
Sequential design of multi-overlapping

controllers for longitudinal multi-overlapping

systems
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(UPC), Campus Nord, C-2, 08034-Barcelona

Abstract

In this paper a strategy to design multi-overlapping controllers for systems with
longitudinal multi-overlapping structure is presented. The design process uses the
inclusion principle to carry out a multi-step expansion that allows the decentralized
design of a sequence of expanded local controllers. These expanded local controllers
are subsequently contracted to produce a multi-overlapping controller that can be
implemented in the original system. To illustrate the proposed methodology, the
response of a four-story building under a seismic excitation is considered.
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1 Introduction

Dimensionality, uncertainty, and information constraints are fundamental char-
acteristics of system complexity [9]. When a complex system can be decom-
posed into disjoint subsystems, a set of local controllers may be independently
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obtained to design a decentralized controller. Design and operation of local
controllers requires lower-dimension computation, minimizes the information
exchange, and increases the global robustness by reducing the effect of pertur-
bations and failures on interconnections. However, all these potential benefits
are severely attenuated by the fact that systems encountered in practical ap-
plications rarely admit a perfect disjoint decomposition.

Overlapping decomposition overcomes this serious drawback by allowing the
subsystems to overlap; that is, the requirement of strict disjoint decomposi-
tion is relaxed permitting a restricted sharing of states, inputs, and outputs
among the subsystems. For systems admitting an overlapping decomposition,
the Inclusion Principle allows the design of overlapping controllers which are
in accordance with the system structure, and which partially maintains the
features of decentralized controllers: low dimensionality, reduced information
exchange, and robustness with respect to interconnection degradation. The
basic idea is to expand the original system into a bigger (virtual) one, where
the overlapped subsystems appear as disjoint. After that, local controllers
can be independently designed using standard methods for the disjoint ex-
panded subsystems. The decentralized controller for the expanded system so
obtained is then contracted back to the original system for implementation.
This approach has proven to be useful in a variety of complex control prob-
lems appearing in very different fields, such as economic systems, electric power
systems, automated highway systems, civil engineering, large space structures,
applied mathematics, formation flight of aerial vehicles, and communication
networks. Theoretical results about the Inclusion Principle include stochastic,
hereditary, discrete-time, nonlinear and hybrid systems. It has to be noted,
however, that the majority of theoretical results and applications have been
formulated for the simple case of two overlapping subsystems, while most of
the problems appearing in the context of large scale and complex systems lead
naturally to the consideration of multi-overlapping structures.

The generalization from a simple overlapping to a multi-overlapping approach
is by no means straightforward. For three overlapping subsystems, three dif-
ferent overlapping topologies can be considered: longitudinal, loop, and radial.
These basic multi-overlapping structures are illustrated in Fig. 1. The circles
in the diagrams can be seen as physical subsystems, the arrows indicate state,
input, or output interaction, while the dotted ellipses represent the overlap-
ping subsystems. Obviously, in the general case of n overlapping subsystems,
very complex multi-overlapping structures may appear. A very interesting ap-
proach to multi-overlapping controller design for general multi-overlapping
structures can be found in [5].

In this paper, we present a sequential procedure to design multi-overlapped
controllers for systems admitting a longitudinal multi-overlapping decomposi-
tion. In the usual approach to multi-overlapping decomposition, a generalized
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(a) Longitudinal

(b) Loop (c) Radial

Fig. 1. Three-subsystem multi-overlapping decompositions.

version of the Inclusion Principle is normally used. The expansion, decoupling,
and contraction processes are performed in a single step using generalized
forms of the expansion and complementary matrices, whose structure depend
on the structure of the particular decomposition considered. In the presented
sequential strategy, a chain of (r + 1) subsystems with longitudinal multi-

overlapping S=(S
(1)
, . . . ,S

(r+1)
) is breaking into (r + 1) decoupled expanded

subsystems S̃
(1)
, . . . , S̃

(r+1)
, in r steps. In the jth step, a simple overlapping de-

composition is performed to produce a decoupled extended subsystem S̃
(j+1)

and a shorter expanded chain S̄
(j)

=(S
(1)
, . . . ,S

(r+1)
). Controllers for the decou-

pled extended systems can be independently designed and, when the expansion
is complete, sequentially contracted to obtain a multi-overlapping controller
for the original system. The fact that only simple two-subsystem overlapping
decompositions are needed adds a remarkable theoretical and computational
simplicity to the proposed sequential approach.

The present work is part of a research project aimed at designing wireless con-
trol systems to mitigate the vibrational response of tall buildings under seismic
excitations. This problem has some specific characteristics that fit specially
well into the theoretical framework of longitudinal multi-overlapping decom-
position: (i) Structure. A tall building can be seen as a chain of interconnected
stories. Interactions only occur between adjacent stories. (ii) High dimension-
ality. In real applications, buildings with more than a hundred stories can
be considered. In these cases, even simplified models will involve hundreds
of states. (iii) Information constraints. Using wireless communications, in-
stead of the classical coaxial wiring, can critically reduce the installation and
maintenance costs. It also adds flexibility to the control system, allowing the
implementation of new control schemes without costly wiring modifications.
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However, to improve the robustness of communications and to achieve higher
sampling frequencies, the controllers should operate using local information
provided by neighboring sensors.

Accordingly, a simplified model of a four-story building has been chosen to
illustrate the application of the proposed sequential methodology in a prac-
tical context. For this model, multi-overlapping controllers for two different
actuation schemes have been designed and compared with the corresponding
centralized controllers. The 1940 El Centro NS earthquake has been used as
a ground acceleration input in the simulations.

The organization of the paper is as follows. Section 2 gives necessary back-
ground results about the inclusion principle and the design of overlapping
controllers. Section 3 presents the sequential multi-step procedure to compute
multi-overlapping controllers. In Section 4, a simplified model of a four-story
building is presented, and the centralized and multi-overlapping controllers are
computed. Finally, in Section 5, numerical simulations of the response to the
El Centro earthquake are used to compare the performance of the obtained
controllers.

2 Background Results

In this section, some basic definitions and results related to the Inclusion Prin-
ciple and the design of overlapping controllers in the case of two overlapping
subsystems are briefly presented. A rigorous treatment can be found in [1],
[2], [5], [6], [7], [8], [9].

2.1 Inclusion Principle

Consider a pair of linear systems

S : ẋ(t) = Ax(t) + B u(t), S̃ : ˙̃x(t) = Ã x̃(t) + B̃ ũ(t), (1)

where x(t)∈Rn
, u(t)∈Rm

represent the state and input of S at time t∈R+
, and

x̃(t)∈Rñ
, ũ(t)∈Rm̃

are the state and input of S̃. A, B, Ã, and B̃, are constant
matrices of dimensions n×n, n×m, ñ×ñ, ñ×m̃, respectively. The dimensions
of the state and input vectors x, u of S are supposed to be smaller than the
dimensions of x̃, ũ of S̃. The state behavior of S for the input u(t) and the
initial state x(0)=x0 is denoted by x(t;x0, u). A similar notation x̃(t; x̃0, ũ) is
used for the state behavior of the system S̃.
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Let us consider the following transformations:

V : Rn−→ Rñ
, U : Rñ−→ Rn

, R : Rm−→ Rm̃
, Q : Rm̃−→ Rm (2)

where rank(V )=n, rank(R)=m and such that UV =In, QR=Im, where In and
Im are the identity matrices of indicated dimensions.

Definition 1 (Inclusion Principle) A system S̃ is an expansion of the
system S if there exist transformations (U, V,R, S) as in (2) such that, for
any initial state x0∈R

n
and any input u(t)∈Rm

, if x̃0=V x0 and ũ(t)=Ru(t)
then x(t;x0, u)=Ux̃(t;V x0, Ru) for all t≥0.

Definition 2 (Contractibility) Suppose that S̃ is an expansion of the sys-
tem S. Then, a control law ũ(t)=−K̃ x̃(t) for S̃ is contractible to the control
law u(t)=−Kx(t) for S if there exist transformations as in (2) such that, for
any initial state x0∈R

n
and any input u(t)∈Rm

, if x̃0=V x0 and ũ(t)=Ru(t)
then Kx(t;x0, u)=QK̃x̃(t;V x0, Ru) for all t≥0.

Under the transformations (2), both systems S and S̃ can be related as
Ã=V AU+M , B̃=V BQ+N , where M and N are complementary matrices of
appropriate dimensions. In terms of complementary matrices, the inclusion
principle and the contractibility conditions can be established in the following
way.

Proposition 3 A system S̃ is an expansion of the system S if and only if
UM iV=0, UM i−1NR=0, for i=1, . . . , ñ.

Proposition 4 Suppose that S̃ is an expansion of the system S. Then, a
control law ũ(t)=−K̃ x̃(t) for S̃ is contractible to the control law u(t)=−Kx(t)
for S if and only if QK̃V=K, QK̃M iV=0, QK̃M i−1NR=0, for i=1, . . . , ñ.

For S̃ to be an expansion of S, a proper choice of M and N is required. It is well
known that, by adding complementary matrices, different expanded systems
S̃ can be obtained with some degree of freedom in the expansion-contraction
process [3], [4]. There are two special cases of expansions, which are called
restrictions and aggregations, [9]. In this paper we will use a restriction to
expand the original system. The structures of the complementary matrices M
and N are provided by the following proposition.

Proposition 5 A system S̃ is a restriction of the system S if and only if
MV=0, NR=0. Then, the matrices M and N have the form

M =

 0 M12 −M12 0
0 M22 −M22 0
0 M32 −M32 0
0 M42 −M42 0

 , N =

 0 N12 −N12 0
0 N22 −N22 0
0 N32 −N32 0
0 N42 −N42 0

 . (3)
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If a restriction is used, any control law designed in the expanded space can
be contracted to the initial one. Using this property, controllers designed in
the expanded space S̃ can be subsequently contracted and implemented in the
initial space S.

2.2 Controller design for two overlapping subsystems

Let us suppose that the system

S : ẋ(t) = Ax(t) + B u(t), (4)

admits an overlapping decomposition as shown in Fig. 2, where the circles
represent subsystems, the arrows indicate state, input, or output direct in-
teraction, and the dotted ellipses represent the overlapping subsystems. As is
well represented in the diagram, the key feature of overlapping decomposition
is that no direct interaction exists between S1 and S3. In terms of the system

S1 S2 S3

S(1) S(2)

Fig. 2. Two-subsystem overlapping decomposition.

matrices, this property means that matrices A and B corresponding to the
system (4) will present a block tridiagonal structure

A =

 A11 A12

p
p
p

0
−−−

p
p
p
−−−

A21 A22 A23−−−
p
p
p
−−−

0
p
p
p

A32 A33

 , B =

 B11 B12

p
p
p

0
−−−

p
p
p
−−−

B21 B22 B23−−−
p
p
p
−−−

0
p
p
p

B32 B33

 (5)

where Aii, Bij, for i, j=1, 2, 3, are ni×ni, ni×mj dimensional matrices, respec-
tively. Subsystems Si are described by

Si : ẋi(t) = Aii xi(t) + Bii ui(t), i = 1, 2, 3, (6)

the partition of the state x=(xT
1 , x

T
2 , x

T
3 )T has components of respective dimen-

sions n1, n2, n3, satisfying n1+n2+n3=n; and the partition of u=(uT
1 , u

T
2 , u

T
3 )T

has components of dimensions m1, m2, m3, such that m1+m2+m3=m.

The design of overlapping controllers using the inclusion principle has two
main features: (i)Structure. The resulting controller fits in with the system
structure. More precisely, a control law u(t)=−Ko x(t) with a block tridiagonal
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gain matrix

Ko =

 K11 K12

p
p
p

0
−−−

p
p
p
−−−

K21 K22 K23−−−
p
p
p
−−−

0
p
p
p

K32 K33

 , (7)

is obtained. (ii)Lower dimensionality. The gain matrix Ko is computed from
two lower-dimension controllers which are independently designed.

The controller design starts with the definition of the expansion transforma-
tions

V =

 In1 0 0
0 In2 0
0 In2 0
0 0 In3

 , R =

 Im1 0 0
0 Im2 0
0 Im2 0
0 0 Im3

 , (8)

together with their corresponding pseudoinverse contractions

U =(V TV )−1V T =

 In1 0 0 0

0 1
2
In2

1
2
In2 0

0 0 0 In3

 , Q=(RTR)−1RT =

 Im1 0 0 0

0 1
2
Im2

1
2
Im2 0

0 0 0 Im3

 .
(9)

The expanded matrices Ā=V AU , B̄=V BQ, have the form

Ā=


A11

1
2
A12

p
p

1
2
A12 0

A21
1
2
A22

p
p

1
2
A22 A23

−−− −−− − −−− −−−
A21

1
2
A22

p
p

1
2
A22 A23

0 1
2
A32

p
p

1
2
A32 A33

 , B̄=


B11

1
2
B12

p
p

1
2
B12 0

B21
1
2
B22

p
p

1
2
B22 B23

−−− −−− − −−− −−−
B21

1
2
B22

p
p

1
2
B22 B23

0 1
2
B32

p
p

1
2
B32 B33

 . (10)

In order to get an almost-decoupled expanded system, we add complementary
matrices as indicated in Proposition 5,

M =


0 1

2
A12 − 1

2
A12 0

0 1
2
A22 − 1

2
A22 0

0 − 1
2
A22

1
2
A22 0

0 − 1
2
A32

1
2
A32 0

 , N =


0 1

2
B12 − 1

2
B12 0

0 1
2
B22 − 1

2
B22 0

0 − 1
2
B22

1
2
B22 0

0 − 1
2
B32

1
2
B32 0

 , (11)

resulting

Ã= V AU + M =
[
Ã11 Ã12

Ã21 Ã22

]
=


A11 A12

p
p 0 0

A21 A22
p
p 0 A23

−−− −−− − −−− −−−
A21 0 p

p A22 A23

0 0 p
p A32 A33

 , (12)

B̃= V BQ + N =
[
B̃11 B̃12

B̃21 B̃22

]
=


B11 B12

p
p 0 0

B21 B22
p
p 0 B23

−−− −−− − −−− −−−
B21 0 p

p B22 B23

0 0 p
p B32 B33

 . (13)
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The expanded system

S̃ : ˙̃x(t) = Ã x̃(t) + B̃ ũ(t), (14)

with state x̃T=(xT
1 , x

T
2 , x

T
2 , x

T
3 ), and input ũT=(uT

1 , u
T
2 , u

T
2 , u

T
3 ), admits an almost-

decoupled decomposition. Using the block notation given in (12) and (13), we
can write

S̃1 : ˙̃x1(t) = Ã11 x̃1(t) + B̃11 ũ1(t) + Ã12 x̃2(t) + B̃12 ũ2(t),

S̃2 : ˙̃x2(t) = Ã22 x̃2(t) + B̃22 ũ2(t) + Ã21 x̃1(t) + B̃21 ũ1(t),
(15)

where x̃T
1 =(xT

1 , x
T
2 ), ũT

1 =(uT
1 , u

T
2 ), x̃T

2 =(xT
2 , x

T
3 ), and ũT

2 =(uT
2 , u

T
3 ). Note that

the interconnection matrices Ãij, B̃ij, i, j=1, 2, i6=j, can have at most one
non-zero block. By removing the weak interconnection terms, two decoupled
expanded subsystems result

S̃
(1)

D
: ˙̃x1(t) = Ã11 x̃1(t) + B̃11ũ1(t),

S̃
(2)

D
: ˙̃x2(t) = Ã22 x̃2(t) + B̃22 ũ2(t),

(16)

which define a decoupled expanded system

S̃
D

: ˙̃x(t) = Ã
D
x̃(t) + B̃

D
ũ(t), (17)

with Ã
D

=diag{Ã11, Ã22} and B̃
D

=diag{B̃11, B̃22}.

At this point, we have to design a decentralized controller for S̃
D

. This can

be done by independently computing local controllers for S̃
(1)

D
and S̃

(2)

D
. For

simplicity, all the controllers in this paper will be designed as optimal LQR
controllers. However, it is clear that other control strategies could have been
used. For the expanded decoupled subsystems S̃

(1)

D
and S̃

(2)

D
, let us consider the

local quadratic cost functions

J̃
(1)

D
(x̃10 , ũ1(t)) =

∫ ∞
0

[
x̃T
1 (t)Q̃∗1x̃1(t) + ũT

1 (t)R̃∗1ũ1(t)
]
dt,

J̃
(2)

D
(x̃20 , ũ2(t)) =

∫ ∞
0

[
x̃T
2 (t)Q̃∗2x̃2(t) + ũT

2 (t)R̃∗2ũ2(t)
]
dt,

(18)

where x̃10 and x̃20 are the initial states of S̃
(1)

D
and S̃

(2)

D
, respectively, and Q̃∗1,

Q̃∗2, R̃
∗
1 and R̃∗2 are appropriate expanded matrices. The gain matrices for the

control laws that minimize the cost functions (18)

ũ1(t) = −K̃1 x̃1(t), ũ2(t) = −K̃2 x̃2(t), (19)

can be independently computed as

K̃1 =
[
R̃∗1
]−1

B̃T
1 P̃1, K̃2 =

[
R̃∗2
]−1

B̃T
2 P̃2, (20)
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where P̃1 and P̃2 are the solutions of the corresponding Riccati equations.
In the decoupled expanded system S̃

D
, the gain matrix of the controller

ũ(t)=−K̃
D
x̃(t) which minimizes the cost function

J̃
D

(x̃0 , ũ(t)) =
∫ ∞
0

[
x̃T (t)Q̃∗

D
x̃(t) + ũT (t)R̃∗

D
ũ(t)

]
dt, (21)

with Q̃∗
D
=diag{Q̃∗1, Q̃∗2} and R̃∗

D
=diag{R̃∗1, R̃∗2}, can be written as a block diag-

onal gain matrix K̃∗
D
=diag{K̃∗1 , K̃∗2}. Finally, the controller ũ

D
(t)=−K̃

D
x̃(t)

is contracted to an overlapping controller u(t)=−Ko x(t) to be implemented
into the original system S. The contracted gain matrix is computed as

Ko = QK̃
D
V (22)

and it has the desired block tridiagonal structure shown in (7).

3 Sequential decomposition

Let us consider a system

S : ẋ(t) = Ax(t) + Bu(t) (23)

formed by (r + 1) overlapping subsystems

S(j) : ẋ(j)(t) = A(j)x(j)(t) + B(j)u(j)(t), j = 1, . . . , r + 1. (24)

The system matrix A has the block structure shown in Fig. 3 with (r+1) main

blocks A(j) and r overlapping sub-blocks O
(j)
A . The input matrix B presents

A
(1)

O
(1)

A

A
(2)

O
(2)

A

O
(r−1)

A

A
(r)

O
(r)

A

A
(r+1)

,. . . B=

0

0

B
(1)

O
(1)

B

B
(2)

O
(2)

B

O
(r−1)

B

B
(r)

O
(r)

B

B
(r+1)

. . .

0

0

A=

Fig. 3. Block structures of matrices A and B.

an analogous structure. Broadly speaking, the basic idea is to consider the
first r subsystems as a single subsystem which overlaps with S

(r+1)
. Then,
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the standard theory for two overlapped systems may be applied to obtain
an expanded space where a local controller can be designed for the expanded
subsystem S̃

(r+1)
. This step also produces another expanded system with only r

overlapped subsystems. After r expansion steps, two non-overlapped expanded
subsystems result and the design of (r + 1) expanded local controllers can be
completed. Finally, a sequence of r contraction steps on the expanded local
controllers yields an overlapping global controller for the initial system. For the
subsystem S

(j)
, the state and the input dimensions are respectively denoted

by d
(j)

x and d
(j)

u ; A
(j)

is a square matrix of dimension d
(j)

x , and B
(j)

is a d
(j)

x ×d
(j)

u

matrix. As for the overlapping blocks, O
(j)

A is a square matrix of dimension o
(j)

x ,

and O
(j)

B is a o
(j)

x ×o
(j)

u matrix. Note that some of the numbers o
(j)

u may be zero.

This is the case when there is no control overlapping between subsystems S
(j)

and S
(j+1)

. For j=1, . . . , r, we also define the numbers
n
(j)
1 =

∑j
i=1

(
d(i)x − o(i)x

)
n
(j)
2 = o(j)x

n
(j)
3 = d(j+1)

x − o(j)x


m

(j)
1 =

∑j
i=1

(
d(i)u − o(i)u

)
m

(j)
2 = o(j)u

m
(j)
3 = d(j+1)

u − o(j)u

(25)

We start with the pair P
(r+1)
1 =(A,B) and consider the expansion matrices

V (r) =


I
n
(r)
1

0 0

0 I
n
(r)
2

0

0 I
n
(r)
2

0

0 0 I
n
(r)
3

 , R(r) =


I
m

(r)
1

0 0

0 I
m

(r)
2

0

0 I
m

(r)
2

0

0 0 I
m

(r)
3

 , (26)

to perform an overlapping decomposition of P
(r+1)
1 as described in Subsection

2.2, obtaining the decoupled pairs

P
(r)
1 =

(
Ã

(r)
1 , B̃

(r)
1

)
, P

(r+1)
2 =

(
Ã

(r+1)
1 , B̃1

(r+1)
)
, (27)

as illustrated in Fig. 4. The pair P
(r+1)
2 contains no overlapping blocks and a

P
(r+1)
1 P

(r)
1 P

(2)
1 P

(1)
1

...

P
(r+1)
2 P

(r)
2 P

(2)
2

K̃
(r+1)
2 K̃

(r)
2 K̃

(2)
2

K̃
(1)
1

K̃
(2)
1

...

...

...K̃
(r+1)
1 K̃

(r)
1

er er−1 e2 e1

cr cr−1 c2 c1

Fig. 4. Sequential overlapping decomposition scheme.

gain matrix K̃
(r+1)
2 can be directly designed. The other pair P

(r)
1 contains r
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subsystems with (r − 1) overlapping blocks and the process needs to be re-
peated until a fully decoupled expansion results. More precisely, the expansion
process involves (r+1) pairs P

(j)
1 and it is carried out in r steps by decreasing

the index j from (r+ 1) to 1. The expansion step j starts with the pair P
(j+1)
1

that describes a system with (j + 1) subsystems and j overlapping blocks and

it uses expansion matrices V
(j)

and R
(j)

to yield the expanded pairs

P
(j)
1 =

(
Ã

(j)
1 , B̃

(j)
1

)
, P

(j+1)
2 =

(
Ã

(j+1)
1 , B̃

(j+1)
1

)
. (28)

A gain matrix K̃
(j+1)
2 is computed for the expanded system with no overlap-

ping blocks P
(j+1)
2 while the pair P

(j)
1 , which contains j subsystems and (j−1)

overlapping blocks, is supplied as the starting point to the next expansion step.
After r expansion steps, an expanded non-overlapped pair P

(1)
1 results, and a

gain matrix K̃
(1)
1 is directly computed. The matrix K̄

(1)
=diag

(
K̃

(1)
1 , K̃

(2)
2

)
can

be contracted to obtain an overlapping controller K̃
(2)

1 = Q
(1)
K̄

(1)
V

(1)
for the

expanded pair P
(2)
1 . The contraction step j starts with the expanded gain ma-

trix K̃
(j)
1 and it uses K̃

(j+1)
2 to build K̄

(j)
=diag

(
K̃

(j)
1 , K̃

(j+1)
2

)
and to compute

the overlapping controller K̃
(j+1)
1 = Q

(j)
K̄

(j)
V

(j)
. After r contraction steps, an

overlapping gain matrix K=K̃1
(r+1)

for the original system results.

The diagram in Fig. 4 shows schematically the whole procedure. The process
starts with P

(r+1)
1 and the expansion progresses along the top from left to

right. Note that a gain matrix K̃
(j+1)
2 is computed at each step; however, the

expansion process needs to be completed before the first gain matrix K̃
(1)
1 is

computed. Then, the contraction process progresses from right to left along
the bottom, generating in each step the gain matrix K̃

(j+1)
1 .

4 Four-story building model

To show the potential advantages of the proposed control approach and to
illustrate more clearly the details of the sequential design procedure presented
in the previous section, we consider the problem of reducing the response of a
tall building under an earthquake excitation. More precisely, a simplified one-
dimensional model of a four-story building has been selected. The control goal
is to reduce the inter-story drifts when the building is subjected to a ground
excitation. To this end, two different actuation schemes have been considered:
(a) inter-story cross-actuators, and (b) direct actuators (see Fig. 5). First, the
building is considered as a whole and, for each actuation scheme, a central-
ized optimal LQR controller is designed. These centralized controllers will
later be taken as a reference to evaluate the performance of the overlapping
controllers. Secondly, the building is seen as made up of three overlapped sub-
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Fig. 5. Two actuation schemes for a four-story building.

systems, which include two consecutive stories, that is: S(1)=[1, 2], S(2)=[2, 3],
S(3)=[3, 4] (see Fig. 7). A sequential overlapping decomposition is then ap-
plied to this multi-overlapped system in order to obtain a multi-overlapping
controller for each of the actuation schemes.

4.1 State space model

The building motion can be described by a second-order differential equation

Mq̈(t) + Cq̇(t) + Kq(t) = Tuu(t) + Tww(t), (29)

where q(t)∈R4 is the displacement vector relative to the ground (see Fig. 6),
M, C, K, are the mass, damping, and stiffness matrices, respectively. The
vector u(t)∈R4 is the control force, w(t)∈R is the ground acceleration, Tw is
the excitation location matrix, and Tu is the control location matrix.

The particular values of the matrices that will be used to calculate the con-
trollers and to carry out the simulations are the following:

M = 102×diag [3456, 3456, 3456, 3456] , C = 103×
[

5874 −2937 0 0
−2937 5874 −2937 0

0 −2937 5874 −2937
0 0 −2937 2937

]
,

K = 105×
[

6808 −3404 0 0
−3404 6808 −3404 0

0 −3404 6808 −3404
0 0 −3404 3404

]
, Tw = −M[1, 1, 1, 1]T ,

(30)
where masses are in kg, damping coefficients are in N ·s/m, and stiffness co-
efficients are in N/m. As for the control location, two different matrices are
considered

T(a)
u =

[ −1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1

]
, T(b)

u =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
, (31)

12



corresponding, respectively, to the actuation schemes (a) and (b) shown in
Fig. 5.

From the second-order model (29), a first-order state-space model can be de-
rived

S : ẋ(t) = Ax(t) + B(j) u(t) + Ew(t), (32)

where the state vector x(t)∈R8 contains the inter-story drifts and velocities
arranged in increasing order (see Fig. 6), that is,

x(t)=[ q1, q̇1, (q2 − q1), (q̇2 − q̇1), (q3 − q2), (q̇3 − q̇2), (q4 − q3), (q̇4 − q̇3)]
T .

(33)

q1

q2

q3

q4

x1

x3

x5

x7

Inter-story driftsAbsolute displacements

Fig. 6. Absolute and relative displacements.

A detailed derivation of the first-order state-space model can be found in [10].
For the particular values presented in (30), the state and the input matrices
are

A = 103×


0 0.0010 0 0 0 0 0 0

−0.9850 −0.0085 0.9850 0.0085 0 0 0 0
0 0 0 0.0010 0 0 0 0

0.9850 0.0085 −1.9699 −0.0170 0.9850 0.0085 0 0
0 0 0 0 0 0.0010 0 0
0 0 0.9850 0.0085 −1.9699 −0.0170 0.9850 0.0085
0 0 0 0 0 0 0 0.0010
0 0 0 0 0.9850 0.0085 −1.9699 −0.0170

 ,
E = [0,−1, 0, 0, 0, 0, 0, 0]T ,

(34)

the control matrix for the inter-story actuation scheme is

B(a) = 10−5×


0 0 0 0

−0.2894 0.2894 0 0
0 0 0 0

0.2894 −0.5787 0.2894 0
0 0 0 0
0 0.2894 −0.5787 0.2894
0 0 0 0
0 0 0.2894 −0.5787

 , (35)
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while the control matrix for the direct actuation scheme is

B(b) = 10−5×


0 0 0 0

0.2894 0 0 0
0 0 0 0

−0.2894 0.2894 0 0
0 0 0 0
0 −0.2894 0.2894 0
0 0 0 0
0 0 −0.2894 0.2894

 . (36)

4.2 Centralized controllers

To compute the centralized optimal LQR controllers, we consider the quadratic
index

Jc(x(t), u(t)) =
∫ ∞
0

[
xT(t)Q∗x(t) + uT(t)R∗u(t)

]
dt, (37)

defined by the weighting matrices Q∗=I8, R
∗=10−15 I4. Using the Matlab com-

mand lqr() with system matrices A and B(a), we obtain a centralized gain
matrix

K(a)
c = 107×

[ −0.1466 −2.8886 0 −0.0048 0 −0.0032 0 −0.0016
0 −0.0048 −0.1466 −2.8870 0 −0.0032 0 −0.0016
0 −0.0032 0 −0.0032 −0.1466 −2.8854 0 −0.0016
0 −0.0016 0 −0.0016 0 −0.0016 −0.1466 −2.8838

]
(38)

for the case of inter-story actuators. The optimal cost
[
J (a)
c

]
opt

=39.58 is com-

puted as the trace of the matrix P (a), which is obtained as the solution of the
corresponding Riccati equation. In the case of direct actuators, the system
matrices A and B(b) are used to yield a centralized gain matrix

K(b)
c = 107×

[
0.1457 2.4536 −0.0009 −1.2934 −0.0006 −0.3237 −0.0003 −0.1065
0.1447 1.1602 0.1450 2.1298 −0.0012 −1.3998 −0.0006 −0.3237
0.1441 0.8365 0.1444 1.0537 0.1450 2.1298 −0.0009 −1.2934
0.1438 0.7300 0.1441 0.8365 0.1447 1.1602 0.1457 2.4536

]
(39)

with an optimal cost
[
J (b)
c

]
opt

=45.06.

It is worth noting that the gain matrix K(a)
c , obtained in the case of inter-

story actuators, exhibits an almost-decentralized structure. This fact can be
explained by the particular structure of the physical system and the actuation
scheme. In this case, a multi-overlapping controller, or even a decentralized
controller, could be obtained by removing some almost-zero elements. The
structured controller so obtained is a small perturbation of the optimal con-
troller, and it is reasonable to expect that it will present a good performance.
However, it must be emphasized that even in this extremely favorable case, a
centralized controller needs to be previously computed in order to apply this
strategy. Hence, we would be carrying out a centralized design of a decen-
tralized controller. Of course, this approach cannot be applied to the case of
direct actuators, where a full gain matrix K(b)

c has been obtained.
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4.3 Overlapping controllers

Inter-story actuators. Let us consider the main system S(a) defined by the pair(
A,B(a)

)
. We see now this system as formed by three subsystems S(j), corre-

sponding to a block of two consecutive stories of the building. Schematically,
we write S(1)=[1, 2], S(2)=[2, 3], S(3)=[3, 4] (see Fig. 7). This decomposition

S
(3)

S
(2)

S
(1)

1

2

3

4

Fig. 7. Multi-overlapping decomposition for a four-story building.

defines a multi-overlapping decomposition with two overlapping blocks cor-
responding to stories 2 and 3. The state subsystem dimensions are d(j)x =4,
j=1, 2, 3, with overlapping blocks of size o(j)x =2, j=1, 2. Regarding the inputs,
the subsystem dimensions are d(j)u =2, j=1, 2, 3, with overlapping blocks of size
o(j)u =1, j=1, 2.

Following the notation introduced in Section 3, we have r=2 overlapping blocks
and we start with the pair P

(3)
1 =

(
A,B(a)

)
. The numbers that define the first

expansion step (with index j=2) are


n
(2)
1 =

∑2
i=1

(
d(i)x − o(i)x

)
= 4

n
(2)
2 = o(2)x = 2

n
(2)
3 = d(3)x − o(2)x = 2


m

(2)
1 =

∑2
i=1

(
d(i)u − o(i)u

)
= 2

m
(2)
2 = o(2)u = 1

m
(2)
3 = d(3)u − o(2)u = 1

(40)
Now, we proceed as described in Section 2 and we use the expansion matrices
V (2), R(2), defined by the numbers in (40) to compute the decoupled expanded

pairs P
(2)
1 =

(
Ã

(2)
1 , B̃

(2)
1

)
and P

(3)
2 =

(
Ã

(3)
2 , B̃

(3)
2

)
, where

Ã
(2)
1 = 103×


0 0.0010 0 0 0 0

−0.9850 −0.0085 0.9850 0.0085 0 0
0 0 0 0.0010 0 0

0.9850 0.0085 −1.9699 −0.0170 0.9850 0.0085
0 0 0 0 0 0.0010
0 0 0.9850 0.0085 −1.9699 −0.0170

 ,

B̃
(2)
1 = 10−5×


0 0 0

−0.2894 0.2894 0
0 0 0

0.2894 −0.5787 0.2894
0 0 0
0 0.2894 −0.5787


(41)
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and

Ã
(3)
2 = 103×

[
0 0.0010 0 0

−1.9699 −0.0170 0.9850 0.0085
0 0 0 0.0010

0.9850 0.0085 −1.9699 −0.0170

]
, B̃

(3)
2 = 10−5×

[
0 0

−0.5787 0.2894
0 0

0.2894 −0.5787

]
.

(42)

The pair P
(3)
2 =

(
Ã

(3)
2 , B̃

(3)
2

)
contains no overlapping blocks, and we choose the

quadratic index

J
(3)
2 (x(t), u(t)) =

∫ ∞
0

[
xT(t) [Q

(3)
2 ]∗x(t) + uT(t) [R

(3)
2 ]∗ u(t)

]
dt, (43)

with weighting matrices [Q
(3)
2 ]∗=In(3) and [R

(3)
2 ]∗=10−15 In(3)×m(3) , where n(3)=

n
(2)
2 +n

(2)
3 , m(3)= m

(2)
2 +m

(2)
3 , to compute the expanded gain matrix

K̃
(3)
2 = 107×

[
−0.1466 −2.8833 0 −0.0005

0 −0.0005 −0.1466 −2.8833

]
. (44)

The expanded pair P
(2)
1 =

(
Ã

(2)
1 , B̃

(2)
1

)
still contains overlapping blocks and it

is supplied as the starting point for the next expansion step (with index j=1),
which uses the numbers


n
(1)
1 =

∑1
i=1

(
d(i)x − o(i)x

)
= 2

n
(1)
2 = o(1)x = 2

n
(1)
3 = d(2)x − o(1)x = 2


m

(1)
1 =

∑1
i=1

(
d(i)u − o(i)u

)
= 1

m
(1)
2 = o(1)u = 1

m
(1)
3 = d(2)u − o(1)u = 1

(45)
to define expansion matrices V (1), R(1) in order to produce a new set of
decoupled expanded pairs P

(1)
1 =

(
Ã

(1)
1 , B̃

(1)
1

)
and P

(2)
2 =

(
Ã

(2)
2 , B̃

(2)
2

)
. The pair

P
(2)
2 =

(
Ã

(2)
2 , B̃

(2)
2

)
contains no overlapping blocks and we use a quadratic index

J
(2)
2 with weighting matrices [Q

(2)
2 ]∗=In(2) and [R

(2)
2 ]∗=10−15 In(2)×m(2) , where

n(2)=n
(1)
2 +n

(1)
3 , m(2)=m

(1)
2 +m

(1)
3 , to compute the expanded gain matrix

K̃
(2)
2 = 107×

[
−0.1466 −2.8833 0 −0.0005

0 −0.0005 −0.1466 −2.8833

]
. (46)

As we have completed the expansion process, the expanded pair P
(1)
1 also has

no overlapping blocks. We select the quadratic index J
(1)
1 with weighting matri-

ces [Q
(1)
1 ]∗=In(1) and [R

(1)
1 ]∗=10−15 In(1)×m(2) , n(1)=n

(1)
1 +n

(1)
2 , m(1)=m

(1)
1 +m

(1)
2 ,

and compute the expanded gain matrix

K̃
(1)
1 = 107×

[
−0.1466 −2.8854 0 −0.0016

0 −0.0016 −0.1466 −2.8838

]
. (47)

The contraction process starts with the matrix K̄(1)=diag
(
K̃

(1)
1 , K̃

(2)
2

)
, which
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is contracted to obtain

K̃
(2)
1 = Q(1)K̄(1)V (1) = 107×

[
−0.1466 −2.8854 0 −0.0016 0 0

0 −0.0008 −0.1466 −2.8835 0 −0.0003
0 0 0 −0.0005 −0.1466 −2.8833

]
.

(48)

In the second contraction step, the matrix K̄(2)=diag
(
K̃

(2)
1 , K̃

(3)
2

)
is contracted

to obtain

K̃
(3)
1 = 107×

[ −0.1466 −2.8854 0 −0.0016 0 0 0 0
0 −0.0008 −0.1466 −2.8835 0 −0.0003 0 0
0 0 0 −0.0003 −0.1466 −2.8833 0 −0.0003
0 0 0 0 0 −0.0005 −0.1466 −2.8833

]
.

(49)
This last matrix is the desired multi-overlapping controller, which we denote
by K(a)

o .

Direct actuators. We consider now the main system S(b) defined by the pair(
A,B(b)

)
. In this case, the previously described procedure yields the expanded

gain matrices

K̃
(1)
1 = 107×

[
0.1463 2.5551 −0.0003 −1.1441
0.1459 1.4110 0.1463 2.5551

]
,

K̃
(2)
2 = 107×

[
2.5977 2.2173 2.8431 −1.2756
−5.6100 1.2415 2.7594 2.5171

]
,

K̃
(3)
2 = 107×

[
2.5977 2.2173 2.8431 −1.2756
−5.6100 1.2415 2.7594 2.5171

]
.

(50)

After completing the contraction process, the following multi-overlapping con-
troller results

K(b)
o = 107×

[
0.1463 2.5551 −0.0003 −1.1441 0 0 0 0
0.0730 0.7055 1.3720 2.3862 1.4215 −0.6378 0 0

0 0 −2.8050 0.6207 2.6785 2.3672 1.4215 −0.6378
0 0 0 0 −5.6100 1.2415 2.7594 2.5171

]
. (51)

5 Numerical simulation

In this section, the optimal LQR centralized controllers obtained in Subsection
4.2 are taken as a reference to assess the performance of the corresponding
multi-overlapping controllers computed through the proposed sequential de-
composition procedure. Firstly, for each one of the two considered actuation
schemes, the suboptimal cost of the multi-overlapping controllers with respect
to the centralized quadratic index Jc, defined in (37), is computed and com-
pared with the corresponding optimal values. Secondly, numerical simulations
of the free response and the controlled response of the system under a seis-
mic excitation are carried out for all the considered controllers. The maximum
absolute inter-story drifts, and the maximum absolute control actions are com-
puted and pertinently compared. The 1940 El Centro NS earthquake (Fig. 8),
scaled to a peak of 1m/s2, has been used as ground acceleration input in the
simulations.
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Fig. 8. El Centro NS earthquake, scaled to a peak of 1m/s2.

Inter-story actuators. In this case, the centralized optimal LQR gain matrix
K(a)

c and the multi-overlapping gain K(a)
o are very similar:

K(a)
c = 107×

[ −0.1466 −2.8886 0 −0.0048 0 −0.0032 0 −0.0016
0 −0.0048 −0.1466 −2.8870 0 −0.0032 0 −0.0016
0 −0.0032 0 −0.0032 −0.1466 −2.8854 0 −0.0016
0 −0.0016 0 −0.0016 0 −0.0016 −0.1466 −2.8838

]
,

K(a)
o = 107×

[ −0.1466 −2.8854 0 −0.0016 0 0 0 0
0 −0.0008 −0.1466 −2.8835 0 −0.0003 0 0
0 0 0 −0.0003 −0.1466 −2.8833 0 −0.0003
0 0 0 0 0 −0.0005 −0.1466 −2.8833

]
.

(52)
The cost of the quadratic index Jc associated to the controller u(t) = −K(a)

o x(t),

can be computed as
[
J (a)
c

]
o
=trace(P (a)

o ), where the matrix P (a)
o can be obtained

using the Matlab command lyap() with arguments AT
cl=(A−B(a)K(a)

o )T and

H=Q∗ +
[
K(a)

o

]T
R∗K(a)

o . The resulting cost is
[
J (a)
c

]
o
=38.58, which is prac-

tically equal to the optimal cost. The upper plot in Fig. 9 displays the max-
imum (unsigned) inter-story drifts for the uncontrolled system, the optimal
LQR centralized controller, and the multi-overlapping controller. In the lower
plot, the maximum (unsigned) control efforts are shown. As may be expected
from the small differences observed in the gain matrices, the behavior of the
optimal LQR centralized controller and the multi-overlapping controller are
practically equal; in fact, the corresponding graphs overlap and appear as a
single line.

Direct actuators. In this second case, the gain matrices are

K(b)
c = 107×

[
0.1457 2.4536 −0.0009 −1.2934 −0.0006 −0.3237 −0.0003 −0.1065
0.1447 1.1602 0.1450 2.1298 −0.0012 −1.3998 −0.0006 −0.3237
0.1441 0.8365 0.1444 1.0537 0.1450 2.1298 −0.0009 −1.2934
0.1438 0.7300 0.1441 0.8365 0.1447 1.1602 0.1457 2.4536

]
,

K(b)
o = 107×

[
0.1463 2.5551 −0.0003 −1.1441 0 0 0 0
0.0730 0.7055 1.3720 2.3862 1.4215 −0.6378 0 0

0 0 −2.8050 0.6207 2.6785 2.3672 1.4215 −0.6378
0 0 0 0 −5.6100 1.2415 2.7594 2.5171

]
.

(53)
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Fig. 9. Maximum inter-story drifts and control forces for inter-story actuators.

The centralized controller has an optimal cost
[
J (b)
c

]
opt

= 45.06, while the multi-

overlapping controller has a suboptimal cost
[
J (a)
c

]
o
= 46.99. The maximum

inter-story drifts and maximum control efforts are displayed in Fig. 10.
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Fig. 10. Maximum inter-story drifts and control forces for direct actuators.

It can be observed that, even in this case where the optimal centralized gain
matrix is a full matrix, the multi-overlapping controller maintains a remarkable
high-level of performance.
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6 Conclusions

In this paper a sequential procedure to design multi-overlapping controllers
for systems admitting a longitudinal multi-overlapping decomposition has
been presented. By means of the proposed methodology, the design of a
multi-overlapping controller can be reduced to the design of a series of lower-
dimension independent controllers. To illustrate the application of the pro-
posed decentralized design strategy, a control system to mitigate the vibra-
tional response of a building under seismic excitation has been chosen. More
precisely, multi-overlapping controllers have been designed for a simplified one-
dimensional model of a four-story building with two actuation schemes. Nu-
merical simulations of the controlled building response indicate a remarkably
good behavior of the designed multi-overlapping controllers when compared
with the corresponding optimal LQR centralized controllers, which has been
taken as a reference.
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[6] A. İftar and Ü. Özgüner. Contractible controller design and optimal control
with state and input inclusion. Automatica, 26(3):593–597, 1990.
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