1/34

An Efficient and Accurate Lattice for Pricing Derivatives under a Jump-Diffusion Process

Yuh-Dauh Lyuu

Professor and Department Chairman Department of Computer Science & Information Engineering Department of Finance National Taiwan University Joint work with Tian-Shyr Dai and Chuan-Ju Wang

Conclusion

Outline

- **2** Models and Definitions
- 3 Preliminaries
- Lattice Construction
- **5** Numerical Results

3 / 34

Introduction

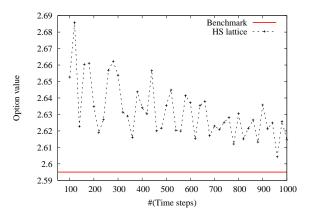
- A derivative product is financial instrument whose payoff is based on other underlying assets such as stocks.
- Pricing it is equivalent to computing its expected payoff under a suitable probability measure.
- Most derivatives have no analytical formulas.
- So they must be priced by numerical methods like the lattice model.

Introduction

- However, the nonlinearity error may cause the pricing results to converge slowly.
- It may even cause the pricing results to oscillate significantly.¹
- The goals are numerical accuracy and speed.

¹Figlewski and Gao (1999).

Oscillations



An Efficient and Accurate Lattice for Pricing Derivatives under a Jump-Diffusion Process

5 / 34

Introduction

Models

- Lognormal diffusion process has been widely used to model the underlying asset's price dynamics.²
- Unfortunately, the lognormal diffusion process is incapable of capturing empirical stock price behaviors.³
- Many alternative processes, such as GARCH process, jump-diffusion process, have been proposed.



²Black and Scholes (1973).

Related Work

- Amin (1993)
 - He approximates the jump-diffusion process by a multinomial lattice.
 - Huge numbers of branches at each node make the lattice inefficient.
- Hilliard and Schwartz (2005)
 - They match the first local moments of the lognormal jumps.
 - Their lattice lacks the flexibility to suit derivatives' specifications.

Main Results

- This talk proposes an efficient lattice model for the jump-diffusion process.
- The time complexity of our lattice is $O(n^{2.5})$.
- Our lattice is adjusted to suit the derivatives' specification so that the price oscillation problem can be significantly suppressed.

9 / 34

Jump-Diffusion Process

- Define S_t as the stock price at time t.
- Merton's jump-diffusion model assumes that the stock price process can be expressed as

$$S_t = S_0 e^{(r - \lambda \bar{k} - 0.5\sigma^2)t + \sigma z(t)U(n(t)))}.$$
 (1)

- z(t) denotes a standard Brownian motion.
- *r* denotes the risk-free rate.
- $\bullet \ \sigma$ denotes the volatility of the diffusion component of the stock price process.
- $U(n(t)) = \prod_{i=0}^{n(t)} (1+k_i)$ and $k_0 = 0$.

Introduction

Jump-Diffusion Process

- Jump events are governed by the Poisson process n(t) with jump intensity λ.
- The random jump magnitude k_i (i > 0) follows the equation:

$$\ln\left(1+k_i\right) \sim N\left(\gamma,\delta\right),$$

where $E(k_i) \equiv \overline{k} = e^{\gamma + 0.5\delta^2} - 1$.

Introduction

Jump-Diffusion Process

• Hilliard and Schwartz decompose S_0 -log-price of S_t into the diffusion component and the jump component by rewriting Eq. (1) as follows:

$$V_t \equiv \ln\left(rac{S_t}{S_0}
ight) = X_t + Y_t,$$

• The diffusion component

$$X_t \equiv \left(r - \lambda \bar{k} - 0.5\sigma^2\right)t + \sigma z(t)$$

- is a Brownian motion.
- The jump component

$$Y_t\equiv\sum_{i=0}^{n(t)}\ln\left(1+k_i
ight)$$

is normal under Poisson compounding.

Financial Background

- An option is a financial instrument.
- It represents a *right* to buy the stock for a price (the exercise price X) at the maturity date T.
- Options are essential to speculation and the management of financial risk.⁴
- The payoff of a European-style vanilla option at the maturity date T is max($S_T X, 0$).
- The payoff of an American-style vanilla option at time t $(0 \le t \le T)$ is $S_t X$.

⁴Hull (2002).

Introduction

Financial Background

- A barrier option is similar to a vanilla option.
- But the payoff of a barrier option depends on whether the underlying stock's price path ever touches the barrier(s).
 - Such options are very popular in the financial market.

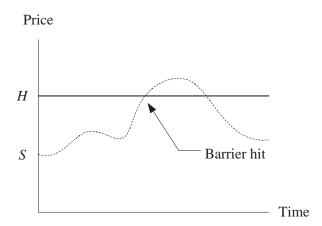
Lattice Construction

on Numerical Results

Conclusion

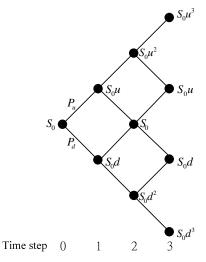
14 / 34

Barrier Options



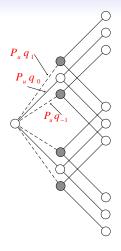
CRR Lattice for the Diffusion Part

- The size of one time step is $\Delta t = T/n$.
- u, d, P_u, P_d :
 - Match the mean and variance of the stock return.
 - *ud* = 1.
 - $P_u + P_d = 1$.



Hilliard and Schwartz's Lattice

- Diffusion part (X_t)
 - Match mean and variance of $X_{\Delta t}$.
 - Obtain P_{μ} and P_{d} .
- Jump part (Y_t)
 - Match the first 2*m* local moments of $Y_{\Delta t}$.
 - Obtain q_i $(i = 0, \pm 1, \pm 2, \ldots, \pm m).$



Time step An Efficient and Accurate Lattice for Pricing Derivatives under a Jump-Diffusion Process

0

2

Hilliard and Schwartz's Lattice

- The stock price of the node at time step *i* is $S_0^{V_{i\Delta t}}$.
- Motivated by the decomposition in Eq. (11), $V_{(i+1)\Delta t}$ can be represented by

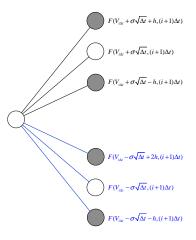
$$V_{(i+1)\Delta t} = V_{i\Delta t} + c\sigma\sqrt{\Delta t} + jh, j = 0, \pm 1, \pm 2, \dots, \pm m.$$

- $c \in \{-1,1\}$ denotes the upward or the downward movement of the stock price driven by the diffusion component.
- j denotes the number of positions above or below the node $V_{i\Delta t}+c\sigma\sqrt{\Delta t}$.
- The magnitude of the basic jump unit is set to $h=\sqrt{\gamma^2+\delta^2}$.
- The node count of the lattice is $O(n^3)$.

Hilliard and Schwartz's Lattice

- Define F(V_{i∆t}, i) as the option value (stock price is S₀e<sup>V_{i∆t}).
 </sup>
- European-style options

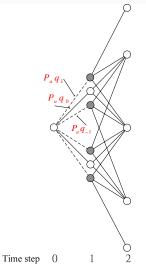
$$\begin{split} F(V_{i\Delta t}, i) &= \\ e^{-r\Delta t} \sum_{j=-m}^{m} F\left(V_{i\Delta t} + \sigma\sqrt{\Delta t} + jh, (i+1)\Delta t\right) P_{u}q_{j} + \\ e^{-r\Delta t} \sum_{j=-m}^{m} F\left(V_{i\Delta t} - \sigma\sqrt{\Delta t} + jh, (i+1)\Delta t\right) P_{d}q_{j}. \end{split}$$



(Preliminaries

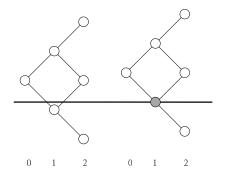
Our Lattice

- Diffusion part (X_t)
 - Follow a CRR structure.
 - Follow a trinomial structure.
- Jump part (Y_t)
 - Match the first 2m local moments of Y_{Δt}.
 - Obtain q_j $(j = 0, \pm 1, \pm 2, ..., \pm m).$

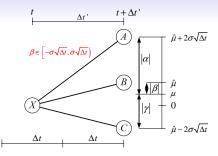


Price Oscillation Problem

- Price oscillation problem is mainly due to the nonlinearity error.
 - Introduced by the nonlinearity of the option value function.
- The solution of the nonlinearity error:
 - Making price level of the lattice coincide with the location where the option value function is highly nonlinear.



Trinomial Structure



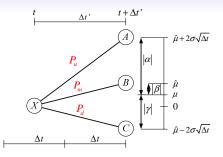
The branching probabilities for the node X

$$\begin{split} \beta &\equiv \hat{\mu} - \mu, \\ \alpha &\equiv \hat{\mu} + 2\sigma\sqrt{\Delta t} - \mu = \beta + 2\sigma\sqrt{\Delta t}, \\ \gamma &\equiv \hat{\mu} - 2\sigma\sqrt{\Delta t} - \mu = \beta - 2\sigma\sqrt{\Delta t}, \\ \hat{\mu} &\equiv \ln{(s(B)/s(X))}. \end{split}$$

An Efficient and Accurate Lattice for Pricing Derivatives under a Jump-Diffusion Process

21 / 34

Trinomial Structure



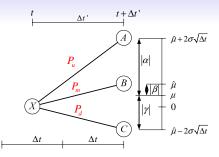
The branching probabilities for the node X

$$P_u \alpha + P_m \beta + P_d \gamma = 0,$$

$$P_u(\alpha)^2 + P_m(\beta)^2 + P_d(\gamma)^2 = \text{Var},$$

$$P_u + P_m + P_d = 1.$$

Trinomial Structure



Theorem 1

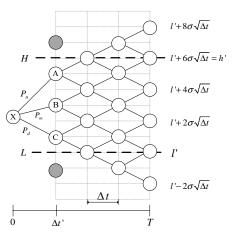
Given a node X at time t and a CRR lattice with the length of each time step equal to Δt beginning at time $t + \Delta t'$, there is a valid trinomial structure from the node X whose s(X)-log-price of the central node B lies in the interval $[\mu - \sigma\sqrt{\Delta t}, \mu + \sigma\sqrt{\Delta t})$. Furthermore, the valid branching probabilities can be found by matching the mean and variance of the s(X)-log-price of $S_{t+\Delta t'}$.

(Lattice Construction)

Adjusting the Diffusion Part of the Lattice

• Select Δt to make $\frac{h'-l'}{2\sigma\sqrt{\Delta t}}$ be an integer.

•
$$\Delta t' = T - \left(\left\lfloor \frac{T}{\Delta t} \right\rfloor - 1 \right) \Delta t.$$



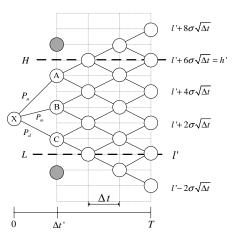
An Efficient and Accurate Lattice for Pricing Derivatives under a Jump-Diffusion Process

24 / 34

(Lattice Construction)

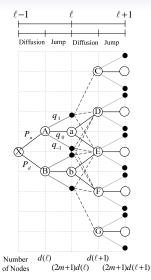
Adjusting the Diffusion Part of the Lattice

- Lay out the grid from barrier *L* upward.
- Automatically, barrier *H* coincides with one level of nodes.
- Obtain P_u , P_m , P_d by Theorem 1 (p. 22).



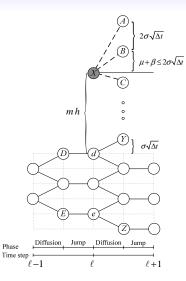
Dealing with Jump Nodes

- Two phases: the diffusion phase and the jump phase.
- The node count of our lattice is O(n^{2.5}).



(Lattice Construction)

Complexity Analysis



- Node X is the highest jump node at time step ℓ.
- Node d is the highest diffusion node at time step l.
- The distance between node A and Y is $< mh + 3\sigma\sqrt{\Delta t}$.
- At each time step, the number of extra diffusion nodes is at most $2 \left[\frac{mh+3\sigma\sqrt{\Delta t}}{2\sigma\sqrt{\Delta t}} \right]$ (such as nodes *A*, *B*, *C* on the left).

d

Complexity Analysis

- Define $d(\ell)$ as the number of diffusion nodes at time step ℓ .
- $d(\ell)$ satisfies the following recurrence relation:

$$(\ell+1) = d(\ell) + 2\left[\frac{mh}{2\sigma\sqrt{T/n}} + 1.5\right] + 1,$$

$$= \vdots$$

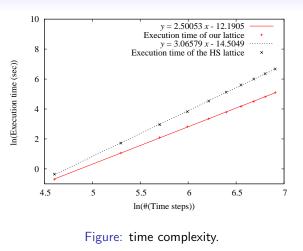
$$= d(1) + 2 \times (\ell)\left[\frac{mh}{2\sigma\sqrt{T/n}} + 1.5\right] + \ell$$

$$= O(n^{1.5}),$$

where d(1) = 2, d(0) = 1, and $\ell \leq n$.

• Consequently, the node count of the whole lattice is $(2m+1)\sum_{\ell=0}^{n} d(\ell) = O(n^{2.5}).$

Time Complexity



Conclusion

Vanilla Options

	European puts						
Strike	Merton	Our Model	H&S	Amin			
30	2.172	2.194	2.189	1.837			
35	3.810	3.793	3.788	3.553			
40	5.980	6.002	6.004	5.783			
45	8.650	8.630	8.638	8.501			
50	11.756	11.773	11.787	11.646			
	MAE	0.020	0.021	0.210			
	RMSE	0.020	0.022	0.224			
	American puts						
		American p	uts				
Strike	Benchmark	American p Our Model	uts H&S	Amin			
Strike 30	Benchmark 2.279			Amin 2.057			
		Our Model	H&S				
30	2.279	Our Model 2.278	H&S 2.272	2.057			
30 35	2.279 3.972	Our Model 2.278 3.971	H&S 2.272 3.965	2.057 3.878			
30 35 40	2.279 3.972 6.308	Our Model 2.278 3.971 6.313	H&S 2.272 3.965 6.313	2.057 3.878 6.249			
30 35 40 45	2.279 3.972 6.308 9.163	Our Model 2.278 3.971 6.313 9.164	H&S 2.272 3.965 6.313 9.165	2.057 3.878 6.249 9.157			

Table: Pricing European Puts and American Puts.

Lattice Construction

(Numerical Results)

Conclusion

Vanilla Options

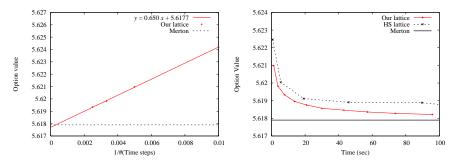


Figure: Converge Property.

An Efficient and Accurate Lattice for Pricing Derivatives under a Jump-Diffusion Process

31 / 34

(Numerical Results)

Conclusion

Barrier Options

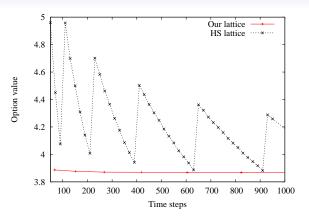


Figure: Pricing a Single-Barrier Call Option.

An Efficient and Accurate Lattice for Pricing Derivatives under a Jump-Diffusion Process

32 / 34

(Numerical Results)

Conclusion

Barrier Options

	European dow up-and-	Percent e	Percent errors		
Time	Simulated Value				
Steps	(+/- 95% bounds)	Our Model	H&S	Our Model	H&S
100		2.593	2.653	-0.103	2.211
401	2.595	2.598	2.635	0.097	1.518
701	(2.584, 2.606)	2.599	2.621	0.125	0.989
1002		2.599	2.630	0.146	1.356

Table: Pricing a Double-Barrier Call Option.

Conclusion

- This talk presents a novel, accurate, and efficient lattice model to price a huge variety of derivatives whose underlying asset follows the jump-diffusion process.
 - It is the first attempt to reduce the time complexity of the lattice model for the jump-diffusion process to $O(n^{2.5})$.
 - In contrast, that of previous work is $O(n^3)$.
 - With the adjustable structure to fit derivatives' specifications, our lattice model make the pricing results converge smoothly.
- According to the numerical results, our lattice model is superior to the existing methods in terms of accuracy, speed, and generality.