-Penrose inverse 7

Now we verify the inductive step. Wang used the matrix Xk in the form

XW
k =

[
XW

k−1−
(
dWk + (I −XW

k−1Ak−1

)
N−1

k−1lk)(b
∗
k)

W

(b∗k)
W

]
, (3.12)

while Udwadia observed two cases, as in (2.8).

If we denote with

(b∗k)
U=

{
d†L, dUk 6= 0
h, dUk = 0,

(3.13)

then the equalities in (2.8) become

XU
k =

[
XU

k−1−XU
k−1ak(b

∗
k)

U − p (b∗k)
U

(b∗k)
U

]
. (3.14)

Let us show that the output of Step 9 from Algorithm 2.1 is the same as the output of Step 8 from
Algorithm 2.3:

cWk ≡ ak −Ak−1d
W
k = ak −Ak−1X

W
k−1ak =

(
I −Ak−1X

W
k−1

)
ak ≡ dUk .

Now we show that Step 11 from Algorithm 2.1 and Step 11 from Algorithm 2.3 are equivalent. As it is
stated above cWk = dUk , so that in the case cWk 6= 0 we have

(b∗k)
W = ((c∗k)

WMcWk)−1(c∗k)
WM = ((d∗k)

ULdUk)
−1(d∗k)

UL = (b∗k)
U .

In a similar way it can be verified that Step 14 from Algorithm 2.1 is equivalent to Step 15 from
Algorithm 2.3. In the case cWk = 0 we can start from the statement in Step 15 from Algorithm 2.3.

(b∗k)
U = (q∗MkU)/(q∗Mkq).

From Step 9 of Algorithm 2.3 and the inductive hypothesis the following holds

p =
(
I −XU

k−1Ak−1

)
N−1

k−1lk =
(
I −XW

k−1Ak−1

)
N−1

k−1lk,

so that we derive the following:

qTMkU =
[
(XU

k−1ak + p)∗ | − 1
] [Nk−1 lk

l∗k nkk

] [
XU

k−1

0

]

=
[
(XU

k−1ak + p)∗Nk−1 − l∗k | (XU
k−1ak + p)∗lk − nkk

] [XU
k−1

0

]

= (XU
k−1ak + p)∗Nk−1X

U
k−1 − l∗kX

U
k−1 {since XU

k−1ak = XW
k−1ak = dWk }

= (d∗k)
WNk−1X

W
k−1 − l∗kX

W
k−1 + p∗Nk−1X

W
k−1

=
(
(d∗k)

WNk−1 − l∗k
)
XW

k−1 +
((
I −XW

k−1Ak−1

)
N−1

k−1lk
)∗

Nk−1X
W
k−1

=
(
(d∗k)

WNk−1 − l∗k
)
XW

k−1 +
(
l∗kN

−1
k−1

(
I −XW

k−1Ak−1

)∗)
Nk−1X

W
k−1

=
(
(d∗k)

WNk−1 − l∗k
)
XW

k−1 + l∗kX
W
k−1 − l∗kN

−1
k−1

(
XW

k−1Ak−1

)∗
Nk−1X

W
k−1.

Since Nk−1 is the symmetric positive definite applying equality (4N) together with (3.11) the following
holds (

XW
k−1Ak−1

)∗
Nk−1 =

(
Nk−1X

W
k−1Ak−1

)∗
= Nk−1X

W
k−1Ak−1,

8 M.B. Tasić, P.S. Stanimirović, S.H. Pepić

and later

qTMkU =
(
(d∗k)

WNk−1 − l∗k
)
XW

k−1 + l∗kX
W
k−1 − l∗kN

−1
k−1Nk−1X

W
k−1Ak−1X

W
k−1

=
(
(d∗k)

WNk−1 − l∗k
)
XW

k−1 + l∗k
(
XW

k−1 −XW
k−1Ak−1X

W
k−1

)

=
(
(d∗k)

WNk−1 − l∗k
)
XW

k−1 + l∗k
(
XW

k−1 −XW
k−1

)

=
(
(d∗k)

WNk−1 − l∗k
)
XW

k−1.

Moreover, we have

qTMkq =
[
(XU

k−1ak + p)∗ | − 1
] [Nk−1 lk

l∗k nkk

] [
XU

k−1ak + p
−1

]

=
[
(XU

k−1ak + p)∗Nk−1 − l∗k | (XU
k−1ak + p)∗lk − nkk

] [XU
k−1ak + p

−1

]

= ((XU
k−1ak + p)∗Nk−1 − l∗k)(X

U
k−1ak + p)− (XU

k−1ak + p)∗lk + nkk

= (XU
k−1ak + p)∗Nk−1(X

U
k−1ak + p)− l∗k(X

U
k−1ak + p)− (XU

k−1ak + p)∗lk + nkk

(since {XU
k−1ak = XW

k−1ak = dWk })

= (dWk + p)∗Nk−1(d
W
k + p)− l∗k(d

W
k + p)− (dWk + p)∗lk + nkk

= (d∗k)
WNk−1d

W
k − l∗kd

W
k − (d∗k)

W lk + nkk − l∗kp

+ p∗Nk−1d
W
k + (d∗k)

WNk−1p+ p∗Nk−1p− p∗lk.

Furthermore

p∗Nk−1d
W
k + (d∗k)

WNk−1p+ p∗Nk−1p− p∗lk = 0. (3.15)

First we show that p∗Nk−1d
W
k = 0, as follows

p∗Nk−1d
W
k =

((
I −XW

k−1Ak−1

)
N−1

k−1lk
)∗

Nk−1X
W
k−1ak

= l∗kN
−1
k−1

(
I −XW

k−1Ak−1

)∗
Nk−1X

W
k−1ak

= l∗kN
−1
k−1

(
Nk−1 −

(
XW

k−1Ak−1

)∗
Nk−1

)
XW

k−1ak

= l∗kN
−1
k−1

(
Nk−1 −Nk−1X

W
k−1Ak−1

)
XW

k−1ak

= l∗kN
−1
k−1Nk−1

(
I −XW

k−1Ak−1

)
XW

k−1ak

= l∗k
(
I −XW

k−1Ak−1

)
XW

k−1ak

= l∗k
(
XW

k−1 −XW
k−1Ak−1X

W
k−1

)
ak

= l∗k
(
XW

k−1 −XW
k−1

)
ak = 0.

Also, from the above equality, we have

(d∗k)
WNk−1p = (p∗Nk−1d

W
k)∗ = 0.

Finally, the last term of the sum in the left hand side of (3.15), is equal to p∗Nk−1p − p∗lk, and it is

About the generalized LM -inverse and the Weighted Moore-Penrose inverse 9

also equal to zero:

p∗Nk−1p− p∗lk = p∗
(
Nk−1

(
I −XW

k−1Ak−1

)
N−1

k−1lk − lk
)

= p∗(−Nk−1X
W
k−1Ak−1N

−1
k−1 lk)

= p∗
(
−(XW

k−1Ak−1)
∗ lk

)

=
((
I −XW

k−1Ak−1

)
N−1

k−1lk
)∗

(−A∗
k−1(X

∗
k−1)

W lk)

= −l∗kN
−1
k−1A

∗
k−1(X

∗
k−1)

W lk + l∗kN
−1
k−1A

∗
k−1(X

∗
k−1)

WA∗
k−1(X

∗
k−1)

W lk

= −l∗kN
−1
k−1A

∗
k−1(X

∗
k−1)

W lk + l∗kN
−1
k−1A

∗
k−1(X

∗
k−1)

W lk = 0.

Continuing the transformation for qTMkq we have

qTMkq = (d∗k)
WNk−1d

W
k − l∗kd

W
k − (d∗k)

W lk + nkk − l∗k
(
I −XW

k−1Ak−1

)
N−1

k−1lk

= δk.

Now we are able to continue the rest of our proof. According to the equality

(b∗k)
U = (q∗MkU)/(q∗Mkq),

Step 15 from Algorithm 2.3 produces the result

(b∗k)
U = δ−1

k (d∗kNk−1 − l∗k)X
W
k−1,

which is identical to the output (b∗k)
W , derived in Step 14 from Algorithm 2.1.

According to Step 16 of Algorithm 2.1 and Step 17 of Algorithm 2.3, the generalized LM -inverse
and the weighted Moore-Penrose inverse of the first k columns of A are identical:

XU
k =

[
XU

k−1−
(
XU

k−1ak + p
)
(b∗k)

U

(b∗k)
U

]

=

[
XW

k−1−
(
dWk +

(
I −XW

k−1Ak−1

)
N−1

k−1lk
)
(b∗k)

W

(b∗k)
W

]

= XW
k .

(3.16)

Finally, for the case k = n, it immediately follows that A†
L,M = A†

M,N , which means that the outputs
from both algorithms are identical.

4 Examples

In order to compare the algorithms from the second section it is necessary to use the precise imple-
mentation of the corresponding algorithms. Details concerning the implementation of the partitioning
algorithm corresponding to the weighted Moore-Penrose inverse can be found in [14]. In order to com-
pare the mentioned algorithms we developed a MATHEMATICA code for the implementation of Algorithm
2.3. We later tested results on different types of matrices. Since the language MATHEMATICA admits
symbolic manipulation with data, developed implementations are immediately applicable to the rational
and polynomial matrices.

10 M.B. Tasić, P.S. Stanimirović, S.H. Pepić

Example 4.1. Consider the test matrix A11×10 from [25], in the case a = 1

A =

































1 2 3 4 1 1 3 4 6 2

1 3 4 6 2 2 3 4 5 3

2 3 4 5 3 3 4 5 6 4

3 4 5 6 4 4 5 6 7 6

4 5 6 7 6 6 6 7 7 8

6 6 7 7 8 1 2 3 4 1

3 4 1 1 3 4 6 2 1 2

4 6 2 2 3 4 5 3 1 3

4 5 3 3 4 5 6 4 2 3

5 6 4 4 5 6 7 6 3 4

6 7 6 6 6 7 7 8 4 5

































11×10

and randomly generated symmetric positive definite matrices L10×10 and M11×11:

L =





























280 −5 −133 −27 −12 −93 −133 −42 84 52

−5 216 −93 −23 141 −2 −108 −48 21 165

−133 −93 336 1 0 0 9 −5 91 81

−27 −23 1 260 −62 −42 −40 6 85 −8

−12 141 0 −62 278 −63 −19 −135 9 99

−93 −2 0 −42 −63 238 68 −27 −80 −34

−133 −108 9 −40 −19 68 290 12 −233 −244

−42 −48 −5 6 −135 −27 12 209 −15 −87

84 21 91 85 9 −80 −233 −15 332 145

52 165 81 −8 99 −34 −244 −87 145 402





























10×10

,

M=

































452 91 −186 −97 −161 68 28 16 151 41 −65

91 413 −74 −119 −317 −41 −12 67 180 −53 54

−186 −74 497 −136 78 −208 −175 −120 9 −99 6

−97 −119 −136 371 157 154 129 29 −102 −16 −96

−161 −317 78 157 444 28 −39 −201 −165 3 43

68 −41 −208 154 28 509 52 55 90 179 −81

28 −12 −175 129 −39 52 454 −38 −157 145 22

16 67 −120 29 −201 55 −38 408 −9 −16 −100

151 180 9 −102 −165 90 −157 −9 257 −32 14

41 −53 −99 −16 3 179 145 −16 −32 376 −15

−65 54 6 −96 43 −81 22 −100 14 −15 339

































11×11

.

The generalized LM -inverse A†
L,M from [16, 17] and the weighted Moore-Penrose inverse A†

M,N from
[23] are both equal to




























0.755 −0.156 −1.917 0.823 0.143 0.033 0.383 −0.33 0.213 −0.802 0.67
−0.542 −0.078 1.683 −0.544 −0.27 0.003 −0.432 0.673 0.075 0.087 −0.347
0.346 −0.194 −0.881 0.751 −0.187 0.002 0.32 −0.149 0.711 −1.749 1.003

−0.049 0.558 −0.724 0.145 0.065 0.007 0.128 −0.258 −0.245 0.481 −0.141
−0.454 −0.013 1.181 −0.79 0.188 0.109 −0.3 0.057 −0.563 1.498 −0.907
−1.188 −0.468 2.87 −0.203 −0.792 −0.107 0.233 0.19 1.258 −2.561 1.083
0.701 0.364 −2.009 0.492 0.282 0.009 0.395 −0.407 −0.481 0.786 −0.192
0.472 0.156 −0.533 −0.675 0.507 −0.02 −0.62 −0.008 −0.822 2.174 −0.848

−0.415 −0.481 1.824 −0.22 −0.377 0.002 0.013 0.247 0.615 −1.143 0.257
0.328 0.156 −1.388 0.469 0.362 −0.02 0.028 −0.008 −0.47 0.526 −0.2





























.

The Moore-Penrose inverse can be generated in the case L = M = αI, M = N = βI [16], and it is
equal to

A†=





























0.294 −0.169 −1.511 1.415 −0.391 0.041 −0.04 −0.26 0.454 −0.264 0.23
−0.067 −0.074 1.227 −1.064 0.23 0.001 −0.192 0.649 −0.103 −0.191 −0.102
0.227 −0.179 −0.692 0.705 −0.214 −0.009 −0.254 −0.238 1.514 −1.319 0.449

−0.165 0.547 −0.657 0.376 −0.116 0.015 0.179 −0.196 −0.456 0.531 −0.104
−0.297 −0.01 1.035 −0.972 0.359 0.108 0.238 0.044 −1.065 0.938 −0.366
−0.008 −0.474 1.663 −1.319 0.352 −0.103 −0.428 0.224 1.83 −1.844 0.414
0.062 0.368 −1.349 1.081 −0.33 0.006 0.426 −0.434 −0.442 0.712 −0.156

−0.081 0.158 0.029 −0.144 −0.034 −0.021 0.087 −0.019 −1.499 1.448 −0.138
0.195 −0.484 1.198 −0.791 0.211 0.005 −0.19 0.268 0.765 −0.906 0.049

−0.081 0.158 −0.971 0.856 −0.034 −0.021 0.087 −0.019 −0.499 0.448 −0.138





























.

About the generalized LM -inverse and the Weighted Moore-Penrose inverse 11

Example 4.2. Consider the one variable test matrix

A =







































x 1 0 0 0 0 0 0 0 0 0 0
x2 x 1 0 0 0 0 0 0 0 0 0
x3 x2 x 1 0 0 0 0 0 0 0 0
x4 x3 x2 x 1 0 0 0 0 0 0 0
x5 x4 x3 x2 x 1 0 0 0 0 0 0
x6 x5 x4 x3 x2 x 1 0 0 0 0 0
x7 x6 x5 x4 x3 x2 x 1 0 0 0 0
x8 x7 x6 x5 x4 x3 x2 x 1 0 0 0
x9 x8 x7 x6 x5 x4 x3 x2 x 1 0 0
x10 x9 x8 x7 x6 x5 x4 x3 x2 x 1 0
x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x 1
x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x







































proposed in [25] and L (resp. M) and M (resp. N) as the identity matrices of the appropriate
dimensions. Both of the considered algorithms produce the following Moore-Penrose inverse:

A
† =









































x

x
2+1

0 0 0 0 0 0 0 0 0 0 0
1

x
2+1

0 0 0 0 0 0 0 0 0 0 0

−x 1 0 0 0 0 0 0 0 0 0 0
0 −x 1 0 0 0 0 0 0 0 0 0
0 0 −x 1 0 0 0 0 0 0 0 0
0 0 0 −x 1 0 0 0 0 0 0 0
0 0 0 0 −x 1 0 0 0 0 0 0
0 0 0 0 0 −x 1 0 0 0 0 0
0 0 0 0 0 0 −x 1 0 0 0 0
0 0 0 0 0 0 0 −x 1 0 0 0
0 0 0 0 0 0 0 0 −x 1 0 0
0 0 0 0 0 0 0 0 0 −x

1

x
2+1

x

x
2+1









































.

Example 4.3. The CPU time needed for the computation of the generalized LM -inverse and the
weighted Moore-Penrose inverse (according to Algorithm 2.3 and the algorithms 2.1, 2.2, respectively)
is compared in the next table. The testing is done on the local machine with the following performances:
Windows edition: Windows Home Edition; Processor: Intel(R) Celeron(R) M CPU @ 1.6GHz; Memory
(RAM): 512 MB; System type: 32-bit Operating System; Software: MATHEMATICA 5.2. Also, in the table
there are arranged results obtained on the set of randomly generated test matrices Am×n and randomly
generated symmetric positive definite matrices Lm×m (resp. Mm×m) and Mn×n (resp. Nn×n):

m × n degree
Algorithm 2.1

A†

MN

Algorithm 2.3

A†

LM

5x6 1 2.265 Seconds 2.235 Seconds

5x6 2 4.078 4.063

6x4 5 9.969 9.625

6x4 10 23.328 21.11

10x11 1 104.109 103.484

10x11 2 192.734 186.297

11x10 1 133.469 130.125

11x10 2 261.359 227.047

Table 1. The comparison in the efficiency on the set of randomly generated test matrices

According to the above Table 1 results it is evident that Algorithm 2.3 produces negligibly better
performances with respect to Algorithm 2.1 for all test cases. This fact is in accordance with the verified
equivalence between the algorithms.

12 M.B. Tasić, P.S. Stanimirović, S.H. Pepić

5 Conclusions

Our primary idea is to show that the computational method for the generalized LM -inverse from [16, 17]
and the algorithms for the computation of the weighted Moore-Penrose inverse from [23] are equiva-
lent. The effective algorithm for the computation of the generalized LM -inverse is introduced here.
Equivalence of the considered algorithms is proved in the third section by verifying the equivalence of
outputs generated by corresponding algorithmic steps. This paper not only compares the corresponding
algorithms but also compares the performance of two approaches of finding the Moore-Penrose inverse.
In order to compare the efficiency of corresponding algorithms we developed their implementations in
the programming language MATHEMATICA.

6 Appendix

Several auxiliary procedures implemented in MATHEMATICA are described at the beginning.

TakeCol [A , k] := Transpose [Take [Transpose [A] , {k }]] ;
TakeCols [A , k] := Transpose [Take [Transpose [A] , k]] ;
TakeElement [A , i , j] := TakeCol [Take [A, { i }] , j] ;
TakeElements [A , i , j] := TakeCols [Take [A, i] , j] ;
T[A] := Transpose [A] ;
RandomPoly [n , prob1 , prob2 , var] := Module [{S , i , l } ,

I f [Random [Real , {0 , 1}] > prob1 , Return [0]] ;
S = 0 ;
Do [I f [Random [Real , {0 , 1}] < prob2 , l = 1 , l = 0] ;

S = S + var ˆ i ∗Random [Integer , {−10, 10}]∗ l , { i , 0 , n }] ;
I f [(S == 0) && (prob1 >= 1) , S = S + 1] ;
Return [S]] ;

RandomMatrix [m , n , deg , prob1 , prob2 , var] := Module [{A, i , j } ,
A = Table [0 , { i , 1 ,m} , { j , 1 , n }] ;
Do [Do [A [[i , j]] = RandomPoly [deg , prob1 , prob2 , var] , { i , 1 ,m}] , { j , 1 , n }] ;
Return [A]] ;

Implementation of Algorithm 2.3 is given by the following function.

ALMW[A , M , N] :=
Module [{ I , m, n , d , c , tmp , tmp1 , u , q , p , a , A1 , l , X, N1 , N2 , n11 } ,
a = TakeCol [A, 1] ; {m, n} = Dimensions [A] ;
I f [Together [a] === 0∗a ,
X = T[a] ,
X = Inve r s e [T[a] .M. a] .T[a] .M] ;

A1 = {} ;
Do [I = Ident i tyMatr i x [i − 1] ;

a = TakeCol [A, i] ; A1 = TakeCols [A, i − 1] ;
n11 = TakeElement [N, i , i] ; N1 = TakeElements [N, i − 1 , i − 1] ;
N2 = TakeElements [N, i , i] ; l = T[TakeCols [Take [N, { i }] , i − 1]] ;
d = (Ident i tyMatr i x [m] − A1 .X) . a // Together ;
p = (I − X.A1) . Inve r s e [N1] . l // Together ;
I f [Together [d] =!= 0∗d ,
b = Inve r s e [T[d] .M. d] .T[d] .M; b = T[b] // Together ,
tmp = (X. a + p) // Together ; q = Join [tmp , {{ −1}}] ;
u = Append [X, Table [0 , { j , m}]] ;
b = (T[q] . N2 . u) Inve r s e [T[q] . N2 . q] [[1]] ;
b = T[b] // Together ;
] ;

tmp1 = X − (X. a − p) .T[b] // Together ;
X = Together [Join [tmp1 , T[b]]] ;
, { i , 2 , n }] ;

Return [X // MatrixForm]] ;

About the generalized LM -inverse and the Weighted Moore-Penrose inverse 13

Implementation of Algorithm 2.1 is obtained by slightly adopting the MATHEMATICA code described
in [14].

AWang[A , M , N] :=
Module [{ I , m, n , d , c , a , A1 , l , del , X, tmp , tmp1 , N1 , n11 } ,

a = TakeCol [A, 1] ;
{m, n} = Dimensions [A] ;
I f [Together [a] === 0∗a ,

X = T[a] ,
X = Inve r s e [T[a] .M. a] .T[a] .M] ; A1 = {} ;

Do [I = Ident i tyMatr i x [i − 1] ;
a = TakeCol [A, i] ; A1 = TakeCols [A, i − 1] ;
d = X. a ; c = Together [a − A1 . d] ;
n11 = TakeElement [N, i , i] ;
N1 = TakeElements [N, i − 1 , i − 1] ;
l = T[TakeCols [Take [N, { i }] , i − 1]] ;
tmp = T[d] . N1 − T[l] ;
tmp1 = (I − X.A1) . Inve r s e [N1] . l // Together ;
I f [Together [c] =!= 0∗c ,

b = Inve r s e [T[c] .M. c] .T[c] .M;
b = T[b] // Together ,
de l = n11 + T[d] . N1 . d − (T[d] . l + T[l] . d) − T[l] . tmp1 // Together ;
b = T[Inve r s e [de l] . tmp .X] // Together ;
] ;
X = Together [Join [X − (d + tmp1) .T[b] , T[b]]] ;
, { i , 2 , n }] ;

Return [X]] ;

References

[1] A. Ben-Israel and T.N.E. Greville, Generalized inverses: theory and applications, Second Ed.,
Springer, 2003.

[2] S.L. Campbell and C.D. Meyer, Jr., Generalized inverses of linear transformations, London, Pit-
man, 1979.

[3] Y. Fan a and R. Kalaba, Dynamic programming and pseudo-inverses, Appl. Math. Comput. 139
(2003), 323-342.

[4] T.N.E. Greville, Some applications of the pseudo-inverse of matrix SIAM Rev. 3 (1960), 15–22.

[5] C. Itiki, Dynamic programming and diagnostic classification, J. Optim. Theory Appl. 127 (2005),
579-586.

[6] T. Kurmayya and K.C. Sivakumar, Moore-Penrose inverse of a Gram matrix and its nonnegativity,
J. Optim. Theory Appl. 139 (2008), 201-207.

[7] J.B. Layton, Efficient direct computation of the pseudo-inverse and its gradient, Internat. J. Numer.
Methods Engrg. 40 (1997), 4211–4223.

[8] S. Mohideen and V. Cherkassky, On recursive calculation of the generalized inverse of a matrix,
ACM Trans. Math. Software 17 (1991), 130-147.

[9] M.D. Petković, P.S. Stanimirović and M.B. Tasić, Effective partitioning method for computing
weighted MoorePenrose inverse, Comput. Math. Appl. 55 (2008), 1720-1734.

14 M.B. Tasić, P.S. Stanimirović, S.H. Pepić

[10] M.D. Petković and P.S. Stanimirović, Symbolic computation of the Moore-Penrose inverse using
partitioning method, Int. J. Comput. Math. 82 (2005), 355–367.

[11] P. Phohomsiri, B. Han, An alternative proof for the recursive formulae for computing the MoorePen-
rose M-inverse of a matrix, Appl. Math. Comput. 174 (2006), 81-97.

[12] K. C. Sivakumar, Proof by verification of the Greville/Udwadia/Kalaba formula for the Moore-
Penrose inverse of a matrix, J. Optim. Theory Appl. 131 (2006), 307-311.

[13] P.S. Stanimirović and M.B. Tasić, Partitioning method for rational and polynomial matrices, Appl.
Math. Comput. 155 (2004), 137–163.

[14] M.B. Tasić, P.S. Stanimirović, M.D. Petković, Symbolic computation of weighted Moore-Penrose
inverse using partitioning method, Appl. Math. Comput. 189 (2007), 615–640.

[15] M.B. Tasić, P.S. Stanimirović, Symbolic and recursive computation of different types of generalized
inverses, Appl. Math. Comput. 199 (2008), 349–367.

[16] F.E. Udwadia and P.Phohomsiri, Generalized LM -inverse of a matrix augmented by a column
vector, Appl. Math. Comput. 190 (2007), 999–1006.

[17] F.E. Udwadia and P.Phohomsiri, Recursive Formulas for Generalized LM-Inverse of a Matrix, J.
Optim. Theory Appl. 131 (2007), 1–16.

[18] F. E. Udwadia and P. Phohomsiri, Recursive Determination of the Generalized MoorePenrose M-
Inverse of a Matrix, J. Optim. Theory Appl. 127 (2005), 639-663.

[19] F.E. Udwadia and R.E. Kalaba, An Alternative Proof for Greville’s Formula, J. Optim. Theory
Appl. 94 (1997), 23-28.

[20] F.E. Udwadia and R.E. Kalaba, Analytical Dynamics: A New Approach, Cambridge University
Press, Cambridge, England, 1996.

[21] F.E. Udwadia and R.E. Kalaba, A Unified Approach for the Recursive Determination of Generalized
Inverses, Comput. Math. Appl. 37 (1999), 125-130.

[22] F.E. Udwadia and R.E. Kalaba, General forms for the Recursive Determination of Generalized
Inverses: Unified approach, J. Optim. Theory Appl. 101 (1999), 509–521.

[23] G.R. Wang and Y.L.Chen, A recursive algorithm for computing the weighted Moore-Penrose inverse

A†
MN , J. Comput. Math. 4 (1986), 74–85.

[24] G.R. Wang, A new proof of Greville’s method for computing the weighted M-P inverse, J. Shangai
Teach. Univ., Nat. Sci. Ed. 3 (1985), 32–38.

[25] G. Zielke, Report on test matrices for generalized inverses, Computing 36 (1986), 105–162.

	1 Introduction
	2 Preliminaries and motivation
	3 Comparison of algorithms
	4 Examples
	5 Conclusions
	6 Appendix

