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Introduction

A derivative product is financial instrument whose payoff is based
on other underlying assets such as stocks.

Pricing it is equivalent to computing its expected payoff under a
suitable probability measure.

Most derivatives have no analytical formulas.

So they must be priced by numerical methods like the lattice model.
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Introduction

However, the nonlinearity error may cause the pricing results to
converge slowly.

It may even cause the pricing results to oscillate significantly.1

The goals are numerical accuracy and speed.

1Figlewski and Gao (1999).
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Models

Lognormal diffusion process has been widely used to model the
underlying asset’s price dynamics.2

Unfortunately, the lognormal diffusion process is incapable of
capturing empirical stock price behaviors.3

Many alternative processes, such as GARCH process, jump-diffusion
process, have been proposed.

2Black and Scholes (1973).
3Hosking, Bonti, and Siegel (2000).
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Related Work

Amin (1993)

He approximates the jump-diffusion process by a multinomial lattice.
Huge numbers of branches at each node make the lattice inefficient.

Hilliard and Schwartz (2005)

They match the first local moments of the lognormal jumps.
Their lattice lacks the flexibility to suit derivatives’ specifications.
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Main Results

This talk proposes an efficient lattice model for the jump-diffusion
process.

The time complexity of our lattice is O(n2.5).

Our lattice is adjusted to suit the derivatives’ specification so that
the price oscillation problem can be significantly suppressed.
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Jump-Diffusion Process

Define St as the stock price at time t.

Merton’s jump-diffusion model assumes that the stock price process
can be expressed as

St = S0e
(r−λk̄−0.5σ2)t+σz(t)U(n(t))). (1)

z(t) denotes a standard Brownian motion.
r denotes the risk-free rate.
σ denotes the volatility of the diffusion component of the stock
price process.
U(n(t)) =

∏n(t)
i=0 (1 + ki ) and k0 = 0.
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Jump-Diffusion Process

Jump events are governed by the Poisson process n(t) with jump
intensity λ.

The random jump magnitude ki (i > 0) follows the equation:

ln (1 + ki ) ∼ N (γ, δ) ,

where E (ki ) ≡ k̄ = eγ+0.5δ2 − 1.
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Jump-Diffusion Process

Hilliard and Schwartz decompose S0-log-price of St into the diffusion
component and the jump component by rewriting Eq. (1) as follows:

Vt ≡ ln

(
St

S0

)
= Xt + Yt ,

The diffusion component

Xt ≡
(
r − λk̄ − 0.5σ2

)
t + σz(t)

is a Brownian motion.
The jump component

Yt ≡
n(t)∑
i=0

ln (1 + ki )

is normal under Poisson compounding.
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Financial Background

An option is a financial instrument.

It represents a right to buy the stock for a price (the exercise price
X ) at the maturity date T .

Options are essential to speculation and the management of
financial risk.4

The payoff of a European-style vanilla option at the maturity date
T is max(ST − X , 0).

The payoff of an American-style vanilla option at time t
(0 ≤ t ≤ T ) is St − X .

4Hull (2002).
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Financial Background

A barrier option is similar to a vanilla option.

But the payoff of a barrier option depends on whether the
underlying stock’s price path ever touches the barrier(s).

Such options are very popular in the financial market.
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CRR Lattice for the Diffusion Part

The size of one time step is
∆t = T/n.

u, d ,Pu,Pd :

Match the mean and
variance of the stock
return.
ud = 1.
Pu+Pd=1.

uP

dP
0S

0S u

0S d

2
0S u

0S

2
0S d

0S u

0S d

3
0S u

3
0S d
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Hilliard and Schwartz’s Lattice

Diffusion part (Xt)

Match mean and variance of
X∆t .
Obtain Pu and Pd .

Jump part (Yt)

Match the first 2m local
moments of Y∆t .
Obtain qj

(j = 0,±1,±2, . . . ,±m).

1uP q

0uP q

1uP q−
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Hilliard and Schwartz’s Lattice

The stock price of the node at time step i is SVi∆t
0 .

Motivated by the decomposition in Eq. (11), V(i+1)∆t can be
represented by

V(i+1)∆t = Vi∆t + cσ
√

∆t + jh, j = 0,±1,±2, . . . ,±m.

c ∈ {−1, 1} denotes the upward or the downward movement of the
stock price driven by the diffusion component.
j denotes the number of positions above or below the node
Vi∆t + cσ

√
∆t .

The magnitude of the basic jump unit is set to h =
√
γ2 + δ2 .

The node count of the lattice is O(n3).
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Hilliard and Schwartz’s Lattice

Define F (Vi∆t , i) as the
option value (stock price is
S0e

Vi∆t ).

European-style options

F (Vi∆t , i) =

e−r∆t
m∑

j=−m

F
(
Vi∆t + σ

√
∆t + jh, (i + 1) ∆t

)
Puqj +

e−r∆t
m∑

j=−m

F
(
Vi∆t − σ

√
∆t + jh, (i + 1) ∆t

)
Pdqj .

( , ( 1) )i tF V t i tσΔ + Δ + Δ

( , ( 1) )i tF V t h i tσΔ + Δ + + Δ

( , ( 1) )i tF V t h i tσΔ + Δ − + Δ

( 2 , ( 1) )i tF V t h i tσΔ − Δ + + Δ

( , ( 1) )i tF V t i tσΔ − Δ + Δ

( , ( 1) )i tF V t h i tσΔ − Δ − + Δ
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Our Lattice

Diffusion part (Xt)

Follow a CRR structure.
Follow a trinomial structure.

Jump part (Yt)

Match the first 2m local
moments of Y∆t .
Obtain qj

(j = 0,±1,±2, . . . ,±m).

1uP q

0uP q

1uP q−
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Price Oscillation Problem

Price oscillation problem is mainly due to the nonlinearity error.

Introduced by the nonlinearity of the option value function.

The solution of the nonlinearity error:

Making price level of the lattice coincide with the location where
the option value function is highly nonlinear.
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Trinomial Structure
'tΔ

tΔ tΔ

t 't t+ Δ

),t tβ σ σ⎡∈ − Δ Δ⎣

β

α

γ

ˆ 2 tμ σ− Δ

ˆ 2 tμ σ+ Δ

μ̂
μ
0

The branching probabilities for the node X

β ≡ µ̂− µ,

α ≡ µ̂+ 2σ
√

∆t − µ = β + 2σ
√

∆t,

γ ≡ µ̂− 2σ
√

∆t − µ = β − 2σ
√

∆t,

µ̂ ≡ ln (s(B)/s(X )).
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Trinomial Structure

'tΔ

tΔ tΔ

uP

mP

dP

t 't t+ Δ

β

α

γ

ˆ 2 tμ σ− Δ

ˆ 2 tμ σ+ Δ

μ̂
μ
0

The branching probabilities for the node X

Puα + Pmβ + Pdγ = 0,

Pu(α)2 + Pm(β)2 + Pd(γ)2 = Var,

Pu + Pm + Pd = 1.
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Trinomial Structure
'tΔ

tΔ tΔ

uP

mP

dP

t 't t+ Δ

β

α

γ

ˆ 2 tμ σ− Δ

ˆ 2 tμ σ+ Δ

μ̂
μ
0

Theorem 1

Given a node X at time t and a CRR lattice with the length of each time
step equal to ∆t beginning at time t + ∆t ′, there is a valid trinomial
structure from the node X whose s(X )-log-price of the central node B
lies in the interval [µ− σ

√
∆t, µ+ σ

√
∆t ). Furthermore, the valid

branching probabilities can be found by matching the mean and variance
of the s(X )-log-price of St+∆t′ .
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Adjusting the Diffusion Part of the Lattice

Select ∆t to make h′−l′

2σ
√

∆t
be an integer.

∆t ′ = T −
(⌊

T
∆t

⌋
− 1
)

∆t.
L

' 2l tσ+ Δ

' 8l tσ+ Δ

'l

' 2l tσ− Δ

' 4l tσ+ Δ

' 6 'l t hσ+ Δ =

uP

mP

dP

T'tΔ0

H

tΔ

24 / 34

An Efficient and Accurate Lattice for Pricing Derivatives under a Jump-Diffusion Process



Introduction Models and Definitions Preliminaries Lattice Construction Numerical Results Conclusion

Adjusting the Diffusion Part of the Lattice

Lay out the grid from
barrier L upward.

Automatically, barrier H
coincides with one level of
nodes.

Obtain Pu, Pm, Pd by
Theorem 1 (p. 22).

L

' 2l tσ+ Δ

' 8l tσ+ Δ

'l

' 2l tσ− Δ

' 4l tσ+ Δ

' 6 'l t hσ+ Δ =

uP

mP

dP

T'tΔ0

H

tΔ
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Dealing with Jump Nodes

Two phases: the
diffusion phase and
the jump phase.

The node count of
our lattice is O(n2.5).

1−� � 1+�

1q

1q−

uP

dP

0q

( )d � ( 1)d +�
(2 1) ( )m d+ � (2 1) ( 1)m d+ +�
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Complexity Analysis

m h

} 2 tμ β σ+ ≤ Δ

} 2 tσ Δ

} tσ Δ

1−� � 1+�

Node X is the highest jump
node at time step `.

Node d is the highest
diffusion node at time step
`.

The distance between node
A and Y is < mh + 3σ

√
∆t.

At each time step, the
number of extra diffusion
nodes is at most
2
⌈

mh+3σ
√

∆t
2σ
√

∆t

⌉
(such as

nodes A, B, C on the left).
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Complexity Analysis

Define d(`) as the number of diffusion nodes at time step `.

d(`) satisfies the following recurrence relation:

d(`+ 1) = d(`) + 2

⌈
mh

2σ
√

T/n
+ 1.5

⌉
+ 1,

=
...

= d(1) + 2× (`)

⌈
mh

2σ
√

T/n
+ 1.5

⌉
+ `,

= O(n1.5),

where d(1) = 2, d(0) = 1, and ` ≤ n.

Consequently, the node count of the whole lattice is
(2m + 1)

∑n
`=0 d(`) = O(n2.5).
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Time Complexity
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Figure: time complexity.
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Vanilla Options

European puts
Strike Merton Our Model H&S Amin

30 2.172 2.194 2.189 1.837
35 3.810 3.793 3.788 3.553
40 5.980 6.002 6.004 5.783
45 8.650 8.630 8.638 8.501
50 11.756 11.773 11.787 11.646

MAE 0.020 0.021 0.210
RMSE 0.020 0.022 0.224

American puts
Strike Benchmark Our Model H&S Amin

30 2.279 2.278 2.272 2.057
35 3.972 3.971 3.965 3.878
40 6.308 6.313 6.313 6.249
45 9.163 9.164 9.165 9.157
50 12.560 12.562 12.566 12.559

MAE 0.002 0.005 0.077
RMSE 0.002 0.006 0.111

Table: Pricing European Puts and American Puts.
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Vanilla Options
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Barrier Options
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Figure: Pricing a Single-Barrier Call Option.
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Barrier Options

European down-and-out and
up-and-out call Percent errors

Time Simulated Value
Steps (+/− 95% bounds) Our Model H&S Our Model H&S

100 2.593 2.653 −0.103 2.211
401 2.595 2.598 2.635 0.097 1.518
701 (2.584, 2.606) 2.599 2.621 0.125 0.989

1002 2.599 2.630 0.146 1.356

Table: Pricing a Double-Barrier Call Option.
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Conclusion

This talk presents a novel, accurate, and efficient lattice model to
price a huge variety of derivatives whose underlying asset follows the
jump-diffusion process.

It is the first attempt to reduce the time complexity of the lattice
model for the jump-diffusion process to O(n2.5).
In contrast, that of previous work is O(n3).
With the adjustable structure to fit derivatives’ specifications, our
lattice model make the pricing results converge smoothly.

According to the numerical results, our lattice model is superior to
the existing methods in terms of accuracy, speed, and generality.
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