
Applied Mathematics and Computation 217 (2010) 882–892
Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc
A curvilinear method based on minimal-memory BFGS updates

M.S. Apostolopoulou a, D.G. Sotiropoulos a,*, C.A. Botsaris b

a University of Patras, Department of Mathematics, GR-265 04 Patras, Greece
b University of Central Greece, Department of Regional Economic Development, GR-321 00 Levadia, Greece
a r t i c l e i n f o

Keywords:
Large scale unconstrained optimization
Curvilinear search
Negative curvature direction
Eigenvalues
L-BFGS method
0096-3003/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.amc.2010.06.032

* Corresponding author.
E-mail addresses: msa@math.upatras.gr (M.S. Ap
a b s t r a c t

We present a new matrix-free method for the computation of negative curvature directions
based on the eigenstructure of minimal-memory BFGS matrices. We determine via simple
formulas the eigenvalues of these matrices and we compute the desirable eigenvectors by
explicit forms. Consequently, a negative curvature direction is computed in such a way that
avoids the storage and the factorization of any matrix. We propose a modification of the
L-BFGS method in which no information is kept from old iterations, so that memory
requirements are minimal. The proposed algorithm incorporates a curvilinear path and a
linesearch procedure, which combines two search directions; a memoryless quasi-Newton
direction and a direction of negative curvature. Results of numerical experiments for large
scale problems are also presented.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

We consider the following large scale unconstrained optimization problem
minff ðxÞjx 2 Rng; ð1:1Þ
where f : Rn ! R is continuously differentiable. Many algorithms have been proposed in the literature to solve such prob-
lems [16], while some of them attempt to use second-order information available in the Hessian matrix of f. This infor-
mation is introduced through the computation of a negative curvature direction. At a point x 2 Rn, the vector d 2 Rn is
a direction of negative curvature of the Hessian matrix at x if dTr2f(x)d < 0. This direction is associated with the normal-
ized eigenvector corresponding to the most negative eigenvalue of the Hessian. In the negative curvature directions, the
quadratic model of the objective function is unbounded below, offering a potential for a large reduction in the value of the
objective function.

One of the first proposals of using negative curvature directions is that of Fiacco and McCormick [6]. In 1977, McCormick
[13] showed how a modification of the Armijo’s rule [1] could be used to include cases where second derivative information
is used, in particular when the Hessian matrix is not positive semi-definite. Later, Moré and Sorensen in 1979 [14], and
Goldfarb in 1980 [8], proposed a similar approach along a curve of the form
C ¼ fxðaÞ : xðaÞ ¼ xþ /1ðaÞpþ /2ðaÞd; a P 0g; ð1:2Þ
with /1(0) = /2(0) = 0, combining two search directions; the direction p, which is a Newton-type direction, and the direction
d, the negative curvature direction. Moreover, in [14] an Armijo-type rule was used, to ensure convergence to a second-order
critical point, where the Hessian matrix is positive semi-definite. In [9] the alternative use of a negative curvature direction
and a Newton-type direction was proposed, within an appropriate linesearch procedure. In the work of Olivares et al. [17]
. All rights reserved.

ostolopoulou), dgs@math.upatras.gr (D.G. Sotiropoulos), botsaris@otenet.gr (C.A. Botsaris).

http://dx.doi.org/10.1016/j.amc.2010.06.032
mailto:msa@math.upatras.gr
mailto:dgs@math.upatras.gr
mailto:botsaris@otenet.gr
http://dx.doi.org/10.1016/j.amc.2010.06.032
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


M.S. Apostolopoulou et al. / Applied Mathematics and Computation 217 (2010) 882–892 883
the authors established criteria such that at each iteration, either a linesearch procedure using one direction (a Newton-type
or a negative curvature direction) or a curvilinear search combining both directions, is performed. Curvilinear paths and neg-
ative curvature directions are also used in constrained optimization [16,18,19].

The computation of negative curvature direction is equivalent with the computation of the eigenvector corresponding
to the most negative eigenvalue of the Hessian. In [14] the Bunch and Parlett factorization was used, while in [5] this
approach was embedded in a nonmonotone framework. In both cases, the computation of the negative curvature direc-
tion requires the factorization and the storage of a matrix, which is computationally expensive when the number of vari-
ables is large. In [11] the computation of the negative curvature direction was based on a Lanczos procedure. However,
the storage of a matrix is required and only a few Lanczos vectors are stored. Other works also use directions of negative
curvature produced by preconditioned conjugate gradients and Lanczos methods [9,12]. In these methods it is necessary
to repeat the recurrence in order to regenerate the Lanczos vectors whenever they are needed. More recently, iterative
methods have been proposed for computing negative curvature directions using planar conjugate gradient algorithms
[4].

Our interest is to avoid the factorization or the storage of a matrix, and to compute a suitable negative curvature direction
without using any iterative procedure, for large scale unconstrained optimization. To this end, we utilize the L-BFGS method
[15] for the computation of an approximate Hessian matrix, using information from the most previous iteration. This specific
memoryless BFGS update is providing us the ability to determine analytically the eigenvalues of the approximate Hessian
matrix B. Moreover, we are able to compute the eigenvector corresponding to the most negative eigenvalue of B explicitly.
Thus, the computation of the pair of search directions is obtained by performing a sequence of inner products and vector
summations.

The negative curvature direction produced by the minimal-memory BFGS matrices is used within a modified linesearch
procedure. We consider an algorithm that exploits the information contained in the eigenstructure of the approximate Hes-
sian. This information is taken into account by performing either a standard linesearch procedure (when B is positive defi-
nite), using only the Newton-type direction, or the curvilinear search proposed by Moré and Sorensen [14], combining both
directions (when B is indefinite).

The structure of the paper is as follows: in Section 2 we introduce some basic definitions and in Section 3 we study the
properties of minimal-memory BFGS matrices. In Section 4 we give in details the method to compute the descent directions,
while in Section 5 we describe the proposed algorithm. The results from the computational experiments are illustrated in
Section 6. Finally, in Section 7 we give some concluding remarks.

Notation. Throughout the paper k�k denotes the Euclidean norm, n the dimension of the problem and I the n � n identity
matrix. The gradient of f is denoted by g and the approximate Hessian by B. For a symmetric A 2 Rn�n, assume that
k1 6 � � � 6 kn are its eigenvalues sorted into non-decreasing order, and ui, i = 1, . . . ,n the corresponding eigenvectors. A matrix
A is indicated that is positive definite by A > 0 (semi-definite by A P 0).
2. Preliminaries

For the remainder of the paper we make the following assumptions.

Assumption 2.1. Let f : Rn ! R be continuously differentiable on an open set B and assume that for some x0 2 B, the level set
X ¼ fx 2 Rnjf ðxÞ 6 f ðx0Þg is a compact subset of B.
Assumption 2.2. Let Bk be the matrices produced by the memoryless BFGS update. There exists a positive constant M such that
kBkk 6M, for all k.

Under the Assumption 2.1, we can construct a local quadratic model for the objective function f from the corresponding
Taylor series expansion for all iterates xk 2X as
qkðpÞ ’ fk þ gT
k pþ 1

2
pT Bkp;
where Bk is a positive definite matrix. Hence, the quasi-Newton direction pk can be computed by the formula
pk ¼
�B�1

k gk; if Bk > 0;

�gk; otherwise;

(

while the negative curvature direction dk is related with the unit eigenvector uk that corresponds to the most negative eigen-
value of Bk and is obtained by the form
dk ¼
0; Bk > 0;

�sgnðuT
k gkÞuk; otherwise:

�

Both directions pk and dk must be descent directions.



884 M.S. Apostolopoulou et al. / Applied Mathematics and Computation 217 (2010) 882–892
Definition 2.3. A pair of directions (p,d) is called a descent pair at a point x where f(x) is twice differentiable, if
pTrf ðxÞ < 0; dTrf ðxÞ 6 0; and dTr2f ðxÞd ¼ 0;
when r2f(x) P 0, and
pTrf ðxÞ 6 0; dTrf ðxÞ 6 0; and Tr2f ðxÞd < 0;
otherwise.
From a more practical point of view, in a given iterate xk, the pair (pk,dk) is assumed to be a sufficient descent pair of direc-

tions if the directions {pk} and {dk} are bounded and satisfy the following conditions [8]:

Condition 2.4. gT
k pk ¼ 0 implies gk = 0 and pk = 0.
Condition 2.5. gT
k pk ! 0 implies gk ? 0 and pk ? 0.
Condition 2.6. dT
k Bkdk ! 0 implies min(k1,0) ? 0 and dk ? 0, where k1 is the smallest eigenvalue of Bk.

Conditions 2.4 and 2.5 are the standard ones for Newton-type directions. They ensure that the pk – 0 and gk – 0 are not
orthogonal and do not become nearly so too rapidly. Condition 2.6 ensures that dk contains information related to the small-
est eigenvalue of the approximate Hessian.

3. Properties of the approximate Hessian

As we mentioned before, we use the minimal-memory BFGS update for computing an approximate Hessian of f. The min-
imal-memory BFGS matrix is computed using the L-BFGS philosophy [15]. Given an initial matrix Bð0Þk , the L-BFGS method
updates Bk by means of the BFGS formula
Bkþ1 ¼ Bk �
BksksT

k Bk

sT
k Bksk

þ ykyT
k

sT
k yk

; ð3:1Þ
using information from the most recent iterations, which is included in a certain number of stored vector pairs {si,yi}, where
si = xi+1 � xi, and yi = gi+1 � gi. The minimal-memory BFGS update uses information only from the previous iteration, that is,
one update is performed to Bð0Þk , using the current vector pair {sk,yk}. In our study, we assume that the initial matrix B(0) can
be any multiple of the identity matrix, that is, Bð0Þkþ1 ¼ hkþ1I, where hkþ1 2 R n f0g. The resulting minimal-memory BFGS update
scheme takes the form
Bkþ1 ¼ hkþ1I � hkþ1
sksT

k

sT
k sk
þ ykyT

k

sT
k yk

; ð3:2Þ
while the inverse of Bk+1 is given by the following expression
B�1
kþ1 ¼

1
hkþ1

I � 1
hkþ1

yksT
k þ skyT

k

sT
k yk

þ 1þ yT
k yk

hkþ1sT
k yk

� �
sksT

k

sT
k yk

: ð3:3Þ
Taking into account that the determinant and the trace of BFGS matrices are given by the formulas (cf. [16])
detðBkþ1Þ ¼ detðBkÞ
sT

k yk

sT
k Bksk

and trðBkþ1Þ ¼ trðBkÞ �
kBkskk2

sT
k Bksk

þ kykk
2

sT
k yk

;

easily can be verified that the above relations become
detðBkþ1Þ ¼ hn�1
kþ1

sT
k yk

sT
k sk

; and trðBkþ1Þ ¼ ðn� 1Þhkþ1 þ
yT

k yk

sT
k yk

; ð3:4Þ
respectively, when Bk+1 is defined by relation (3.2).
Regarding to hk+1, a choice that has proved effective in practice is to set hkþ1 ¼ yT

k yk=sT
k yk [16, pp. 200], or alternatively one

can set hk+1 to be the Barzilai and Borwein spectral parameter sT
k yk=sT

k sk [2].

Theorem 3.1. Let the symmetric minimal-memory BFGS matrix defined in (3.2). Then, the characteristic polynomial of
Bkþ1 2 Rn�n has the general form
pðkÞ ¼ ðk� hkþ1Þn�2 k2 � hkþ1 þ
yT

k yk

sT
k yk

� �
kþ hkþ1

sT
k yk

sT
k sk

� �
: ð3:5Þ
Moreover, if the vectors sk and yk are linearly independent then the smallest eigenvalue of Bk+1 is distinct.



M.S. Apostolopoulou et al. / Applied Mathematics and Computation 217 (2010) 882–892 885
Proof. The initial matrix Bð0Þkþ1 ¼ hkþ1I is updated by the addition of two rank one matrices. Hence, Bk+1 has at least (n � 2)
eigenvalues equal hk+1, and at most two distinct eigenvalues, denoting them by ni and nj, respectively. Then, the characteristic
polynomial of Bk+1 can be expressed as follows:
pðkÞ ¼ ðk� hkþ1Þn�2½k2 � ðni þ njÞkþ ninj�: ð3:6Þ
Taking into account that
trðBkþ1Þ ¼ ðn� 2Þhkþ1 þ ni þ nj and detðBkþ1Þ ¼ hn�2
kþ1ninj; ð3:7Þ
combining relations (3.4) and (3.7) we obtain
ni þ nj ¼ hkþ1 þ ðyT
k ykÞ=ðsT

k ykÞ; and ninj ¼ hkþ1ðsT
k ykÞ=ðsT

k skÞ:
By substituting the above relations in (3.6), we obtain the general form of the characteristic polynomial (3.5).
It remains to show that when sk and yk are linearly independent, the smallest eigenvalue is distinct. First we consider the case

where Bk+1 > 0, then the matrix B ¼ hkþ1I � hkþ1sksT
k=sT

k sk besides the zero eigenvalue, has one more eigenvalue equals to hk+1 of
multiplicity (n � 1). By adding the term ykyT

k=sT
k yk on B and applying the interlacing theorem [20, pp. 94–98], we yield that
kn P hkþ1 P kn�1 P hkþ1 P � � �P k2 P hkþ1 P k1 P 0;
which imply that kn�1 = � � � = k2 = hk+1, and consequently,
kn P hkþ1 P k1: ð3:8Þ
Suppose now that Bk+1 is indefinite. It is clear, using the same arguments as before, that if hk+1 > 0, we yield
hkþ1 P k2 P k1; ð3:9Þ
otherwise, if hk+1 < 0, we yield relation (3.8). Clearly, from relations (3.9) and (3.8), we can conclude that if the matrix has two
distinct eigenvalues, then k1 is one of them. Suppose now that the vectors sk and yk are linearly independent and let / de-
notes the angle between them. We assume at the moment that the smallest eigenvalue k1 is multiple. Then, from relations
(3.8) and (3.9) we have that k1 = hk+1, which implies that either only one eigenvalue is distinct or no eigenvalue is distinct.
Combining relations (3.4) and (3.7), in the first case (only one distinct), we obtain
trðBkþ1Þ ¼ ðn� 1Þhkþ1 þ kn ¼ ðn� 1Þhkþ1 þ
yT

k yk

sT
k yk

and detðBkþ1Þ ¼ hn�1
kþ1kn ¼ hn�1

kþ1
sT

k yk

sT
k sk

;

while in the second case (no distinct eigenvalue) we have that
trðBkþ1Þ ¼ nhkþ1 ¼ ðn� 1Þhkþ1 þ
yT

k yk

sT
k yk

and detðBkþ1Þ ¼ hn
kþ1 ¼ hn�1

kþ1
sT

k yk

sT
k sk

:

Therefore, we yield that ðsT
k ykÞ

2 ¼ sT
k skyT

k yk or kskk2kykk2cos2/ = kskk2kykk2, which implies that the vectors sk and yk are collin-
ear. This contradicts to our hypothesis, and hence, if the vectors sk and yk are linearly independent then k1 is distinct. h

If the vectors sk and yk are collinear, i.e., yk ¼ jsk;j 2 R, then the characteristic polynomial of Bk+1 takes the form
p(k) = (k � hk+1)n�2[k2 � (hk+1 + j)k + hk+1 j] = (k � hk+1)n�1(k � j). Clearly, the eigenvalue equals hk+1 has multiplicity n � 1,
while the eigenvalue equals j is distinct. Furthermore, if the choice of hk+1 is the BB spectral parameter sT

k yk=sT
k sk, then

Bk+1 has one multiple eigenvalue equals hk+1 of multiplicity n.
For analyzing the eigenvectors corresponding to distinct eigenvalues, we take into account that the initial matrix Bð0Þkþ1 is

updated using the vectors sk and yk.

Lemma 3.2. Suppose that one update is performed to the symmetric matrix Bð0Þkþ1 ¼ hkþ1I, using the vector pair {sk,yk} by applying
the BFGS formula. Then, the eigenvectors corresponding to distinct eigenvalues of the updated matrix, are of the form
ukþ1ðkÞ ¼
ðksk � ykÞ

T yk

ðksk � ykÞ
T sk

sk � yk: ð3:10Þ
Proof. Since Bð0Þkþ1 is updated using the vector pair {sk,yk}, the corresponding eigenvectors must be of the form u = c1sk + c2yk,
where c1; c2 2 R. By substituting u into the eigenvalue equation Bk+1u = ku and taking into account the secant equation
Bk+1sk = yk, we obtain the equation: c1yk + c2Bk+1yk = kc1sk + kc2yk. Multiplying both sides with sT

k , we obtain
c1ðsT

k yk � ksT
k skÞ ¼ c2ðksT

k yk � yT
k ykÞ, and under the hypothesis that k is a distinct eigenvalue, equivalently, we have that

c1 ¼ �c2ðksT
k yk � yT

k ykÞ=ðksT
k sk � sT

k ykÞ. By setting c2 = �1, we obtain relation (3.10). h



886 M.S. Apostolopoulou et al. / Applied Mathematics and Computation 217 (2010) 882–892
4. Computation of the descent pair of directions

The descent pair of directions consists of the quasi-Newton direction p defined as
pkþ1 ¼
�B�1

kþ1gkþ1; Bkþ1 > 0;

�gkþ1; otherwise:

(
ð4:1Þ
and the direction of negative curvature d defined as
dkþ1 ¼
0; Bkþ1 > 0;

�sgnðuT
kþ1gkþ1Þukþ1; otherwise;

(
ð4:2Þ
where uk+1 is a normalized vector that corresponds to the most negative eigenvalue of Bk+1. In the sequel we compute the
search directions when the approximate Hessian is positive definite or indefinite.

4.1. The positive definite case

When Bk+1 is positive definite, the quasi-Newton direction is obtained using the inverse of the minimal-memory BFGS
matrix, defined in Eq. (3.3). Therefore, pk+1 = �Hk+1gk+1, or, equivalently
pkþ1 ¼ �
gkþ1

hkþ1
� 1þ yT

k yk

hkþ1sT
k yk

� �
sT

k gkþ1

sT
k yk

� yT
k gkþ1

hkþ1sT
k yk

� �
sk þ

sT
k gkþ1

hkþ1sT
k yk

yk: ð4:3Þ
In case where the vectors sk and yk are collinear, i.e., yk = jsk, then Bk+1 is of the form
Bkþ1 ¼ hkþ1I � ðhkþ1 � jÞ sksT
k

sT
k sk

; ð4:4Þ
while its inverse has the following form:
Hkþ1 ¼
1

hkþ1
I � 1

hkþ1
� 1

j

� �
sksT

k

sT
k sk

: ð4:5Þ
Thus, the quasi-Newton direction is computed by the formula
pkþ1 ¼ �
gkþ1

hkþ1
þ 1

hkþ1
� 1

j

� �
sT

k gkþ1

sT
k sk

sk: ð4:6Þ
4.2. The indefinite case

When Bk+1 is indefinite, we consider the following cases: (i) If the smallest eigenvalue of Bk+1 is distinct, then from Lemma
3.2 we know that the corresponding eigenvector is the normalized vector as given in Eq. (3.10). (ii) If the smallest eigenvalue
k1 of Bk+1 is multiple, then yk = jsk and hk+1 6 j. In this case, from Eq. (4.4) easily can be verified that
ukþ1 ¼ ð�sðnÞk =sð1Þk ;0; . . . ;0;1ÞT ð4:7Þ
is the eigenvector corresponding to k1, where sðiÞk denotes the ith component of sk. In addition, if hk+1 = j, then Bk+1 = hk+1I, and
uk+1 = e1 = (1,0, . . . ,0)T.

Obviously, the directions produced by the minimal-memory BFGS update are descent. More analytically, when Bk > 0,
then pk is defined as pk ¼ �B�1

k gk and dk = 0. Thus relations
pT
k gk ¼ �gkB�1

k gk < 0; dT
k gk ¼ 0; and dT

k Bkdk ¼ 0;
hold. When Bk is indefinite, then pk = �gk and dk ¼ �sgnðuT
k gkÞuk, where uk is the normalized eigenvector defined in (3.10) or

(4.7). Therefore, we have that
gT
k pk ¼ �kgkk

2
< 0; dT

k gk ¼ �sgnðuT
k gkÞuT

k gk 6 0; and dT
k Bkdk ¼ k1kukk2 ¼ k1 < 0:
Moreover, pk and dk satisfy Conditions 2.4–2.6, since pk is a quasi-Newton related direction and dk is associated with the unit
eigenvector corresponding to the most negative eigenvalue of Bk [8].

5. The algorithm

We consider an iterative scheme of the form
xkþ1 ¼
xk þ akpk; when Bk > 0;

xk þ a2
k pk þ akdk; otherwise;

�
ð5:1Þ



M.S. Apostolopoulou et al. / Applied Mathematics and Computation 217 (2010) 882–892 887
where pk is the quasi-Newton direction, dk is the negative curvature direction and ak is a step size. When Bk > 0, the iterative
scheme follows a linesearch procedure, otherwise it searches along a curve proposed by Morè and Sorensen [14]. The follow-
ing algorithm describes a curvilinear search based on an Armijo procedure.

Algorithm 5.1. Curvilinear Memoryless BFGS

Step 1: Given x0, m = 1, 0 < r1 < r2 < 1, 0 < l < 1, 0 < g < 1 and �? 0; set k = 0 and ‘ = 0; compute g0;
Step 2: If kgkk 6 � stop; else compute the eigenvalues ki of Bk;
Step 3: If k1 > 0 then
(a) compute pk; set dk = 0 and a = 1;
(b) Find ak 2 [r1a,r2 a]such that

f ðxk þ apkÞ � f ðxkÞ 6 lagT
k pk; ð5:2Þ
and set ak = a.

Else

(c) set pk = �gk and compute uk; set dk ¼ � sgnðuT
k gkÞuk and ak = 1;

(d) Choose the smallest non-negative integer i such that

f ðxk þ a2i
k pk þ ai

kdkÞ � f ðxkÞ 6 ga2i
k gT

k pk þ
1
2

dT
k Bkdk

� �
: ð5:3Þ
Step 4: Set
xkþ1 ¼
xk þ akpk; if k1 P 0;

xk þ a2i
k pk þ ai

kdk; otherwise:

�
ð5:4Þ
Step 5: Compute gk+1, sk = xk+1 � xk and yk = gk+1 � gk; if
jsT
k ykj > 10�6kskkkykk;
save the vector pair {sk,yk} and set ‘ = ‘ + 1; if ‘ > m discard the vector pair {s‘�m,y‘�m} from storage;
Step 6: Set k = k + 1 and go to step 2;

Since Bk is allowed to be indefinite, the condition sT
k yk > 0 is not always hold. For being Bk well defined we skip the update if

sT
k yk

�� �� 6 10�6kskkkykk. The eigenvalues in Step 2 of Algorithm 5.1 can be computed by Eq. (3.5). In Step 3(a), the direction pk is
obtained by Eq. (4.3). In Step 3(c), uk is obtained using Lemma 3.2. If the condition sT

k yk

�� ��=kskkkykk 6 1þ �, where �? 0+, is sat-
isfied, then the vectors are collinear. In this case, if hk+1 > j, then uk = sk/kskk, while if hk+1 6 j, then uk is computed by Eq. (4.7).

Given the descent pair (pk,dk) produced by the memoryless BFGS matrix, we want to produce an a > 0 such that either
f(x + ap) < f(x) when B > 0, or f(x + a2p + ad) < f(x) otherwise. The following lemma states that there exists an �a > 0 such that
f(x + a2p + ad) < f(x), a 2 ð0; �a�.

Lemma 5.2. [14]Let / : R! R be twice continuously differentiable on an open interval I which contains the origin, with /
(a) = f(x + a2p + ad). Assume that c 2 (0,1). Then there is an �a > 0 in I such that
/ðaÞ 6 /ð0Þ þ c /0ð0Þaþ 1
2

/00ð0Þa2
� �
for all a 2 ½0; �a� provided that either /0(0) < 0, or /0(0) = 0 and /00(0) < 0.
Lemma 5.3. Let f and Bk satisfy Assumptions 2.1 and 2.2 respectively, and assume that (pk,dk) is a descent pair of directions pro-
duced by the minimal-memory BFGS matrix and Algorithm 5.1. Then there exists an ak > 0 such that (5.2) or (5.3) is satisfied.
Proof. We consider the following cases:

(i) Bk is positive definite. The pair of directions is pk ¼ �B�1
k gk and dk = 0 and the linesearch procedure must satisfy (5.2). If

ak = 1 then clearly (5.2) is satisfied. Suppose that inequality (5.2) were never satisfied. Then there exists a sequence aj

converging to 0 as j ?1 such that f ðxk þ ajpkÞ � f ðxkÞP lajgT
k pk. By the mean value theorem there exists d 2 (0,1)

such that
ajgðxk þ dajpkÞ
T pk > lajgT

k pk: ð5:5Þ
Since Bk is positive definite and kBkk 6M for all k, we have that
pT
k Bkpk 6 Mkpk2

: ð5:6Þ



888 M.S. Apostolopoulou et al. / Applied Mathematics and Computation 217 (2010) 882–892
Combining (5.6) and (5.5) we have that
MðajkpkkÞ
2 P aj½gðxk þ dajpkÞ � gðxkÞ�T pk > ðl� 1ÞajgT

k pk;
which implies the following inequality:
ðl� 1ÞgT
k pk

Mkpkk
2 6 aj: ð5:7Þ
For j ?1, relation (5.7) yields ðl� 1ÞgT
k pk 6 0 contradicting the fact that l 2 (0,1) and gT

k pk < 0.
(ii) Bk+1 is indefinite. Then pk ¼ �gk; dk ¼ �sgnðuT

k gkÞuk, and the curvilinear search must satisfy (5.3). By letting
/kðakÞ ¼ f xk þ a2

k pk þ akdk
� 	

we have that /0kð0Þ ¼ gT
k dk 6 0 and /00kð0Þ ¼ gT

k pk þ dT
k Bkdk < 0. From Lemma 5.2 there

exists ak > 0 such that (5.3) holds. Therefore, there exists ak > 0 such that either (5.2) or (5.3) hold. h
Theorem 5.4. Let f and Bk satisfy Assumptions 2.1 and 2.2 respectively, and suppose that {kpkk} and {kdkk} are bounded. Let {xk}
be the sequence of points produced by the Algorithm 5.1. Then
lim
k!1

gk ¼ 0 and lim
k!1

dT
k Bkdk ¼ 0: ð5:8Þ
Proof. Since X is compact, the sequence of iterates {xk} admits at least a limit point which belongs to X. Let Kp and Kpd be
index sets of two subsequences of iterates converging to a limit point such that

(i) for all k 2 Kp
f ðxk þ akpkÞ � f ðxkÞ 6 lakgT
k pk
holds, and
(ii) for all k 2 Kpd,
f ðxk þ a2i
k pk þ ai

kdkÞ � f ðxkÞ 6 ga2i
k gT

k pk þ
1
2

dT
k Bkdk

� �
holds. The index sets cannot be both empty.

First suppose that the index set Kp is not empty. This index set is related with the subsequence of iterates fxKpg for which
the matrices BKp are positive definite. Thus, relation (5.6) holds.

From (5.7) and (5.2) we obtain
f ðxk þ akpkÞ 6 f ðxkÞ �
lð1� lÞ

M
ðgT

k pkÞ
2

kpkk
2 ; k 2 Kp:
If #k is the angle between pk and �gk, the above relation can be written as
f ðxk þ akpkÞ 6 f ðxkÞ �
lð1� lÞ

M
cos2 #kkgkk

2
: ð5:9Þ
Since sk ¼ �akB�1
k gk, and Bksk = hksk, we have that
cos#k ¼ �
gT

k pk

kgkkpkk
¼ sT

k Bksk

kskkkBkskk
¼ 1:
Thus, relation (5.9) becomes
f ðxk þ akpkÞ 6 f ðxkÞ �
lð1� lÞ

M
kgkk

2
:

From the assumption of the theorem the sequence {fk}, k 2 Kp is bounded below and {fk+1 � fk} converges to zero, which im-
plies limk?1kgkk = 0. Moreover, dk = 0 for all k 2 Kp, and obviously limk!1dT

k Bkdk ¼ 0.
Suppose now that the index set Kpd, which related with the subsequence of iterates xKpd

for which the matrices BKpd
are

indefinite, is not empty. If ik is the smallest non-negative integer such that xkþ1 ¼ xk þ a2ik pk þ aik dk 2 X and (5.3) hold, it
follows from (5.3) that
jf ðxkþ1Þ � f ðxkÞjP ca2ik gT
k pk þ

1
2

dT
k Bkdk

����
����
for all k 2 Kpd. Since {fk+1 � fk} ? 0, k 2 Kpd, we have that
a2ik gT
k pk þ

1
2

dT
k Bkdk

����
����! 0; k!1; k 2 Kpd:



M.S. Apostolopoulou et al. / Applied Mathematics and Computation 217 (2010) 882–892 889
Therefore, taking into account that gT
k pk ¼ �kgkk

2, either
1 Ava
lim
k!1

gk ¼ 0 and lim
k!1

dT
k Bkdk ¼ 0; k 2 Kpd;
or aik ! 0 as k ?1, k 2 Kpd, that is limk?1ik =1. Suppose that aik
k ! 0. Then by the definition of ik we have
f ðxk þ a2ik pk þ aik dkÞ > f ðxkÞ þ ca2ik gT
k pk þ

1
2

dT
k Bkdk

� �
: ð5:10Þ
Expanding the left-hand side of (5.10) using Taylor’s theorem we have
a2ik gT
k pk þ aik gT

k dk þ
1
2

a2ik pk þ aik dk

� 	T
Bk a2ik pk þ aik dk

� 	
þ oða2ik Þ > ca2ik gT

k pk þ
1
2

dT
k Bkdk

� �
:

Using the fact that gT
k dk 6 0 and accumulating all terms of order higher than Oða2ik Þ into the oða2ik Þ we have
oða2ik Þ > �ð1� cÞa2ik gT
k pk þ

1
2

dT
k Bkdk

� �
: ð5:11Þ
Since
lim
k!1

oða2ik Þ
ð1� cÞa2ik

¼ 0; �gT
k pk P 0 and � dT

k Bkdk P 0; k 2 Kpd; ð5:12Þ
with gT
k pk ¼ �kgkk

2, the conclusion follows from (5.11) and (5.12).
Hence, since Kp

S
Kpd – ;, every limit point of the sequence satisfies (5.8). h
6. Numerical results

In order to evaluate the behavior of our algorithm, we have implemented the curvilinear memoryless BFGS Algorithm
5.1, and tested it on problems from the CUTEr collection proposed by Gould et al. [10]. The problems used in the numerical
experiments are nonlinear unconstrained problems with a number of variables which ranges between 999 and 100,000,
having continuous second derivatives, and bounded below. As a total, the selected test is composed by 58 problems (ARW-
HEAD, BROYDN7D, BRYBND, CHAINWOO, COSINE, CRAGGLVY, DIXMAANA, DIXMAANB, DIXMAANC, DIXMAAND, DIXMAANE, DIX-
MAANF, DIXMAANG, DIXMAANH, DIXMAANI, DIXMAANJ, DIXMAANK, DIXMAANL, DIXON3DQ, DQDRTIC, DQRTIC, EDENSCH,
ENGVAL1, EXTROSNB, FLETCBV2, FLETCBV3, FLETCHBV, FLETCHCR, FMINSRF2, FMINSURF, FREUROTH, GENHUMPS, GENROSE, IN-
DEF, LIARWHD, MOREBV, MSQRTALS, MSQRTBLS, NONCVXU2, NONCVXUN, NONDIA, NONDQUAR, PENALTY1, POWELLSG, POWER,
QUARTC, SCHMVETT, SPARSINE, SPARSQUR, SPMSRTLS, SROSENBR, TESTQUAD, TOINTGSS, TQUARTIC, TRIDIA, VARDIM, VAREIGVL,
WOODS). For each test function we have considered 3 numerical experiments with number of variables 103, 104, and 105. In
all cases, we have used the initial points provided by the CUTEr environment. All the experiments were run on an Pentium
1.86 GHz personal computer, 2 GB of RAM memory and Linux operating system. The proposed algorithm, namely CMBFGS,1

was coded in FORTRAN 90 and the compiler option ‘‘ -O” was adopted. In our implementation we have used the settings l =
g = 10�4.

We have compared our method with the line search L-BFGS method [15], namely LBFGS since our algorithm can be
viewed as a modification of the memoryless BFGS method. The L-BFGS code was obtained from Jorge Nocedal’s web page,
and one vector pair was used for the memory. For both methods the scalar parameter h was defined as sT

k yk=yT
k yk. The ter-

mination criterion was kgkk 6 10�5. We consider as failure all the runs which the convergence criterion was not fulfilled
within a maximum number of iterations (maxiter = 10,000).

Table 1 presents a summary of the total CPU time (in seconds) needed for each one of the algorithms, counted only in the
successfully solved problems. We can observe that, even if the CMBFGS algorithm solved more problems than the LBFGS

algorithm, the total CPU time is similar for both algorithms. Additionally, in Table 1 is also summarized the number of prob-
lems that CMBFGS and LBFGS algorithms fail to solve, respectively. In the smallest dimension (n = 1000), both algorithms
failed to solve the problems FLETCBV3, FLETCHBV, INDEF, NONCVXUN. In addition, the LBFGS algorithm fail to solve the prob-
lem FREUROTH. For n = 10,000 the 15 problems that the CMBFGS failed to solve are: ARWHEAD, CHAINWOO, CRAGGLVY, FLE-
TCBV3, FLETCHBV, FLETCHCR, FREUROTH, GENHUMPS, GENROSE, INDEF, NONCVXU2, NONCVXUN, SPARSINE, TESTQUAD,
VARDIM; the 16 failures of the LBFGS algorithm are the problems ARWHEAD, BROYDN7D, CHAINWOO, CRAGGLVY, ENGVAL1,
FLETCBV3, FLETCHBV, FLETCHCR, FREUROTH, GENROSE, INDEF, NONCVXU2, NONCVXUN, SPARSINE, TESTQUAD, VARDIM. Finally
in the largest dimension (n = 100,000) both algorithms failed to solve the 17 problems BROYDN7D, CHAINWOO, CRAGGLVY,
ENGVAL1, FLETCBV3, FLETCHBV, FLETCHCR, FREUROTH, GENHUMPS, GENROSE, INDEF, NONCVXU2, NONCVXUN, SPARSINE, TEST-
QUAD, TRIDIA, VARDIM. The LBFGS algorithm also failed to solve the problems EDENSCH, PENALTY1. Table 2 shows the total
number of the computed negative curvature directions in the CMBFGS algorithm, excluding those problems where the algo-
rithm failed to solve.
ilable from http://www.math.upatras.gr/�msa/.

http://www.math.upatras.gr/~msa/
http://www.math.upatras.gr/~msa/


Table 2
Total number of computed negative curvature directions in successfully
solved problems.

Dimension Eigenvectors

n = 1,000 110
n = 10,000 24
n = 1,000,000 24

Total number of computed eigenvectors: 158

Fig. 1. Performance profiles of CMBFGS and LBFGS, in 1000 dimensions.

Table 1
Total CPU time on successfully solved problems and total failures in all dimensions.

CPU Failures

CMBFGS LBFGS CMBFGS LBFGS

n = 1000 29.58 26.77 4 5
n = 10,000 70.36 85.94 15 16
n = 100,000 570.71 510.99 17 19

Summary 670.65 623.70 26 30

890 M.S. Apostolopoulou et al. / Applied Mathematics and Computation 217 (2010) 882–892
We have used the performance profile proposed by Dolan and Moré [3] to display the performance of each implementa-
tion on the set of test problems, in terms of function and gradient evaluations. The performance profile plots the fraction P of
problems for which any given method is within a factor s of the best time. The left axis of the plot shows the percentage of
the problems for which a method is the fastest (efficiency). The right side of the plot gives the percentage of the problems
that were successfully solved by each of the methods (robustness). We have used the Libopt2 environment [7] for measuring
the efficiency and the robustness of our algorithm in terms of function and gradient evaluations. The Libopt environment is,
among others, an excellent set of tools that can be used for comparing the results obtained by solvers on a specified set of prob-
lems, and profiling them. It has been written in Perl and uses Unix/Linux operating system.

Fig. 1 presents the performance profiles for problems with 1000 variables. Figs. 1(a) and (b) show the results where the
function and gradient evaluations are used as the performance metric, respectively. In Fig. 1(a) we can observe that both
algorithms perform similarly, with CMBFGS algorithm exhibits a slight improvement, in terms of function evaluations.
Fig. 1(b) reports that, the proposed curvilinear search algorithm is much more efficient than the classical line search algo-
rithm, in terms of gradient evaluations.

Similar observations can be made by Figs. 2 and 3, that illustrate the performance comparisons for n = 10,000 and
n = 100,000, respectively. More analytically, both Figs. 2(a) and 3(a) indicate that, in terms of function evaluations, CMBFGS
and LBFGS have almost identical performance. Figs. 2(b) and 3(b) presents the numerical results in terms of gradient eval-
uations. In both Figures, CMBFGS achieved the top performance, in terms of both efficiency and robustness.
2 Available from http://www-rocq.inria.fr/�gilbert/modulopt/libopt/.

http://www-rocq.inria.fr/~gilbert/modulopt/libopt/
http://www-rocq.inria.fr/~gilbert/modulopt/libopt/


Fig. 2. Performance profiles of CMBFGS and LBFGS, in 10,000 dimensions.

Fig. 3. Performance profiles of CMBFGS and LBFGS, in 100,000 dimensions.

M.S. Apostolopoulou et al. / Applied Mathematics and Computation 217 (2010) 882–892 891
The best overall performance relative to both function and gradient metric, was obtained by CMBFGS, especially in
terms of gradient evaluations. It turns out that the main advantage of the proposed method regarding the use of the infor-
mation gained by the minimal-memory BFGS matrices, is the efficiency for solving large scale unconstrained optimization
problems.

7. Conclusions

In this work, we have proposed an algorithmic model based on a modification of the minimal-memory BFGS method for
solving large scale unconstrained optimization problems, that incorporates a curvilinear and a linesearch procedure. This
model exploits the curvature information provided by the minimal-memory BFGS matrices using a pair of search directions,
a memoryless quasi-Newton direction and a direction of negative curvature. The proposed method for the computation of
the negative curvature direction is accomplished avoiding any storage and matrix factorizations. Hence, the amount of mem-
ory needed for computing both the smallest eigenvalue and corresponding eigenvector is negligible, providing that very
large problems can be solved efficiently.

Acknowledgements

The authors thank the anonymous referees for their valuable comments and suggestions.



892 M.S. Apostolopoulou et al. / Applied Mathematics and Computation 217 (2010) 882–892
References

[1] L. Armijo, Minimization of functions having lipschitz continous first partial derivatives, Pac. J. Math. 16 (1) (1966) 1–3.
[2] J. Barzilai, J.M. Borwein, Two point step size gradient method, IMA J. Numer. Anal. 8 (1988) 141–148.
[3] E. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002) 201–213.
[4] G. Fasano, M. Roma, Iterative computation of negative curvature directions in large scale optimization, Comput. Optim. Appl. 38 (1) (2007) 81–104.
[5] M.C. Ferris, S. Lucidi, M. Roma, Nonmonotone curvilinear line search methods for unconstrained optimization, Comput. Optim. Appl. 6 (1996) 117–136.
[6] A.V. Fiacco, G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley, New York, 1968.
[7] J.C. Gilbert, X. Jonsson, LIBOPT – an environment for testing solvers on heterogeneous collections of problems. The manual, version 2.1. INRIA Technical

Report, RT-331, 2009.
[8] D. Goldfarb, Curvilinear path steplength algorithms for minimization which use directions of negative curvature, Math. Program. 18 (1980) 31–40.
[9] N. Gould, S. Lucidi, M. Roma, Ph.L. Toint, Exploiting negative curvature directions in linesearch methods for unconstrained optimization, Optim.

Method Softw. 14 (2000) 75–98.
[10] N.I.M. Gould, D. Orban, Ph.L. Toint, CUTEr and SifDec: a constrained and unconstrained testing enviroment, revisited, ACM Trans. Math. Softw. 29 (4)

(2003) 373–394.
[11] S. Lucidi, F. Rochetich, M. Roma, Curvilinear stabilization techniques for truncated Newton methods in large scale unconstrained optimization, SIAM J.

Optim. 8 (4) (1998) 916–939.
[12] S. Lucidi, M. Roma, Numerical experiences with new truncated newton methods in large scale unconstrained optimization, Comput. Optim. Appl. 7

(1997) 71–87.
[13] G.P. McCormick, A modification of Armijo’s step-size rule for negative curvature, Math. Program. 13 (1977) 111–115.
[14] J. Moré, D. Sorensen, On the use of directions of negative curvature in a modified Newton method, Math. Program. 16 (1979) 1–20.
[15] J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comput. 35 (151) (1980) 773–782.
[16] J. Nocedal, S.J. Wright, Numerical Optimization, Springer, New York, 1999.
[17] A. Olivares, J.M. Moguerza, F.J. Prieto, Nonconvex optimization using negative curvature within a modified linesearch, Eur. J. Oper. Res. 189 (3) (2008)

706–722.
[18] C-j. Wang, Dogleg paths and trust region methods with back tracking technique for unconstrained optimization, Appl. Math. Comput. 177 (1) (2006)

159–169.
[19] Y. Wang, D. Zhu, An affine scaling optimal path method with interior backtracking curvilinear technique for linear constrained optimization, Appl.

Math. Comput. 207 (1) (2009) 178–196.
[20] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, London, 1965.


	A curvilinear method based on minimal-memory BFGS updates
	Introduction
	Preliminaries
	Properties of the approximate Hessian
	Computation of the descent pair of directions
	The positive definite case
	The indefinite case

	The algorithm
	Numerical results
	Conclusions
	Acknowledgements
	References


