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Global Exponential Stability of Impulsive

Discrete-time Neural Networks with

Time-Varying Delays

Honglei Xu, Yuanqiang Chen and Kok Lay Teo

Abstract

This paper studies the problem of global exponential stability and exponential convergence rate

for a class of impulsive discrete-time neural networks with time-varying delays. Firstly, by means

of the Lyapunov stability theory, some inequality analysis techniques and a discrete-time Halanay-type

inequality technique, sufficient conditions for ensuring global exponential stability of discrete-time neural

networks are derived, and the estimated exponential convergence rate is provided as well. The obtained

results are then applied to derive global exponential stability criteria and exponential convergence rate

of impulsive discrete-time neural networks with time-varying delays. Finally, numerical examples are

provided to illustrate the effectiveness and usefulness of the obtained criteria.

Index Terms

Impulsive discrete-time neural networks, global exponential stablity, exponential convergence rate,

Halanay inequality.

I. INTRODUCTION

Neural networks have received extensive interests in recent years and have witnessed many

promising potential applications in different areas such as signal processing, content addressable
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memory, pattern recognition and combinatorial optimization (see e.g. [2]-[4], [6]-[8] and the

references therein). It is well known that the existence of delays in neural networks causes

undesirable complex dynamical behaviors such as instability, oscillation and chaotic phenomena.

Stability problems of time-delayed neural networks have attracted much attention in view of their

theoretical as well as practical importance. There are now many results being reported in the

literature on neural networks with time delays, see, for example, [1]-[3], [5], [6], [8]-[17], and

references therein. In practice, for computation convenience, continuous-time neural networks

are often discretized to generate discrete-time neural networks. Thus, the study of discrete-

time neural networks attracts more and more interests. In recent years, asymptotic behaviors of

discrete-time neural networks have been investigated, and many results have been reported (see

[14]-[18] and the references therein).

Complex dynamical systems usually undergo abrupt changes of their states at certain moments

due to unexpected internal or external effects. There is no exception for discrete neural networks.

These impulsive perturbations can also cause undesirable dynamical behaviors leading to poor

performance. Therefore, it is necessary to take into account both impulsive effects and delay

effects in the stability analysis of discrete neural networks. Impulsive differential equations, which

are mathematical models for continuous-time dynamical systems with impulsive perturbations,

have been successfully applied to many practical problems, see, e.g., Refs. [19]-[24]. Similarly,

impulsive difference equations are suitable mathematical tools to model impulsive discrete-

time neural networks. Continuous-time neural networks with impulsive perturbations have been

reported (see e.g. [25]-[28]). In [25], global stability properties have been analyzed for impulsive

Hopfield-type neural networks whose impulses contain both the functional term and its integral.

Sufficient conditions are derived in [26] based on vector Lyapunov functions and the M-matrix

theory for ensuring global exponential stability of the neural networks with impulsive effects.

In addition, the estimated exponential convergence rate is given as well. Exponential stability

analysis of impulsive delay neural networks has been investigated in [27] and [28] based on the

M-matrix theory and an impulsive delay differential inequality. However, it appears that little

attention is devoted to the investigation of stability for discrete-time neural networks with time

delays subject to impulsive perturbations, although such neural networks are important in the

fields of natural sciences and applied technology. This motivates our study.
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In this paper, we shall deal with a class of discrete-time neural networks with time-varying

delays subject to impulsive perturbations. Firstly, by utilizing the Lyapunov stability theory and

discrete-time Halanay-type inequality, we shall establish some sufficient conditions for global

exponential stability of discrete-time neural networks with time-varying delays. Secondly, we

shall apply the results obtained to impulsive discrete-time neural networks and obtain new

global exponential stability criteria and new estimated exponential convergence rate for impulsive

discrete-time neural networks with time-varying delays.

The main contributions of the current paper include: (i) some new global exponential stability

criteria are derived by means of the discrete-time Halanay-type inequality; (ii) the form of

impulsive perturbations is more general than the existing ones in the literature which are described

by either a linear matrix function or a simple nonlinear matrix function; and (iii) new global

exponential stability criteria and convergence rate of impulsive neural networks with time-varying

delays are obtained.

The rest of this paper is organized as follows. In Section II, impulsive discrete-time neural

networks with time-varying delays are introduced and some preliminary lemmas are presented. In

Section III, based on the Lyapunov stability theory and the discrete-time Halanay-type inequality,

global exponential stability criteria are derived for discrete-time neural networks with time-

varying delays for the case when the neural networks are free of impulsive perturbations as well

as the case when they are subject to impulsive perturbations. Moreover, numerical examples are

presented in Sections IV. Section V concludes the paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following impulsive neural network with time-varying delays:




ui (m + 1) = aiui (m) +
n∑

j=1
Tij f̂j (uj (m− τij (m))) + Ii, m 6= nk,

∆ui (m) = ĝ
(k)
i (m, u1 (m) , · · · , un (m)) , m = nk, m ∈ N (1) ,

ui (m) = φi (m) , m ∈ N (−τ, 0) ,

(1)

where ui(t) denotes the state of the ith neuron at time t; ai ∈ [0, 1), i ∈ N (1, n), represents the

passive decay rate, where N (k) = {k, k + 1, k + 2, · · ·}, N (k, l) = {k, k + 1, k + 2, · · · , l}; f̂j

is the neuron output signal function which is a continuous function; Tij , τij (m) ≥ 0 denote,

respectively, the connection weight and the transmission delay from the neuron j to the neuron
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i with τ = max
i,j∈N(1,n)

{τij (m)} and m − τij (m) → ∞ as m → ∞; fj : R → R is the neuron

activation function with fj (0) = 0; and Ii is the exogenous input, where i ∈ N (1, n). ui (m) =

φi (m), m ∈ N (−τ, 0), is the initial condition for (1), where φi : N(−τ, 0) → R, i ∈ N (1, n),

is a continuous function. A vector u∗ = [u∗1, u
∗
2, · · · , u∗n]T is said to be an equilibrium point of

the impulsive discrete-time neural network (1) if it satisfies

u∗i = aiu
∗
i +

n∑

j=1

Tij f̂j

(
u∗j

)
+ Ii.

Let u∗i be an equilibrium point of (1). For the purpose of brevity, we can shift the equilibrium

u∗i to the origin by setting xi(m) = ui(m) − u∗i , i ∈ N (1, n). Then, the neural network (1) is

transformed into




xi (m + 1) = aixi (m) +
n∑

j=1
Tijfj (xj (m− τij (m))), m 6= nk,

∆xi (m) = g
(k)
i (m,x1 (m) , · · · , xn (m)) , m = nk, m ∈ N (1) ,

xi (m) = φi (m) , m ∈ N (−τ, 0) ,

(2)

where

fj (xj (m− τij (m))) = f̂j (uj (m− τij (m)))− f̂j

(
u∗j (m− τij (m))

)

and

g
(k)
i (m,x1 (m) , · · · , xn (m)) = ĝ

(k)
i (m,u1 (m) , · · · , un (m))− ĝ

(k)
i (m,u∗1 (m) , · · · , u∗n (m)) .

Without loss of generality, we may assume that the sequence {nk, g
(k)
k } of the impulsive effects

satisfies the following assumptions.

Assumption 1: The sequence {nk} of the impulsive time points satisfies nk ∈ N (1), nk +2 ≤
nk+1 and lim

k→∞
nk = ∞ with k ∈ N (0).

Assumption 2: For the impulsive increment function sequence g
(k)
k , there exists ω

(k)
ij ≥ 0 such

that ∀(x1(t), x2(t), · · · , xn(t)) ∈ Rn, t ∈∈ N(0), the following condition is satisfied,

|xi(t) + g
(k)
i (t, x1(t), · · · , xn(t))| ≤

n∑

j=1

ω
(k)
ij |xj(t)|, j ∈ N(1, n). (3)

Clearly, the stability properties of the impulsive neural network (1) are equivalent to the

stability properties of the impulsive neural network (2). Furthermore, we need the following

definitions and lemmas.
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Definition 1: For the impulsive discrete-time neural network (2), the trivial equilibrium point

is uniformly stable if there exists a positive constant ε > 0, and max
s∈N(−τ,0)

{‖x (s)‖} ≤ δ (ε), then,

for any given δ (ε) > 0, ‖x (m)‖ < ε, ∀m ∈ N (1).

Definition 2: For the impulsive discrete-time neural network (2), the trivial equilibrium point

is asymptotically stable if the neural network (2) is uniformly stable and the following condition

is satisfied,

lim
m→+∞ ‖x (m)‖ = 0. (4)

Definition 3: For the impulsive discrete-time neural network (2), the trivial equilibrium point

is exponentially stable if there exist positive constants κ > 0 and r ∈ (0, 1) such that

‖x (m)‖ ≤ κrm, ∀m ∈ N (1) , (5)

where r is called the exponential convergence rate. If (5) is satisfied for any initial condition

x (m) ∈ Rn, m ∈ N (−τ, 0), the trivial equilibrium point is globally exponentially stable for the

impulsive neural network (2).

Lemma 1: [29] (Discrete-time Halanay-type Inequality) Consider the following discrete-time

system

∆x(m) = f(m,x(m), x(m− 1), ..., x(m− τ)) ,

where ∆x(m) = x(m + 1) − x(m) and N × Rτ+1 → R. The initial condition is given that

φi : N(−τ, 0) → R, i ∈ N (1, n). Suppose that the real numbers sequence {bn}n≥−τ is such that

∆xn = −axn + g (n, xn, xn−1, · · · ,n−τ ) , n ∈ N (0) , a ∈ (0, 1] ,

and that there exists a b ∈ (0, a) such that

∆bn ≤ −abn + b max
i∈N(n−h,n)

{bi} ,∀n ∈ N (0) .

Then, there exists a λ ∈ (0, 1) such that

bn ≤ λn max
i∈N(−h,0)

{bi} , ∀n ∈ N (0) ,

where ∆bn = bn+1 − bn, h ∈ N (0), is a constant, g : N (0) × Rh+1 → R, (b−h, b−h+1, · · · , b0)

is the initial condition and λ is the smallest root in the interval (0, 1) of the following equation

λh+1 + (a− 1) λh − b = 0.
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III. MAIN RESULTS

In this section, we shall firstly establish sufficient conditions for global exponential stability

of discrete-time neural networks with time-varying delays. On the basis of the obtained re-

sults, we shall investigate the global exponential stability criteria and the estimated exponential

convergence rate of impulsive discrete-time neural networks.

A. Discrete-time Neural Networks

Consider a discrete-time neural network described by

xi (m + 1) = aixi (m) +
n∑

j=1

Tijfj (xj (m− τij (m))),m ∈ N (1) ,

xi (m) = φi (m) ,m ∈ N (−τ, 0) , i ∈ N (1, n) . (6)

In the following theorem, the results on the global exponential stability of the neural network

(6) are presented.

Theorem 1: Suppose that Assumption 1, Assumption 2 and the following conditions are

satisfied.

i) There exists a constant δj > 0 such that ∀t1, t2 ∈ N (1), the neuron activation function fj(m)

in (1) is bounded and satisfies the following Lipschitz condition

|fj (t1)− fj (t2)| ≤ δj |t1 − t2| , j ∈ N (1, n). (7)

ii)

a + δ < 1, (8)

where a = max
i∈N(1,n)

{ai} and δ = max
i∈N(1,n)

{
n∑

j=1
|Tij| δj

}
.

Then, the trival equilibrium point of (6) is globally exponentially stable with the convergence

rate λ which is the smallest root in the interval (0, 1) of the following equation

λτ+1 − aλτ − δ = 0. (9)

Proof: From the trajectory {x (m)}, m ∈ N (1), of system (6), we have

xi (m) = am
i xi (0) +

m−1∑

s=0

am−1−s
i

n∑

j=1

Tijfj (xj (s− τij (s))),m ∈ N (1) , i ∈ N (1, n) .
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Clearly,

|xi (m)| ≤ am
i |xi (0)|+

m−1∑

s=0

am−1−s
i

n∑

j=1

|Tij| |fj (xj (s− τij (s)))| . (10)

Then, by the Lipschitz condition (7), it follows from (10) that

|xi (m)| ≤ am
i max

i∈N(1,n)
{|xi (0)|}+

m−1∑

s=0

am−1−s
i

n∑

j=1

|Tij| δj |xj (s− τij (s))|

≤ am
i max

i∈N(1,n)
{|xi (0)|}+

m−1∑

s=0

am−1−s
i

n∑

j=1

|Tij| δj max
j∈N(1,n)

{
max

t∈N(s−τ,s)
{|xj (t)|}

}

≤ am
i max

i∈N(1,n)
{|xi (0)|}

+
m−1∑

s=0

am−1−s
i max

i∈N(1,n)





n∑

j=1

|Tij| δj



 max

t∈N(s−τ,s)

{
max

j∈N(1,n)
{|xj (t)|}

}
. (11)

For any m ∈ N (−τ), let δ = max
i∈N(1,n)

{
n∑

j=1
|Tij| δj

}
and

ξm =





max
i∈N(1,n)

{|xi (m)|} ,m ∈ N (−τ, 0),

am
i max

i∈N(1,n)
{|xi (0)|}+ δ

m−1∑
s=0

am−1−s
i max

t∈N(s−τ,s)

{
max

j∈N(1,n)
{|xj (t)|}

}
,m ∈ N (1).

Then, (11) is reduced to

|xi (m)| ≤ ξm, i ∈ N (1, n) . (12)

Since

∆ξm = ξm+1 − ξm = − (1− a) ξm + δ max
t∈N(m−τ,m)

{
max

j∈N(1,n)
{|xj (t)|}

}

≤ − (1− a) ξm + δ max
t∈N(m−τ,m)

{ξt} ,∀m ∈ N (1) ,

it follows from Lemma 1 that there exists a λ ∈ (0, 1) such as

ξm ≤ λm max
t∈N(−τ,0)

{ξt} , ∀m ∈ N (0) . (13)

Furthermore, by (12), we have

‖x (m)‖∞ = max
i∈N(1,n)

{|xi (m)|} ≤ ξm,∀m ∈ N (−τ) .

Thus,

‖x (m)‖∞ ≤ max
t∈N(−τ,0)

{ξt}λm,∀m ∈ N (0) . (14)
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Therefore, by virtue of Definition 3, the trivial equilibrium point of (6) is globally exponentially

stable with the convergence rate λ which is the smallest root in the interval (0, 1) of the following

equation

λτ+1 − aλτ − δ = 0.

This completes the proof.

B. Impulsive Discrete-time Neural Networks

We now give sufficient conditions for global exponential stability of impulsive discrete-time

neural network (2). In addition, its convergence rate will also be presented.

Theorem 2: Suppose that Assumption 1, Assumption 2 and the following conditions are

satisfied.

i) There exists a constant δj > 0 such that ∀t1, t2 ∈ N (1), the neuron activation function fj(m)

in (1) is bounded and satisfies the following Lipschitz condition

|fj (t1)− fj (t2)| ≤ δj |t1 − t2| , j ∈ N (1, n) ; (15)

ii)
k∑

j=0

ln lj − (k + 1) ln a ≤ 0, k ∈ N (0) ; (16)

iii)

a + δ < 1, (17)

where a = max
i∈N(1,n)

{ai}, δ = max
i∈N(1,n)

{
n∑

j=1
|Tij| δj

}
and lk = max

i∈N(1,n)

{
n∑

j=1
ω

(k)
ij

}
.

Then, the equilibrium point u∗i of (1) is globally exponentially stable with the convergence rate

λ, which is the smallest root in the interval (0, 1) of the following equation

λτ+1 − aλτ − δ = 0. (18)

Proof: For any m ∈ (Nk, Nk+1], we have

|xi (m)| ≤ am−Nk−1
i |xi (Nk + 1)|+

m−1∑

s=Nk+1

am−1−s
i

n∑

j=1

|Tij| |fj (xj (s− τij (s)))| . (19)
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Applying (3) and (15) to (19) yields

|xi (m)| ≤ am−Nk−1
i

n∑

j=1

ω
(k)
ij |xj (Nk)|+

m−1∑

s=Nk+1

am−1−s
i

n∑

j=1

|Tij| δj |xj (s− τij (s))|

≤ am−Nk−1
i

n∑

j=1

ω
(k)
ij max

j∈N(1,n)
{|xj (Nk)|}

+
m−1∑

s=Nk+1

am−1−s
i

n∑

j=1

|Tij| δj max
j∈N(1,n)

{|xj (s− τij (s))|} . (20)

Let δ = max
i∈N(1,n)

{
n∑

j=1
|Tij| δj

}
and lk = max

i∈N(1,n)

{
n∑

j=1
ω

(k)
ij

}
. Then, it follows from (20) that

|xi (m)| ≤ am−Nk−1lk max
j∈N(1,n)

{|xj (Nk)|}+ δ
m−1∑

s=Nk+1

am−1−s max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}

Thus,

|xi (Nk+1)| ≤ aNk+1−Nk−1lk max
j∈N(1,n)

{|xj (Nk)|}+δ
Nk+1−1∑

s=Nk+1

aNk+1−1−s max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}.

By induction, we obtain that

|xi (Nk)| ≤ aNk−N0−k
k−1∏

j=0

lj max
j∈N(1,n)

{|xj (N0)|}

+ δ
k−1∏

j=1

lj

N1−1∑

s=N0+1

aN1−k−s max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}

+ δ
k−1∏

j=2

lj

N2−1∑

s=N1+1

aNk−k−s+1 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}+ · · ·

+ δlk−1

Nk−1−1∑

s=Nk−2+1

aNk−s−2 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}

+ δ
Nk−1∑

s=Nk−1+1

aNk−s−1 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}. (21)

Since

|xi (Nk)| ≤ aNk−N0−k
k−1∏

j=0

lj max
j∈N(1,n)

{|xj (N0)|}

+ δ
k−1∏

j=1

lj

N1−1∑

s=N0+1

aN1−k−s max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}

+ δ
k−1∏

j=2

lj

N2−1∑

s=N1+1

aNk−k−s+1 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}+ · · ·
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+ δlk−1

Nk−1−1∑

s=Nk−2+1

aNk−s−2 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}

+ δ
Nk−1∑

s=Nk−1+1

aNk−s−1 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}},

we have

|xi (Nk)| ≤ aNk−k
k−1∏

j=0

lj max
j∈N(1,n)

{|xj (0)|}

+ δ
k−1∏

j=0

lj

N0−1∑

s=0

aNk−k−s−1 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}

+ δ
k−1∏

j=1

lj

N1−1∑

s=N0+1

aN1−k−s max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}

+ δ
k−1∏

j=2

lj

N2−1∑

s=N1+1

aNk−k−s+1 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}+ · · ·

+ δ lk−1

Nk−1−1∑

s=Nk−2+1

aNk−s−2 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}

+ δ
Nk−1∑

s=Nk−1+1

aNk−s−1 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}. (22)

Thus, it follows from (21) and (22) that

|xi (m)| ≤ am−k−1
k∏

j=0

lj max
j∈N(1,n)

{|xj (0)|}

+ δ
k∏

j=0

lj

N0−1∑

s=0

am−k−s−2 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}

+ δ
k∏

j=1

lj

N1−1∑

s=N0+1

am−k−s−1 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}+ · · ·

+ δlk

Nk−1∑

s=Nk−1+1

am−s−2 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}

+ δ
m−1∑

s=Nk+1

am−1−s max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}. (23)

By (21) and (23), we obtain

|xi (m)| ≤ am max
j∈N(1,n)

{|xj (0)|}+ δ
N0−1∑

s=0

am−s−1 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}
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+ δ
N1−1∑

s=N0+1

am−s−1 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}+ · · ·

+ δ
Nk−1∑

s=Nk−1+1

am−s−1 max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}

+ δ
m−1∑

s=Nk+1

am−1−s max
t∈N(s−τ,s)

{ max
j∈N(1,n)

{|xj (t)|}}

= ηm,∀i ∈ N (1, n) ,m ∈ N (1) .

Let

ξm =





max
i∈N(1,n)

{|xi (m)|} ,m ∈ N (−τ, 0) ,

cm,m ∈ N (1) .

Then, the rest of the proof follows readily from similar arguments as those given for the proof

of Theorem 1. This completes the proof.

Corollary 1: Suppose that Assumption 1, Assumption 2 and the following conditions are

satisfied.

i) There exists a constant δj > 0 such that ∀t1, t2 ∈ R, the neuron activation function fj(m) in

(1) is bounded and satisfies the following Lipschitz condition

|fj (t1)− fj (t2)| ≤ δj |t1 − t2| , j ∈ N (1, n) ;

ii)

η + δ < 1,

where η = sup
k∈N(0)

{a, lk}, a = max
i∈N(1,n)

{ai}, δ = max
i∈N(1,n)

{
n∑

j=1
|Tij| δj

}
and lk = max

i∈N(1,n)

{
n∑

j=1
ω

(k)
ij

}
.

Then, the equilibrium point u∗i of (1) is globally exponentially stable with the convergence rate

λ, which is the smallest root in the interval (0, 1) of the following equation

λτ+1 − ηλτ − δ = 0.

Corollary 2: Suppose that Assumption 1, Assumption 2 and the following conditions are

satisfied.

i) There exists a constant δj > 0 such that ∀t1, t2 ∈ N (1), the neuron activation function fj(m)

in (1) is bounded and satisfies the following Lipschitz condition

|fj (t1)− fj (t2)| ≤ δj |t1 − t2| , j ∈ N (1, n);
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ii)

β <
1

2
,

where β = sup
k∈N(0)

{a, δ, lk}, a = max
i∈N(1,n)

{ai}, δ = max
i∈N(1,n)

{
n∑

j=1
|Tij| δj

}
and lk = max

i∈N(1,n)

{
n∑

j=1
ω

(k)
ij

}
.

Then, the equilibrium point u∗i of (1) is globally exponentially stable with the convergence rate

λ, which is the smallest root in the interval (0, 1) of the following equation

λτ+1 − ηλτ − δ = 0.

IV. NUMERICAL EXAMPLES

In this section, two numerical examples are presented to verify and illustrate the usefulness

of our main results.

Example 1 In this example, we consider a two-neuron discrete-time neural network with time

delays




x1 (m + 1) = 1
2
x1 (m) + 1

8
f1 (x1 (m− 1))− 1

4
f2 (x2 (m− 1)) ,

x2 (m + 1) = 1
3
x2 (m) + 1

8
f1 (x1 (m− 1)) + 1

3
f2 (x2 (m− 1)) ,

(m ∈ N (1))





x1 (m) = φ1 (m) ,

x2 (m) = φ2 (m) ,
(m ∈ N (−1, 0))

where f1 (t) = sin t, f2 (t) = t, φ1 (t) = t2, φ2 (t) = −t3. It is easy to verify that

|f1 (s)− f1 (t)| ≤ |s− t| , ∀s, t ∈ R,

|f2 (s)− f2 (t)| ≤ |s− t| , ∀s, t ∈ R,

max
i∈N(1,2)

{ai}+ max
i∈N(1,2)





2∑

j=1

|Tij| δj



 = 0.9583 < 1.

Thus, all the conditions of Theorem 1 are satisfied. Therefore, the trivial equilibrium point of

(2) is globally exponentially stable with the convergence rate λ = 0.9717.

Example 2 In this example, we consider a three-neuron impulsive discrete-time neural network

with time delays




x1 (m + 1) = 1
2
x1 (m) + 1

8
f1 (x1 (m− 2))− 1

4
f2 (x2 (m− 1)) + 1

16
f3 (x3 (m− 1)) + 1,

x2 (m + 1) = 1
3
x2 (m) + 1

4
f1 (x1 (m− 2)) + 1

8
f2 (x2 (m− 1)) + 2,

x3 (m + 1) = 1
4
x3 (m) + 1

16
f1 (x1 (m− 2))− 1

8
f2 (x2 (m− 1)) + 1

16
f3 (x3 (m− 1)) + 1,
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(m 6= 4k, m ∈ N (1) , k ∈ N (1))





∆x1 (m) = −2
3
x1 (m) ,

∆x2 (m) = −2
3
x2 (m) ,

∆x3 (m) = −2
3
x3 (m) ,

(m = 4k, m ∈ N (1) , k ∈ N (1))





x1 (m) = φ1 (m) ,

x2 (m) = φ2 (m) ,

x3 (m) = φ3 (m) ,

(m ∈ N (−2, 0))

where f1 (t) = f3 (t) = sin t, f2 (t) = t, φ1 (t) = φ2 (t) = φ3 (t) = −t3 + 2. Here, for

computational convenience, we assume that the neural network is only subject to linear impulsive

perturbations. It can be shown that the equilibrium point of the impulsive discrete-time neural

network (1) is

x∗ = (x∗1, x
2
2, x

∗
3)

T = (1.5786, 1.8355, 1.2322)T .

In addition, one can easily check that

|f1 (s)− f1 (t)| ≤ |s− t| , ∀s, t ∈ R,

|f2 (s)− f2 (t)| ≤ |s− t| , ∀s, t ∈ R,

|f3 (s)− f3 (t)| ≤ |s− t| , ∀s, t ∈ R,

k∑

j=0

ln lj − (k + 1) ln a = −0.4055 ≤ 0, k ∈ N (0) ,

max
i∈N(1,2)

{ai}+ max
i∈N(1,2)





2∑

j=1

|Tij| δj



 = 0.8750 < 1.

Thus, all the conditions of Theorem 2 are satisfied. Therefore, the equilibrium point of (1) is

globally exponentially stable with the convergence rate λ = 0.9319.

In conclusion, it is clear that all the state variables in both examples globally exponentially

converge to their equilibrium points.
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V. CONCLUSION

We have developed a set of computable sufficient conditions for global exponential stability

of discrete-time neural networks with time delays based on the Lyapunov stability theory and

a discrete-time Halanay-type inequality technique. Moreover, the obtained results were then

applied to derive the global exponential stability criteria and its convergence rate for impulsive

discrete-time neural networks with time delays. Finally, two numerical examples were given to

show the effectiveness of our results.
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