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Abstract

In this paper we discuss analytical and numerical properties of the
function Vν,µ(α, β, z) =

∫

∞

0
e−zt(t + α)ν(t + β)µ dt, with α, β,ℜz >

0, which can be viewed as a generalization of the complementary
error function, and in fact also as a generalization of the Kummer
U−function. The function Vν,µ(α, β, z) is used for certain values of
the parameters as an approximant in a singular perturbation problem.
We consider the relation with other special functions and give asymp-
totic expansions as well as recurrence relations. Several methods for
its numerical evaluation and examples are given.
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1 Introduction

The complementary error function is defined by

erfc z =
2√
π

∫ ∞

z
e−t2 dt, (1.1)

where the path of integration goes to infinity in such a way that the integral
is well defined. Another form is given by (see [1, p. 297])

w(z) =
1

πi

∫ ∞

−∞

e−t2

t − z
dt, ℑz > 0, (1.2)

with analytic continuation through the relation

w(z) = e−z2
erfc(−iz), z ∈ C. (1.3)

The complementary error function plays a role in asymptotic problems of
integrals when a saddle point and a pole are close together or even coalesce.
It also occurs when a saddle point is near an endpoint of the interval of
integration. See §4.3 and [13, pp. 356–366]. For its role in a singularly per-
turbed convection-diffusion problem in a rectangle with corner singularities
we refer the reader to [8].

Generalizations of the complementary error function can be made in
several ways, to cover integrals with more complicated structure. It is a
special case of the incomplete gamma function, which is given by

Γ(a, z) =

∫ ∞

z
ta−1e−t dt, |ph z| < π,

= zae−z

∫ ∞

0
(t + 1)a−1e−zt dt, ℜz > 0,

=
e−z

Γ(1 − a)

∫ ∞

0
t−ae−zt dt

t + 1
, ℜa < 0, ℜz > 0.

(1.4)

We have

erfc z =
1√
π

Γ
(

1
2
, z2

)

. (1.5)

The next step is given by the Kummer U−function, defined by

U(a, c, z) =
1

Γ(a)

∫ ∞

0
ta−1(1 + t)c−a−1e−zt dt, ℜa > 0, ℜz > 0. (1.6)
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We have

Γ(a, z) = zae−zU(1, a + 1, z) = e−zU(1 − a, 1 − a, z), (1.7)

where the last expression is obtained by applying the functional relation

U(a, c, z) = z1−cU(a − c + 1, 2 − c, z). (1.8)

As particular cases we have

erfc z =
1√
π

e−z2
U(1

2
, 1

2
, z2) =

z√
π

e−z2
U(1, 3

2
, z2). (1.9)

In this paper we consider generalizations of the complementary error
function motivated by singular perturbation problems. More precisely, we
discuss properties of the function

Vν,µ(α, β, z) =

∫ ∞

0
e−zt(t + α)ν(t + β)µ dt, α, β,ℜz > 0. (1.10)

This function can be viewed as a generalization of the complementary
error function, in the sense that the integrand shows poles (or algebraic
singularities) at two different points t = −α and t = −β, and therefore it
allows us to treat more general problems in uniform asymptotic expansions,
when more than one singularity of the integrand coalesce with a saddle point
or an endpoint.

A special case of this function occurs in [9] in the form

V (u, v) =

∫ ∞

0

te−t2

√
t2 + u2(t2 + v2)

dt = 1
2
V− 1

2
,−1(u

2, v2, 1) (1.11)

as a first order approximation of an elliptic 3D singular perturbation problem
in the half-space z ≥ 0 with discontinuous boundary values at z = 0. The
function V (u, v) defined in (1.11) has been used in the following singular
perturbation convection-diffusion problem with a “square shaped source of
contamination” located at the plane z = 0:

−ε∆U + Uz = 0, if (x, y, z) ∈ Ω, (1.12)

where ∆ is the 3D-Laplacian, Ω is the 3D half-space z > 0, and ε is a
small positive parameter. The boundary values at z = 0 are U(x, y, 0) = 1
inside the unit square |x| < 1, |y| < 1 and U(x, y, 0) = 0 outside this square.
Observe that these Dirichlet data at z = 0 are discontinuous at the boundary
of the unit square in the plane z = 0.
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The solution of this problem has been obtained in the form

U(x, y, z) =
eωz

π2

∫ ∞

−∞

∫ ∞

−∞

sin(ωt)

t

sin(ωs)

s
eiωxt+iωys−zω

√
1+t2+s2

dt ds,

(1.13)
where ω = 1

2ε . To apply the saddle point method the sine functions are re-
placed by exponential functions, which introduces poles that can be avoided
by deforming the contours in the complex s and t planes.

The special interest in (1.11) is large ω and small values of u and v, and
in that case the behaviour of the solution of the 3D singular perturbation
problem at x ∼ 1, y ∼ 1 (and at other corner points of the unit square) can
be described in terms of V (u, v) of (1.11). Along the sides of the unit square
the saddle points of the integrand in (1.13) are close to the origin (where
poles arise when writing the sine functions in terms of exponential functions),
and the transition from 0 to 1 can be described by using the complementary
error function. Near the corners of the square this description fails, and a
“two-dimensional” generalization of the error function (in fact, the function
V (u, v) of (1.11)) can be used. For further details we refer to [9] and [8].

We observe that Vν,µ(α, β, z) of (1.10) can also be seen as a generalization
of the Kummer U−function given in (1.6). Indeed, by differentiating with
respect to z, we see that we can relate derivatives of the V −function with
the V −function itself with shifted parameters. For instance:

V ′
ν,µ(α, β, z) = −Vν+1,µ(α, β, z) + αVν,µ(α, β, z)

= −Vν,µ+1(α, β, z) + βVν,µ(α, β, z)

(1.14)

Using similar manipulations, it is not difficult to show that the V −function
satisfies the following inhomogeneous second order differential equation:

zf ′′(z) +[ν + µ + 2 − (α + β)z]f ′(z)

− [β(ν + 1) + α(µ + 1) − αβz] f(z) = αν+1βµ+1
(1.15)

The solutions of the homogeneous differential equation can be expressed
in terms of confluent hypergeometric functions U(a, c, z) and 1F1(a; c; z).
Upon examination of the solutions of the homogeneous equation it seems
reasonable to identify the parameters as a = ν + 1 and c = ν + µ + 2.

This procedure allows us to think of the V function as an inhomogeneous
analogue of the Kummer functions, and obtain an analytic continuation of
the V function with less restrictions on the parameters α, β and z than the
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ones imposed by (1.11). We will not explore this idea any further, however,
since this integral representation is general enough for our purposes.

We work with the general form as given in (1.10), because the parameters
ν and µ do not play an essential role in the analytic relations to be given,
and because they also provide other special cases that are relevant in other
problems.

The plan of the paper is as follows. In Section 2 we present the basic
properties of the function Vν,µ(α, β, z), as well as the relation with other
special functions and integrals. Section 3 is devoted to inhomogeneous three-
term recurrence relations satisfied by the function Vν,µ(α, β, z) and their
computational aspects. In Section 4 we give asymptotic expansions both for
large values of z and for large values of the parameters ν and µ, and finally
in Section 5 we give several numerical examples using the methods analysed
in the previous sections.

2 Properties of the function Vν,µ(α, β, z)

We observe first that one of the parameters α, β, z is redundant because it
can be removed by a simple transformation of the variable of integration.
For example:

Vν,µ(α, β, z) = z−1−ν−µVν,µ(αz, βz, 1). (2.1)

Similarly, a straightforward calculation gives:

Vν,µ(α, β, z) = αν+µ+1Vν,µ(1, β/α, αz) = βν+µ+1Vν,µ(α/β, 1, βz). (2.2)

Secondly, it is clear from the definition of the function that we can in-
terchange α and β together with ν and µ, i.e.

Vν,µ(α, β, z) = Vµ,ν(β, α, z), (2.3)

and for this reason, in the sequel we will assume that β > α, without loss of
generality.

2.1 Particular cases

The function in (1.10) cannot simply be expressed in terms of the Kummer
U−function. However, when α → 0 we obtain

Vν,µ(0, β, z) = βµ+ν+1Γ(ν + 1)U(ν + 1, µ + ν + 2, βz), ℜν > −1. (2.4)

A similar result holds when β → 0.
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As particular cases of the Kummer U−function we find several known
special functions, or combinations of them. For instance, when µ = m =
0, 1, 2, . . . and ℜα > 0, we can expand the binomial term and we have

Vν,m(α, β, z) = αν+1βm
m

∑

k=0

(

m

k

)

(α/β)kk!U(k + 1, ν + k + 2, αz), (2.5)

with a similar result when ν is a nonnegative integer. For m = 0 formula
(2.5) gives an incomplete gamma function, see (1.7):

Vν,0(α, β, z) = αν+1U(1, ν + 2, αz) = z−ν−1eαzΓ(ν + 1, αz). (2.6)

For m > 0 the U−functions in (2.5) are derivatives of incomplete gamma
functions. We have (see [1, Eq. 13.4.22] and (1.7))

U(k + 1, ν + k + 2, z) =
(−1)k

k!

dk

dzk

(

z−ν−1ezΓ(ν + 1, z)
)

, (2.7)

for k = 0, 1, 2, . . . The incomplete gamma function appears in two other
important cases: firstly, when α = 0 or β = 0 and additionally µ = −1,
since in that case:

Vν,−1(0, β, z) = βνeβzΓ(ν + 1)Γ(−ν, βz), (2.8)

see also the last equation in (1.4). Secondly, when α = β we obtain

Vν,µ(α,α, z) = αν+µ+1U(1, ν + µ + 1, αz) = z−µ−ν−1eαzΓ(ν + µ + 1, αz).
(2.9)

Since the complementary error function can be obtained as a special case
of the incomplete gamma function, see (1.5), then we have

V− 1
2
,−1(0, 1, z) = πezerfc

√
z, V0,− 1

2
(0, 1, z) =

√

π

z
ezerfc

√
z. (2.10)

2.2 Related and generalized functions and integrals

The following integrals are other generalizations of the complementary error
function, and some of them play a role in uniform asymptotic expansions.

1. Goodwin–Staton integral, see [11, pp. 44, 115],

G(z) =

∫ ∞

0

e−t2

z + t
dt, |ph z| < π. (2.11)

This is a “half-time” complementary error function, and it is “elemen-
tary” because it can be expressed in terms of the error function and
the exponential integral.
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2. A generalized Goodwin–Staton, see [7],

I(µ, z) =

∫ ∞

0

tµe−t2

t + z
dt, 0 < |ph z| < π, ℜµ > −1. (2.12)

Observe that Jones considers I(µ,−z) and writes this function in [7,
Eq. (2.4)] as a sum of two incomplete gamma functions. For a numer-
ical approach based on series expansion and integration term by term
see [10].

3. Incomplete Goodwin–Staton:

G(u, v) =

∫ ∞

u

e−t2

v + t
dt, |ph u| < π, |ph v| < π. (2.13)

See also [2] for an application with a more general phase function. In
this case, we have a saddle point at the origin that can coalesce with
the pole at t = −v if v is small and with the endpoint t = u if u is
small. These two situations can be analysed separately using standard
methods in uniform asymptotics (in particular with the complemen-
tary error function, see [2]). An alternative form for this function is

G(u, v) = e−u2

∫ ∞

0

e−t2−2ut

u + v + t
dt, |ph(u + v)| < π. (2.14)

4. Ciarkowski [3]:

H(u, v) =

∫ ∞

0

e−t2

√
u + t(v + t)

dt, |ph u| < π, |ph v| < π. (2.15)

In the mentioned reference, a more general algebraic singularity is con-
sidered, in the form (u + t)r with −1 < r < 1. When only two critical
points are allowed to coalesce (saddle and pole or saddle and algebraic
singularity) an asymptotic approximation can again be obtained using
classical methods. This integral is of interest because it has a saddle
point at the endpoint t = 0, which is not present in the corresponding
integral in (1.10), with ν = −1 and µ = −1

2 .
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3 Recurrence relations

The function Vν,µ(α, β, z) defined in (1.10) satisfies an inhomogeneous three-
term recurrence relation, which is similar to the one for the related Kummer
U−function. Integration by parts gives

(ν + 1)Vν,µ =

∫ ∞

0
e−zt(t + β)µ d(t + α)ν+1

= −βµαν+1 + zVν+1,µ − µVν+1,µ−1

= −βµαν+1 + zVν,µ+1 + z(α − β)Vν,µ − µVν+1,µ−1

(3.1)

The last step follows from writing (t+α) = (t+β)+(α−β), and thereby

Vν+1,µ = Vν,µ+1 + (α − β)Vν,µ. (3.2)

Another integration by parts shows that

zVν,µ+1 = ανβµ+1 + νVν−1,µ+1 + (µ + 1)Vν,µ. (3.3)

Substituting this in (3.1) and rearranging terms we obtain the following
inhomogeneous recurrence relation:

µVν+1,µ−1 + [(β − α)z + ν − µ]Vν,µ − νVν−1,µ+1 = ανβµ(β − α). (3.4)

If we write
ν = a + ǫ1n, µ = c + ǫ2n, (3.5)

with integer n and ǫj = ±1 (not both zero), we can find recursions with re-
spect to n in different directions using (3.4). In the sequel, we will designate
the different cases using the notation (ǫ1, ǫ2).

3.1 Computational aspects. The (1,−1) recursion

The general solution of the inhomogeneous recursion can be written as

yn(z) = Afn(z) + Bgn(z) + hn(z), (3.6)

where fn(z) and gn(z) are independent solutions of the homogeneous re-
cursion (which in this case can be written in terms of Kummer functions),
hn(z) is a particular solution of the inhomogeneous one and A and B are
constants.
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From a computational perspective it is crucial to know the asymptotic
behaviour of the different solutions for large n (including the ones of the
homogeneous recurrence relation, which in our case are Kummer functions).
The asymptotic behaviour of the Kummer functions is well known in the
different directions of recursion, see for example [4], and an analysis of the
V −function for large n is given later.

3.1.1 Minimal and dominant solutions

If we set ν = a + n, µ = c − n in the recursion (3.4), we obtain

(c−n)yn+1(z)+[(β−α)z+a−c+2n]yn(z)−(a+n)yn−1(z) = αa+nβc−n(β−α).
(3.7)

Solutions of the homogeneous recurrence are

y
(1)
n (z) =

Γ(a + n + 1)

Γ(a + 2 − c + n)
M(a + n + 1, c, (β − α)z),

y
(2)
n (z) = Γ(a + n + 1)U(a + n + 1, a + c + 2, (β − α)z),

y
(3±)
n (z) =

(−1)n

Γ(a + 2 − c + n)
U(c − a − n − 1, c, (β − α)ze±πi).

(3.8)

In this case the solution y
(2)
n (z) is minimal for increasing n and −π <

ph(β − α)z < π, see [4, Sec. 4].
These results are relevant if one intends to use the recurrence relations for

computational purposes, since it is possible to combine backward recursion
with a normalising series to obtain a method of evaluation of a minimal
solution of the recursion that does not require any initial values, see [6, Sec.
4.6]. As we show below, the (1,−1) case provides a useful example, since
we obtain a normalization series which is convergent and the V function has
the right asymptotic behaviour for large n, see section §4.3.1.

3.1.2 Normalization relations

If we sum the functions V in n we obtain a convergent series:

∞
∑

n=0

(λ)n
n!

Va+n,c−n(α, β, z) = (β − α)−λVa,c+λ(α, β, z), (3.9)

which is convergent for fixed values of z. For λ = −c this reduces to

∞
∑

n=0

(−c)n
n!

Va+n,c−n(α, β, z) = (β − α)cz−a−1eαzΓ(a + 1, αz), (3.10)
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and more generally, when λ = m − c (m = 0, 1, 2, . . .) we have

∞
∑

n=0

(m − c)n
n!

Va+n,c−n(α, β, z) = (β − α)c−mVa,m(α, β, z), (3.11)

which can be expressed as a finite sum of U−functions (see (2.5)), and these
in turn in terms of incomplete gamma functions.

Corresponding series for the minimal solution of the homogeneous recur-

sion (that is, the function y
(2)
n (z) given in (3.9)) are

∞
∑

n=0

(λ)n
n!

Γ(a + n + 1)U(a + n + 1, a + c + 2, (β − α)z) =

Γ(a + 1)U(a + 1, a + c + λ + 2, (β − α)z),

(3.12)

with for λ = m − c (m = 0, 1, 2, . . .) results in a simple expression:

∞
∑

n=0

(m − c)n
n!

Γ(a + n + 1)U(a + n + 1, a + c + 2, (β − α)z) =

m
∑

k=0

(

m

k

)

Γ(a + k + 1)

((β − α)z)a+k+1
.

(3.13)

3.1.3 A Miller algorithm

We can use the recurrence relation in the homogeneous form by eliminating
the right-hand side in (3.6). This gives the recursion

ρ(a + n)yn−1 = (n − c)yn+2 − (c − n)

(

ζ + a − c + 2n + 2

c − n − 1
− ρ

)

yn+1

+

(

(a + n + 1)
c − n

c − n − 1
+ ρ(ζ + a − c + 2n)

)

yn,

(3.14)
where

ζ = (β − α)z, ρ =
α

β
. (3.15)

Three solutions are y
(1)
n (z) and y

(2)
n (z) defined in (3.9) and the function

Va+n,c−n(α, β, z) defined in (1.10). Let us denote

un = y(2)
n (z), vn = Va+n,c−n(α, β, z), (3.16)

and we want to compute v0.
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We assume that the condition holds that y
(1)
n (z) is a dominant solution

and un and vn are minimal solutions with the same exponential behaviour,
as explained in §4.3.1. We choose a large number N and start the recursion
with the values

yN = 1, yN+1 = 0, yN+2 = 0. (3.17)

Then, as in the classical Miller algorithm [6, §4.6], we expect that

yn
.
= Aun + Bvn, n = 0, 1, . . . , N0 ≪ N, (3.18)

with A and B not depending on n. The A and B can be obtained by using
the normalisation series given in (3.10)–(3.13). During recursion we compute
for m = 0 and a value of m larger then zero the finite sums

Sm =
N

∑

n=0

(m − c)n
n!

yn, (3.19)

and we can compute from (3.11) and (3.13) the values Um and Vm given by

Um =

N0
∑

n=0

(m − c)n
n!

un, Vm =

N0
∑

n=0

(m − c)n
n!

vn, (3.20)

for the same values of m. This gives

A
.
=

SmV0 − S0Vm

UmV0 − U0Vm
, B

.
=

UmS0 − U0Sm

UmV0 − U0Vm
. (3.21)

From (3.18) we can compute v0, assuming that the value of u0 is known.
This quantity can be computed in the same algorithm with the standard
Miller algorithm by using the homogeneous part of the recursion in (3.6)
and the normalisation series of un in (3.20).

4 Power series and asymptotic behaviour

In this section we study the behaviour of the function Vν,µ(α, β, z), firstly
for small values of z and then both for large values of the variable z and for
large values of the parameters ν and µ.
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4.1 Power series expansion

For certain parameters it is convenient to use the representation in terms of
the Kummer U− function together with a fast converging series. If we split
the integral, we can write for β ≥ α

Vν,µ(α, β, z) = eαz

∫ ∞

α
e−zttν(t + β − α)µ dt, (4.1)

which gives, together with (1.6)

Gν,µ(α, β, z) + Vν,µ(α, β, z) =

(β − α)ν+µ+1eαzΓ(ν + 1)U(ν + 1, ν + µ + 2, (β − α)z),

(4.2)

where

Gν,µ(α, β, z) =

∫ α

0
e(α−t)ztν(t + β − α)µ dt. (4.3)

By expanding the exponential function we obtain

Gν,µ(α, β, z) = (β − α)ν+µ+1
∞

∑

k=0

[(β − α)z]k

k!
Gk(ν, µ, γ), (4.4)

where

Gk(ν, µ, γ) =

∫ γ

0
(γ − t)ktν(t + 1)µ dt, γ =

α

β − α
, k = 0, 1, 2, . . . (4.5)

In fact, the function Gk(ν, µ, γ) can be identified as a Gauss hypergeo-
metric function:

Gk(ν, µ, γ) = γν+k+1 Γ(k + 1)Γ(ν + 1)

Γ(k + ν + 2)
2F1







−µ, ν + 1

ν + k + 2

;−γ






, (4.6)

for k = 0, 1, 2, . . . . Therefore

Gν,µ(α, β, z) = (β − α)ν+µ+1γν+1Γ(ν + 1)

∞
∑

k=0

dkHk(µ, ν, γ), (4.7)

where dk = (αz)k and

Hk(µ, ν, γ) =
1

Γ(ν + k + 2)
2F1







−µ, ν + 1

ν + k + 2

;−γ






, k = 0, 1, 2, . . . .

(4.8)
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The functions Hk are minimal solutions of the corresponding recursion
for increasing k, and therefore we should not compute them using forward
recursion. However, a backward recursion can be used efficiently. We post-
pone the computational details until Section §5.2.

4.2 Asymptotic expansions for large z

For values of α and β bounded away from zero we use (1.10) and expand

(t + α)ν(t + β)µ = ανβµ
∞
∑

k=0

ckt
k (4.9)

We apply Watson’s lemma (see [13, pp. 19–29]) to obtain

Vν,µ(α, β, z) ∼ ανβµ
∞

∑

k=0

ck
k!

zk+1
, z → ∞. (4.10)

When α and β are positive, this expansion is valid for |ph z| < 3
2π. The first

few coefficients are

c0 = 1, c1 =
µα + νβ

αβ
, c2 =

2νµαβ + α2µ(µ − 1) + β2ν(ν − 1)

2α2β2
. (4.11)

Higher coefficients follow from the recursion

αβ(k+1)ck+1 = (µα+νβ−k(α+β))ck+(ν+µ−k+1)ck−1, k = 1, 2, 3, . . . .
(4.12)

A modified asymptotic expansion can be obtained following the ideas
exposed in [5]:

(t + α)ν = (α/β)ν(t + β)ν
∞
∑

k=0

(

ν

k

)(

β − α

α

)k tk

(t + β)k
, (4.13)

and substituting this in (1.10). This gives the expansion

Vν,µ(α, β, z) = ανβµ+1
∞
∑

k=0

(

ν

k

)(

β − α

α

)k

k!U(k +1, ν +µ+2, βz), (4.14)

which will be convergent provided that 0 < β < 2α. This result follows from
observing that (4.13) is convergent for |t/(t + β)| < α/|β − α|. This bound
holds for all positive t if α/|β − α| > 1, which is true when 0 < β < 2α.
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This, together with the estimates to be given in §4.3.1 for the U−functions,
proves the convergence of the expansion (4.14).

In the same manner, we have

Vν,µ(α, β, z) = αν+1βµ
∞
∑

k=0

(

µ

k

)(

α − β

β

)k

k!U(k +1, ν +µ+2, αz), (4.15)

with convergence if 0 < α < 2β. Both convergence criteria in (4.14) and
(4.15) give overlapping domains in the quarter plane α > 0, β > 0.

As explained in [5] the expansions in (4.14) and (4.15) have an asymp-
totic character for large values of βz and αz, respectively. However, con-
vergence of these approximations becomes slow when βz in (4.2) or αz in
(4.15) is small, since we have the estimate:

y(2)
n (z) ∼

√
π[(β − α)z]

−3−2a−2c
4 e

(β−α)z
2 n

1+2a+2c
4 e−2

√
n(β−α)z . (4.16)

The U−functions in these series can be computed by using a backward
recursion scheme; for details we refer to §3.1.3. When α = β the expansions
reduce to the relation in (2.9), and in fact the first term in both series is an
incomplete gamma function.

4.3 Asymptotic behaviour for large n

In this section we study the asymptotic properties of the function

Va+ǫ1n,c+ǫ2n(α, β, nz) (4.17)

for large values of n, where ǫ1,2 = 0,±1 (not both equal to 0). More general
cases can be considered, but we will restrict ourselves to these ones in the
present discussion. It is important to note that the symmetry property (2.3)
allows as to take β > α without loss of generality, interchanging α and β
and ν and µ if necessary.

The asymptotic behaviour in the different directions can be obtained by
using saddle point analysis of the integral representation. It is immediate
that we can write

Va+ǫ1n,c+ǫ2n(α, β, nz) =

∫ ∞

0
(t + α)a(t + β)ce−nφ(t)dt, (4.18)

where
φ(t) = zt − ǫ1 log(t + α) − ǫ2 log(t + β). (4.19)
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The zeros of φ′(t) are given by

t± = −(α + β)z − ǫ1 − ǫ2

2z
±

√

[(α + β)z − ǫ1 − ǫ2]2 − 4z∆

2z
, (4.20)

where
∆ = αβz − ǫ1β − ǫ2α. (4.21)

When one of the roots or both of them are positive for positive values
of α, β and z, we can apply Watson’s lemma, with the change of variable
φ(t) − φ(t±) = u. If both roots are negative or complex then a similar
result holds, taking t = 0 as the relevant point to construct the asymptotic
expansion.

The case where ∆ = 0 is more interesting, since the root t+ coalesces
with the endpoint of the interval of integration t = 0, and the complemen-
tary error function has to be used in order to give a valid expansion. It is
straightforward to check that ∆ = 0 when z = z0, where

z0 =
ǫ1

α
+

ǫ2

β
. (4.22)

This value is positive in the (1, 0), (0, 1), (−1, 1) and (1, 1) cases.
As an example, we will give more details on the (1,−1) case in the

following section. Similar expansions can be obtained in the rest of the
cases, using the appropriate values of z0.

4.3.1 Asymptotic behaviour of Va+n,c−n(α, β, nz) for large n

In this case we substitute ǫ1 = 1 and ǫ2 = −1 in the previous expression

Va+n,c−n(α, β, nz) =

∫ ∞

0
(t + α)a(t + β)ce−nφ(t) dt, (4.23)

with
φ(t) = zt − log(t + α) + log(t + β) (4.24)

and α, β > 0. We have

φ′(t) =
zt2 + z(α + β)t + zαβ + α − β

(α + t)(β + t)
. (4.25)

We look for saddle points. Solving φ′(t) = 0, we obtain two roots:

t± = −α + β

2
±

√

z(β − α)(z(β − α) + 4)

2z
. (4.26)
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Assuming also z > 0 we note that both roots are real and t− < 0. The
factor ∆ = αβz − β + α vanishes at

z0 =
1

α
− 1

β
, (4.27)

which is indeed positive since we take β > α.
If z > z0 then both t+ and t− are negative, the function φ(t) is increasing

on [0,∞) and the relevant point to construct the asymptotic approximation
is t = 0. We have

∫ ∞

0
f(t)e−nφ(t) dt = e−nφ(0)

∫ ∞

0
f(u)e−nu dt

du
du, (4.28)

with the change of variable

φ(t) − φ(0) = u, (4.29)

which is implicit since

φ(t) − φ(0) = zt + log
t + β

t + α
− log

β

α
. (4.30)

Using Lagrange’s inversion theorem, one can find that:

t =
1

z0
u +

α2 − β2

2z3
0

u2 + O(u3), (4.31)

and the first order approximation is

Va+n,c−n(α, β, nz) ∼ aα+nbβ−n

z0

1

n
, n → ∞, (4.32)

for α, β bounded away from 0.
When z < z0 then the root t+ is positive and becomes relevant in the

asymptotic analysis for large n. In this case, we apply the classical Laplace
method and obtain

Va+n,c−n(α, β, nz) ∼
√

2π

nφ′′(t+)
f(t+)e−nφ(t+), n → ∞, (4.33)

where
φ(t+) = zt+ + log(1 + βz + zt+) (4.34)

and
φ′′(t+) =

z

β − α

√

z(β − α)(4 + z(β − α)). (4.35)
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When z = z0 we have t+ coalescing with the endpoint t = 0, and when
z ∼ z0 we can use an error function to describe the transition from t+ < 0 to
t+ > 0. Instead of the transformation in (4.29) we take a quadratic function
in the right-hand side, because we want to introduce a movable saddle point
in the transformation. We put

φ(t) − φ(0) = 1
2
v2 − ηv, (4.36)

where η is not depending on t or v, and is chosen such that the saddle
point t+ corresponds with the saddle point of the quadratic function, that
is, with v = η. Notice also the corresponding points t = 0 and v = 0, and
corresponding relations at +∞. For η we find

φ(t+) − φ(0) = −1
2
η2, (4.37)

with the agreement sign η = sign t+. After using the transformation (4.36)
in (4.23) we obtain

Va+n,c−n(α, β, nz) =

(

α

β

)n ∫ ∞

0
e−n( 1

2
v2−ηv)g(v) dv, (4.38)

where

g(v) = f(t)
dt

dv
,

dt

dv
=

v − η

φ′(t)
. (4.39)

When we replace g(v) with a constant gc (that is, independent of v), we
obtain an approximation in terms of the complementary error function; see
(1.1). The optimal choice for this constant is as follows:

gc = g(0) = −αaβc z0

η
, if t+ ≤ 0,

gc = g(η) = (t+ + α)a(t+ + β)c
1

√

φ′′(t+)
, if t+ ≥ 0,

(4.40)

where φ′′(t+) is given in (4.35). In this way we find

Va+n,c−n(α, β, nz) ∼
√

π

2n
gce

−nφ(t+)erfc
(

−η
√

n/2
)

. (4.41)

See [13] for further details on this method.

Remark 1 The approximation in (4.41) is in particular useful when t+ ∼ 0
(in which case η ∼ 0). We verify how the approximation behaves when
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α ∼ β, a degenerate case, as remarked in the second case after (4.26).
Applying Watson’s lemma to (4.23) we obtain

Va+n,c−n(α,α, nz) ∼ αa+c

zn
, (4.42)

and using (4.41) we find the same estimate, because

t+ = −α, η = −
√

2αz, φ(t+) = −αz, gc = αa+c
√

2α/z, (4.43)

and

erfc
(√

αzn
)

∼ e−αzn

√
αznπ

. (4.44)

Remark 2 The approximation in (4.33) is most relevant for deciding if
the backward recursion scheme can be used for the numerical evaluation of
Vν,µ(α, β, z). To see this, observe that we have derived this estimate with
the scaled value nz. So, for considering the computation of Vν,µ(α, β, z)
for moderate values of z, the asymptotic estimate should also be used for
moderate values of nz, that is, for z = o(1), when n is large. This shows
that the condition zαβ < β − α is fulfilled, unless β ∼ α, the degenerate
case.

When we expand φ(t+) given in (4.34) for small values of z, we obtain

φ(t+) = 2
√

z(β − α) − 1
2
(α + β)z + O

(

z3/2
)

, (4.45)

and we see that this gives the same relevant factor e−2
√

n(β−α)z as given in
the asymptotic estimate (4.16) for the minimal solution of the homogeneous
part of the recurrence relation (3.8).

With this in mind we consider both Vν,µ(α, β, z) and y
(2)
n (z) given in

(3.9) as minimal solutions of the recurrence relation in (3.6) when (4.45)
holds.

5 Numerical results

In this section we provide some examples of numerical evaluation of the
V −function and give some details on the computational use of some of the
methods explained in the previous sections.

We will restrict ourselves to the case ν = −1/2 and µ = −1, which is
relevant for the singular perturbation problem explained in the introduc-
tion. We will not use the inhomogeneous recursions described in §3.1.3 to
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compute the V −functions, because it appears that the expansion (4.14) is
more efficient and reliable, but further numerical tests are needed in order
to compare both methods, also with other values of ν and µ.

5.1 Modified asymptotic series

We recall the modified asymptotic series given in (4.14):

Vν,µ(α, β, z) = ανβµ+1
∞
∑

k=0

dkΦk, (5.1)

where

dk =

(

β − α

α

)k (

ν

k

)

, Φk = k! U(k + 1, ν + µ + 2, βz), (5.2)

and the series is convergent provided that 0 < β < 2α. We write the series
as follows:

Vν,µ(α, β, z) = ανβµ+1
K−1
∑

k=0

dkΦk + RK , (5.3)

and will give an estimation for RK . Now

RK = ανβµ+1
∞
∑

k=K

dkΦk = ανβµ+1
∞
∑

k=0

dK+kΦK+k. (5.4)

Since
(

ν

k

)

= (−1)k
(−ν)k

k!
, (5.5)

and (a)K+k = (a)K(a + K)k, we can write

∞
∑

k=0

dK+kΦK+k = CK

∞
∑

k=0

(−ν + K)k
(K + 1)k

×

∫ ∞

0
e−βzttK(1 + t)ν+µ−K

(

(α − β)t

α(1 + t)

)k

dt, (5.6)

where

CK =

(

α − β

α

)K (−ν)K
(1)K

. (5.7)
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Interchanging summation and integration, we get

∞
∑

k=0

(−ν + K)k
(K + 1)k

∫ ∞

0
e−βzttK(1 + t)ν+µ−K

(

(α − β)t

α(1 + t)

)k

dt

=

∫ ∞

0
e−βzttK(1 + t)ν+µ−K

2F1







−ν + K, 1

K + 1

;
(α − β)t

α(1 + t)






dt

= α

∫ ∞

0
e−βzttK(1 + t)ν+µ−K+1(α + βt)−1

2F1







ν + 1, 1

K + 1

;
(β − α)t

βt + α






dt

≈ α

∫ ∞

0
e−βzttK(1 + t)ν+µ−K+1(α + βt)−1 dt ≤ K! U(K + 1, ν + µ + 3, βz).

Here we have estimated the Gauss hypergeometric function by 1 for large
enough K, and used the well known identity [12]:

2F1







a, b

c

; z






= (1 − z)−b

2F1







c − a, b

c

;
z

z − 1






. (5.8)

For the Kummer U−function we have the following asymptotic estimate
for large values of K (see also (4.16)):

Γ(K + 1)U(K + 1, ν + µ + 3, βz) ∼ λK
2ν+2µ+3

4 e−2
√

Kβz, (5.9)

where
λ =

√
π(βz)−

5+2ν+2µ
4 e

βz
2 . (5.10)

If we set ν = −1/2 and µ = −1 the expression simplifies to

Γ(K + 1)U(K + 1, ν + µ + 3, βz) ∼
√

π

βz
e

βz
2 e−2

√
Kβz, (5.11)

This last expression can be easily checked for increasing values of K until
a given threshold is reached. It is clear that large values of z and β will make
this method more effective.

Once we have estimated the truncation index K, it is convenient to
evaluate the series in the following nested form:

K
∑

k=0

dkΦk = d0Φ0

(

1 +
d1

d0

Φ1

Φ0

(

1 +
d2

d1

Φ2

Φ1

(

. . . +

(

1 +
dK

dK−1

ΦK

ΦK−1

))))

,

(5.12)
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since in this way the ratios can be obtained via continued fractions and we
avoid the numerical computation of the U -functions. More precisely, we
evaluate rK = ΦK/ΦK−1 using the modified Lentz-Thompson method [6],
and once we have that ratio we update it applying the backward recursion:

rk =
−αk

βk + rk+1
, j = K − 1,K − 2, . . . , 1. (5.13)

Finally, the first function of the series is Φ0 = U(1, ν + µ + 2), which in
general is not directly available in Matlab. However, in the case ν = −1/2,
µ = −1, which is our main interest for applications, this function reduces to
the complementary error function.

In the example shown in Figures 1 and 2 these estimations have been
used, with ǫ given by the machine epsilon in Matlab. The figures show a
comparison between the result given by the modified asymptotic series in
Matlab and direct integration using extended precision in Maple, using
ν = −1/2, µ = −1 and 1000 random points in the region 0 < β < 2α,
0 < α < 20.
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Figure 1: Absolute error in the computation of the V−1/2,−1(α, β, z) function
using modified asymptotic series. On the left, black dots indicate values of
α and β for which the error is less than 10−14, on the right black dots show
where the error is larger than 10−14. Here z = 10.45. The maximum error
in this example is 1.78 × 10−14.
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Figure 2: Same as in Figure 1 but with z = 0.45. The maximum error in
this example is 1.05 × 10−13, for values of β very close to 0.

5.2 Power series expansion

Another interesting method for numerical evaluation of the V function is
given by formula (4.2) and (4.7). Recall that

Gν,µ(α, β, z) + Vν,µ(α, β, z) =

(β − α)ν+µ+1eαzΓ(ν + 1)U(ν + 1, ν + µ + 2, (β − α)z),

(5.14)

where

Gν,µ(α, β, z) = αν+1(β − α)µΓ(ν + 1)
∞

∑

k=0

dkHk(µ, ν, γ), (5.15)

the coefficients are dk = (αz)k and Hk(µ, ν, γ) are Gauss hypergeometric
functions, see formula (4.8). Now

∞
∑

k=0

dkHk(ν, µ, γ) =

K−1
∑

k=0

dkHk(ν, µ, γ) + RK . (5.16)

As we did in the previous subsection, using the integral representation
of the Hk functions and interchanging summation and integration (which is
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permissible when β > 2α, since in that case γ < 1), we obtain

RK ≈ (αz)K

Γ(ν + K + 2)
, (5.17)

which we used to estimate an adequate truncation index K. Then the
finite series should be evaluated in nested form, as in (5.12), and using
the corresponding continued fraction for the Gauss functions, which can be
deduced from [1, Eq. 15.2.12]. We also need the function H0(ν, µ, γ), which
is general is not elementary. However, in the case ν = −1/2, µ = −1, we
have:

H0(−1/2,−1, γ) =
arctan

√
γ

√
γ

. (5.18)

Observe also that when ν = −1/2 and µ = −1, the Kummer U−function
in (4.2) reduces to a complementary error function.
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Figure 3: Absolute error in the computation of the V−1/2,−1(α, β, z) function
using power series. On the left, black dots indicate values of α and β for
which the error is less than 10−14, on the right black dots indicate where
the error is larger than 10−14. Here z = 0.87, and the maximum error is
2.7 × 10−9.

Figures 3 and 4 show another example with 1000 points in the region
β > 2α, 0 < α < 20. As can be seen, the results get considerably worse
when α and z grow. This behaviour can be expected, since large values of
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Figure 4: Same as in Figure 3 but with z = 4.31. The maximum error in
this example is 2.82 × 1019.

α are likely to produce severe cancellations when subtracting Gν,µ(α, β, z)
from the Kummer U−function. Similarly, large values of z will be harmful,
since from (4.10) we have that

Vν,µ(α, β, z) ∼ ανβµ

z
, z → ∞, (5.19)

whereas both the first and last terms in (4.2) are exponentially large when
z is large.

On the other hand, for small values of the parameters the results are very
satisfactory, which is quite relevant since other methods such as modified
asymptotic expansions or quadrature become less attractive when z is small.
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