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PRESERVATION OF STABILITY PROPERTIES NEAR

FIXED POINTS OF LINEAR HAMILTONIAN SYSTEMS

BY SYMPLECTIC INTEGRATORS

XIAOHUA DING, HONGYU LIU, ZAIJIU SHANG, GENG SUN,
AND LINGSHU WANG

Abstract. Based on reasonable testing model problems, we study the
preservation by symplectic Runge-Kutta method (SRK) and symplectic
partitioned Runge-Kutta method (SPRK) of structures for fixed points
of linear Hamiltonian systems. The structure-preservation region pro-
vides a practical criterion for choosing step-size in symplectic computa-
tion. Examples are given to justify the investigation.

1. Introduction and preliminaries

Consider the n-degree-of-freedom (d.o.f) Hamiltonian system

(1.1) ż = J∇H(z), J =

[
0 I
−I 0

]
,

where H is a smooth scalar function of the extended phase space variables
z ∈ R

2n, denoting the Hamiltonian, and J is the Poisson matrix with I the
n × n identity matrix. By introducing the canonically conjugate variables,
z = (q, p), the above system can be rewritten as

(1.2) q̇ = ∂H/∂p, ṗ = −∂H/∂q,

where q ∈ R
n represents the configuration coordinates of the system and

their canonically conjugate momenta p ∈ R
n represents the impetus gained

by movement. As is well-known, Hamiltonian systems are introduced as a
type of system for which the existence of conservative quantities are auto-
matic. System (1.2) possesses two remarkable properties:

(1) the solutions preserve the Hamiltonian, i.e.,

(1.3)
dH

dt
= 0;

(2) the corresponding flow is symplectic, i.e.,

(1.4)
d

dt
[dp ∧ dq] = 0.
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Runge-Kutta method; equilibria structure; composition method; stability.
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In the last two decades, enormous attention has been paid to numerical
methods which preserve the symplecticity, namely, symplectic integrators
for Hamiltonian systems; we refer to the monographs Hairer et al. [1] and
Sanz-Serna&Calvo [8] for details and related literature. Theoretical analy-
sis together with numerous numerical experiments has shown that symplec-
tic integrator not only produces improved qualitative numerical behaviors,
but also allows for a more accurate long-time scale computation than with
general-purpose methods. In the symplectic integration study, a widely rec-
ognized fact is that the symplecticity of a numerical integrator has little to do
with its step-size. Particularly, for SRK and SPRK methods, their symplec-
ticities are only related to the coefficients (see Section 2 below). Therefore,
in practical computations, one usually resorts to the classical stability anal-
yses to find a suitable range for choosing numerical step-sizes. However, in
a recent paper [3], it is shown that in some cases even the step-size of the
symplectic Euler method satisfies the classical linear stability requirements,
one can still get periodic-two numerical solutions, or even chaotic solutions.
That means, we need to require more stringent conditions on step-sizes in
addition to the classical stability considerations in simulations of Hamilton-
ian flows, even for symplectic integrators. In the present paper, we make a
first step towards such investigation by studying the influence induced by
the numerical discretization on the equilibria structure of the underlying
Hamiltonian system. It is recalled that for a general ODE of the form

ż = f(z), z ∈ R
m, f : Rm 7→ R

m,

it may admit the presence of equilibrium point, namely, z̃ ∈ R
m such that

f(z̃) = 0, and the eigenvalues of the corresponding stability matrix ∇zf(z̃)
determine the type of the equilibrium point and its stability properties.

In the sequel, we are mainly concerned with the Runge-Kutta (RK) meth-
ods and partitioned Runge-Kutta (PRK) methods. Henceforth, we cus-
tomarily refer to an s-stage RK method by the triple Rs = (A, b, c), with
A = (aij)

s
i,j=1, b = (bi)

s
i=1 and c = (ci)

s
i=1 being, respectively, the coeffi-

cient matrix, weights and abscissae, and an s-stage PRK method by the

pair R(1)
s −R(2)

s . Next, we would like to review some of the classical linear
stability concepts and by tracing the origins we can thus draw forth our mo-
tivations for the current work. The probably most well known A-stability is
introduced by Dahlquist in 1960’s (see, e.g., [2]). ApplyingRs to the famous
Dahlquist test equation

(1.5) y′ = λy, λ ∈ C, ℜλ < 0,

we get the following scheme

(1.6) yl+1 = R(z)yl, l = 0, 1, 2, . . . , and z = λh,

with R(z) the stability function of Rs (see, Chapter IV.3, [2]). It is noted
that the solution to (1.5) asymptotically decays to zero as t → ∞, and
in order for the numerical scheme (1.6) to yield such qualitative behavior
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without any restriction on the step size h, we naturally require that

(1.7) |R(z)| < 1, for any h > 0.

Methods satisfying (1.7) are called A-stable, and this concept has been play-
ing an indispensable role in the numerical field. Apparently, one can derive
the same conclusion (1.7) for Rs when applying it to the following equation

(1.8) y′ = λ̄y,

where λ̄ ∈ C is the complex conjugate to λ in equation (1.5). If we set
λ = α + iβ with α, β ∈ R and α < 0, it is easy to see that equations (1.5)
and (1.8) are equivalent to the following system of ODE,

(1.9)

{
ẋ = αx− βy,

ẏ = βx+ αy.

System (1.9) has an equilibrium point (0, 0) and its corresponding stability
matrix is given by

J =

[
α −β
β α

]
,

which has two eigenvalues λ1,2 = α± iβ. Now, we apply Rs to (1.9) and get

(1.10)

[
xl+1

yl+1

]
= Q

[
R(z) 0
0 R(z̄)

]
Q−1

[
xl
yl

]

with

z = λh, z̄ = λ̄h, λ = α+ iβ and Q =
1√
2

[
i −1
1 −i

]
.

Introducing the forward difference operators

δ+t xl =
xl+1 − xl

h
, δ+t yl =

yl+1 − yl
h

,

scheme (1.10) can be reformulated into

(1.11) δ+t

[
xl
yl

]
= Q

[
R(z)−1

h 0

0 R(z̄)−1
h

]
Q−1

[
xl
yl

]
,

which is the discrete dynamical system approximating (1.9). Obviously,
(0, 0) is the fixed point (equilibrium point) for (1.11) and the correspond-
ing stability matrix is given by the coefficient matrix in (1.11), which is
seen to possess two eigenvalues, λh,1 = (R(z) − 1)/h, λh,2 = λ̄h,1. Now, it
is readily seen that an A-stable RK method preserves the equilibria struc-
ture unconditionally after discretization. In the reverse, if we want an RK
method to give rise to certain preservation of the equilibria structure of the
underlying ODE, we are naturally led to the condition (1.7). From above
analyses, we can further easily deduce that the so-called stability region for
an RK method (see, Chapter IV.3, [2]) is indeed the set of those step sizes
with which the RK method can preserve the equilibria structure of the test
equation (1.9).
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Next, we briefly mention one more example to illustrate the close con-
nection between the so-called P-stability and the preservation of equilibria
structure. In the theory of orbital mechanics, many problems are formulated
as some special second order ODE

(1.12)
d2u

dt2
= f(t, u), u(t0) = u0, u̇(t0) = u′0,

which is often known in advance to have periodic solution. In [4], Lambert
and Watson introduced the concept of P-stability for numerical methods to
solve equation (1.12). It is remarked that in [4], the P-stability is defined
for multistep methods, while it is equally applicable to RK method. The
test model problem given in [4] is

(1.13) ü = −λ2u, λ ∈ R.

Set u̇ = v, then equation (1.13) can be reformulated into a first order system

(1.14)

{
u̇ = v,

v̇ = −λ2u.

In like manner as above for A-stability, one can show that the P-stable RK
methods for (1.13) preserve the equilibria structure of (1.14) unconditionally
and vice versa. However, we will not explore more details on this aspect and
now turn our study to Hamiltonian system (1.1).

The equilibrium points of system (1.1) are those (p̃, q̃) ∈ R
n × R

n such
that ∇H(p̃, q̃) = 0 and the corresponding stability matrices are given by

JS(p̃, q̃) :=
∂(−∂H/∂q, ∂H/∂p)

∂(p, q)
(p̃, q̃).

To ease our study, we start with linear Hamiltonian systems, and then pro-
pose several ways to extend our analyses to nonlinear case. We first desig-
nate some model problems for our investigation. Apparently, these model
problems should feature the Hamiltonian systems. In [7], it is shown that
an n d.o.f linear Hamiltonian system can be canonically transformed into a
Hamiltonian system consisting of n 1-d.o.f subsystems and these subsystems
assume the following standard forms,

(1.15)

{
ṗ = −β2q,

q̇ = p, β > 0

or

(1.16)

{
ṗ = −βp,

q̇ = βq, β > 0.

Therefore, it is natural for us to take systems (1.15) and (1.16) as our testing
model problems and which will be used throughout. Clearly, (0, 0) is their
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equilibrium point, and for system (1.15)

Js =

[
0 −β2

1 0

]

with corresponding eigenvalues λ1,2 = ±iβ, which are of elliptic type, and we
call system (1.15) have elliptic equilibria structure; while for system (1.16)

Js =

[
−β 0
0 β

]

with the eigenvalues λ1,2 = ±β, which are of hyperbolic type, and we call
system (1.16) having hyperbolic equilibria structure. Next, we shall inves-
tigate under what conditions, the equilibria structure can be inherited by
the corresponding numerical schemes. And what would be caused by the
numerical discretization if the structure-preservation conditions are ruined.

In the section followed, we present some necessary and sufficient condi-
tions for an SRK/SPRK method and its corresponding symmetric compo-
sition method to preserve the equilibria structures of the testing problems.
The fundamental idea is that we regard the numerical scheme as a discrete
dynamic which is an approximation to the Hamiltonian system and there-
fore should have the same equilibria structure as its continuous counterpart.
Results show that in some cases, SRK method can preserve the equilibria
structure unconditionally, but without exception, PRK method always gives
a structure-preservation region on the positive real line for the numerical
step-size. Furthermore, it is found that if the order of accuracy of a SPRK
method is increased by symmetric composition, the structure-preservation
region will be decreased accordingly.

In section 3, we extend the analyses to nonlinear Hamiltonian systems.
Besides, we give an example which justifies the necessities of such equilibria
structure preservation study.

2. Equilibria structure preservation of SRK/SPRK method

In this paper, we confine our study to symplectic Runge-Kutta (SRK)
methods and symplectic partitioned Runge-Kutta (SPRK) methods. The

symplecticity conditions for Rs and R(1)
s −R(2)

s are, respectively, given by
(see [1],[8])

BA+ATB − bbT =0, B = diag[b];(2.1)

B(2)A(1) +A(2)TB(1) − b(2)b(1)
T
=0, B(i) = diag[b(i)] (i = 1, 2),(2.2)

b(1) = b(2).(2.3)

2.1. Preserving the elliptic equilibria structure. We first apply Rs to
system (1.15) and get the following scheme

(2.4)

{
P = ples − hβ2AQ, pl+1 = pl − hβ2bTQ,

Q = qles + hAP, ql+1 = ql + hbTP,
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where P = [P1, P2, . . . , Ps]
T and Q = [Q1, Q2, . . . , Qs]

T are internal stage
values, es = [1, . . . , 1]T and pl ≈ p(lh), ql ≈ q(lh). It can be computed
straightforwardly that

{
P = (I + h2β2A2)−1(espl − hβ2Aesql),

Q = (I + h2β2A2)−1(esql + hAespl),

and thus scheme (2.4) is equivalently reformulated as

(2.5)

{
δ+t pl = −hβ2DAespl − β2Desql,

δ+t ql = Despl − hβ2DAesql,

where D = bT (I + h2β2A2)−1 and the forward difference operators are de-
fined as

δ+t pl =
pl+1 − pl

h
, δ+t ql =

ql+1 − ql
h

.

(2.5) is a discrete dynamical system which approximates (1.15) and obvi-
ously, (0, 0) is its fixed point (equilibrium point). The stability matrix of
(2.5) is

JN =

[
−hβ2DAes −β2Des

Des −hβ2DAes

]

and its eigenvalues are

λ̃1,2 = −hβ2DAes ± i(βDes),

which are of elliptic type. Hence, the SRK method preserves the elliptic
equilibria structure of system (1.15) unconditionally, but here we note that

there is a little shift of λ̃1,2 from λ1,2 due to the numerical discretization.

Next, we apply an s-stage SPRK method R(1)
s −R(2)

s to system (1.15) and
get the following scheme

(2.6)

{
P = ples − hβ2A(1)Q, pl+1 = pl − hβ2b(1)

T
Q,

Q = qles + hA(2)P, ql+1 = ql + hb(2)
T
P.

The discrete dynamical system equivalent to (2.6) is given by

(2.7)

{
δ+t pl = −hβ2D(1)A(2)espl − β2D(1)esql,

δ+t ql = D(2)espl − hβ2D(2)A(1)esql,

where

(2.8) D(1) = b(1)
T
(I+h2β2A(2)A(1))−1, D(2) = b(2)

T
(I+h2β2A(1)A(2))−1.

The stability matrix for (2.7) is

JN =

[
−hβ2D(1)A(2)es −β2D(1)es

D(2)es −hβ2D(2)A(1)es

]
,
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and its eigenvalues are

λ̃1,2 =
1

2

{
− hβ2[D(1)A(2)es +D(1)A(2)es]

±
√

h2β4[D(1)A(2)es −D(2)A(1)es]2 − 4β2[(D(1)es)(D(2)es)]

}
.

Therefore, if the equilibria point (0, 0) for (2.7) is of elliptic type we need to
require

(2.9) h2β2[D(1)A(2)es −D(2)A(1)es]
2 − 4[(D(1)es)(D

(2)es)] < 0.

Next, we introduce

a1 :=
det(I + z2A(2)(A(1) − esb

(1)T ))

det(I + z2A(2)A(1))
,

a2 :=
det(I + z2A(1)(A(2) − esb

(2)T ))

det(I + z2A(1)A(2))
,

(2.10)

where z = βh, which shall also be used throughout, then condition (2.9) can
be reformulated as

(2.11) |a1 + a2| < 2.

In fact, from (2.7), one can get

pl+1 =(1− z2D(1)A(2)es)pl − βzD(1)esql,

ql+1 =hD(2)espl + (1− z2D(2)A(1)es)ql.
(2.12)

Since the method is symplectic, it has

dpl+1 ∧ dql+1 = dpl ∧ dql.

Substituting the relations (2.12) into the above equality, then through straight-
forward calculations, we obtain

(D(1)es)(D
(2)es) = [D(1)A(2)es +D(2)A(1)es]− z2(D(1)A(2)es)(D

(2)A(1)es),

which is then substituted into (2.9) to yield

(2.13) |1− z2D(1)A(2)es + 1− z2D(2)A(1)es| < 2.

Next, by observing that

1− z2D(1)A(2)es =1− z2b(1)
T
(I + h2β2A(2)A(1))−1A(2)es = a1,

1− z2D(2)A(1)es =1− z2b(2)
T
(I + h2β2A(1)A(2))−1A(1)es = a2,

we finally arrive at the equivalence of (2.9) and (2.11)
In summary, we have
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Proposition 2.1. For system (1.15), an SRK method Rs preserves its el-
liptic equilibria structure unconditionally, whereas for an SPRK method,

R(1)
s −R(2)

s , its structure-preservation region is given by

(2.14) {h > 0 : |a1 + a2| < 2},
where a1 and a2 are defined by (2.10).

Consider the symplectic Euler method, where A(1) = 0, A(2) = 1 and
b(1) = b(2) = 1. By (2.10), it is computed that a1 = 1 − z2, a2 = 1, and
hence for symplectic Euler method to preserve the elliptic structure of sys-
tem (1.15) we must have from (2.14) that |2− z2| < 2, i.e., 0 < βh < 2.

Using the W-transformation due to Hairer andWanner ( see Chapter IV.5,
[2]), we have

(2.15) W−1A(1)W = XA(1) , W−1A(2)W = XA(2) ,

where W is the generalized Vandermonde matrix, and XA(i)(i = 1, 2) are
matrices possessing some standard form. In particular, for a class of impor-
tant symplectic method, Lobatto IIIA-Lobatto IIIB pair (see [9, 10]),

XA(1) =




1
2 −ξ1

ξ1 0
. . .

. . .
. . . −ξs−2

ξs−2 0 0
ξs−1 0




,(2.16)

XA(2) =




1
2 −ξ1

ξ1 0
. . .

. . .
. . . −ξs−2

ξs−2 0 −ξs−1

0 0




,(2.17)

where ξk = 1/2
√
4k2 − 1, k = 1, 2, . . . , s. In term of W-transformation, i.e.,

using (2.15), ai(i = 1, 2) in (2.10) can be reformulated as

a1 =
det(I + z2XA(2)(XA(1) − e1e1

T
))

det(I + z2XA2XA(1))
,(2.18)

a2 =
det(I + z2XA(1)(XA(2) − e1e1

T
))

det(I + z2XA1XA(2))
,(2.19)

where e1 = [1, 0, . . . , 0, 1]T . For Lobatto IIIA-Lobatto IIIB pair, withXA(i)(i =
1, 2) given in (2.16) and (2.17), it is easily verified that a1 = a2 and there-
fore, for Lobatto IIIA-Lobatto IIIB method to preserve the elliptic structure
of system (1.15) we must have from (2.14) that |a1| < 1. In the follow-
ing, we list some of the computed results for Lobatto IIIA-Lobatto IIIB
method in term of its stage s; see Table 1. Moreover, for s = 5, the
structure-preservation region is 0 < z < 3.140328, and for s = 10, it is
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Table 1. Structure-preservation region for Lobatto IIIA-
Lobatto IIIB pair

s a1 z

2 1− 1
2z

2 0 < z < 2

3
1− 11

24
z2+ 1

48
z4

1+ 1
24

z2
0 < z <

√
8(≈ 2.828)

4
1− 7

15
z2+ 23

900
z4− 1

3600
z6

1+ 1
30

z2+ 1
1800

z4
0 < z <

√
42− 6

√
29(≈ 3.1127)

0 < z < 3.141590. We are naturally led to the conjecture that as s → ∞,
the elliptic structure-preservation region for an s-stage Lobatto IIIA-Lobatto
IIIB method is given by 0 < z < π.

Next, we consider the composition of a given basic one-step method with
different step sizes,

(2.20) Ψh = Φγsh ◦ · · · ◦ Φγ1h,

where Φh is the basic SRK method and γih(i = 1, . . . , s) are the composition
step length (cf. [6],[11]). The composition is required to be symmetric, i.e.,
γi = γs+1−i(i = 1, 2, . . . , [s/2]), and hence Ψh is still an SRK method. By
Proposition 2.1, we know that the symmetric composition of an SRK method
still preserves the elliptic structure of system (1.15) unconditionally. Next,
consider the structure-preservation region of a symmetric composition of
a SPRK method, which is known to be again a SPRK method. To ease
our study, we only take the 2-stage Lobatto IIIA-Lobatto IIIB pair as an
example, whose 4th-order symmetric composition is given in [5], and for
which we compute

a1 = 1− 1

2
z2 +

1

4
γ21γ

2
2(5γ1 + 4γ2)z

4 − 1

8
γ31γ2(γ1 + γ2)

2z6,

where γ1 = 1/(2 − 21/3) and γ2 = 21/3/(2 − 21/3). By |a1| < 1, we get

0 < z <
√
2.48(≈ 1.5748).

Similarly, we further computed that the structure-preservation region for the
corresponding 6th-order composition method is given by 0 < z < 1.1034.
Noting by Table 1, the structure-preservation region for the underlying basic
method is 0 < z < 2. Base on this example, we conjecture that as the order
of a SPRK method is increased by symmetric composition, its structure-
preservation region will be decreased accordingly. A stringent proof of such
conjecture is fraught with difficulties and is beyond the scope of this paper.

2.2. Preserving the hyperbolic equilibria structure. The scheme of
an SRK method Rs for system (1.16) is read as

(2.21)

{
δ+t pl =

R(−z)−1
h pl,

δ+t ql =
R(z)−1

h ql,
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where R(z) = det(I + zA)/det(I − zA) is the stability matrix for Rs. It is
readily observed that for the discrete dynamical system (2.21) to preserve
the equilibria structure of system (1.16), we must have

(2.22) R(−z)− 1 < 0, and R(z)− 1 > 0,

i.e., the hyperbolic structure-preservation region for an SRK method Rs is

(2.23) {h > 0 :
det(I − zA)

det(I + zA)
< 1 and

det(I + zA)

det(I − zA)
> 1, z = βh}.

Since we always have R(−z) < 1(z = βh > 0) for an A-stable RK method.
Hence, if the RK method Rs is A-stable, in order to preserve the hyperbolic
structure, we only need to require

(2.24)
det(I + zA)

det(I − zA)
> 1.

Now, we show that the above inequality can be equivalently reduced to

(2.25) det(I − zA) > 0.

Indeed, since Rs is A-stable, the eigenvalues of its coefficient matrix must
lie on the right half plane, which implies det(I+ zA) > 0 for z > 0, and this
together with (2.24) further implies that det(I−zA) > 0. Next, using again
the fact that the eigenvalues of A lie on the right half plane, we have that

det(I + zA)

det(I − zA)
> 1,

if z > 0 satisfying det(I − zA) > 0. Therefore, the hyperbolic equilibria
structure-preservation region of an A-stable SRK method Rs is given by

(2.26) {h > 0 : det(I − zA) > 0, z = βh}.
For example, the hyperbolic structure-preservation region for the well-known
midpoint formula, where A = 1/2 is given by

(2.27) {h > 0 : 1− 1

2
βh > 0} = {h > 0 : βh < 2}.

It is readily seen that even for SRK method which possesses good classical
stability properties, we should still require some restrictions on its step-sizes
for practical computations. Therefore, the investigations on the equilibria
structure preservation provide a novel and useful criteria to choose step-
sizes for symplectic integrators in addition to the classical linear stability
requirements.

We now apply an s-stage SPRK method R(1)
s −R(2)

s to system (1.16) and
get the following scheme

(2.28)

{
δ+t pl =

R(1)(−z)−1
h pl,

δ+t ql =
R(2)(z)−1

h ql,
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where R(i)(z) = det(I − zA(i) + zesb
(i)T )/det(I − zA(i))(i = 1, 2), are the

stability matrices for R(i)
s (i = 1, 2). Consequently, the hyperbolic structure-

preservation region for R(1)
s −R(2)

s is

(2.29) {h > 0 : R(1)(−z) < 1 and R(2)(z) > 1, z = βh}.

For the well-known Lobatto IIIA-Lobatto IIIB pair, R(1)
s −R(2)

s , since both

Lobatto IIIA method (R(1)
s ) and Lobatto IIIB method (R(2)

s ) are symmet-

ric A-stable RK method, and therefore R(i)(z) = det(I + zA(i))/det(I −
zA(i))(i = 1, 2). Similar to (2.26), condition (2.29) is reduced to

(2.30) {h > 0 : det(I − zA(i)) > 0, i = 1, 2, z = βh}.
for Lobatto IIIA-Lobatto IIIB method, where in particular, we note that
det(I − zA(i)) = det(I − zXA(1)) = det(I − zXA(2))(i = 1, 2) with XA(i)(i =
1, 2) given in (2.16) and (2.17).

In summary, we have

Proposition 2.2. The hyperbolic equilibria structure-preservation region of
an SRK method Rs for system (1.16) is

{h > 0 :
det(I − zA)

det(I + zA)
< 1 and

det(I + zA)

det(I − zA)
> 1, z = βh},

and this condition is reduced to

{h > 0 : det(I − zA) > 0, z = βh},

if Rs is A-stable. For an SPRK method, R(1)
s −R(2)

s , the hyperbolic structure-
preservation region is given by

{h > 0 : R(1)(−z) < 1 and R(2)(z) > 1, z = βh},

where R(1) and R(2) are, respectively, the stability functions for R(1)
s and

R(2)
s .

Now, we consider the structure-preservation of the symmetric composition
method (2.20). The 4th order symmetric composition of mid-point formula
for system (1.16) is

(2.31)





pl+1 =
(1− γ1z)(1 − γ2z)(1 − γ3z)

(1 + γ1z)(1 + γ2z)(1 + γ3z)
pl,

ql+1 =
(1 + γ1z)(1 + γ2z)(1 + γ3z)

(1− γ1z)(1 − γ2z)(1 − γ3z)
ql

with z = βh, γ1 = 1/(2 − 21/3) and γ2 = 21/3/(2 − 21/3). Therefore, for
scheme to preserve the hyperbolic structure, we have

1− z

2− 21/3
> 0 and 1− 21/3z

2− 21/3
> 0,
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which yields

(2.32) 0 < z <
2− 21/3

21/3
(≈ 0.587401).

Clearly, in comparison with (2.27), the structure-preservation region be-
comes smaller after composing. This result applies equally to the SPRK
method. Consider the following symplectic Euler method for system (1.16),

(2.33)




pl+1 = (1− z)pl,

ql+1 =
1

1− z
ql, z = βh,

whose structure-preservation region can be verified to be

(2.34) 0 < z < 1.

Since the 2nd order symmetric composition of symplectic Euler method is
the midpoint formula, hence the structure-preservation region of the 4th
order symmetric composition of scheme (2.33) is given by (2.32), which is
obviously decreased in comparison with (2.34).

3. Extensions to nonlinear Hamiltonian systems and some
applications

In this section, we extend the analyses in the previous sections to the
nonlinear 1-d.o.f. Hamiltonian system

(3.1)

{
ṗ = −∂H/∂q := f(p, q),

q̇ = ∂H/∂p := g(p, q),

with (p, q) ∈ R
2. We denote by EH the set of equilibrium points for sys-

tem (3.1), i.e.,

EH :=

{
(p̃, q̃) ∈ R

2; ∇(p,q)H(p̃, q̃) = 0

}
.

The stability matrix for system (3.1) is locally defined for every (p̃, q̃) ∈ EH

as

(3.2) JS(p̃, q̃) =

[
∂f/∂p ∂f/∂q
∂g/∂p ∂g/∂q

]
(p̃, q̃),

whose eigenvalues are given by

λ1,2 = ±
√
D

with

D := D(p̃, q̃) = [
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
](p̃, q̃).

Therefore, we can make the following classification:

(i) If D(p̃, q̃) < 0 for all (p̃, q̃) ∈ EH , then the equilibrium points for
system (3.1) are all of elliptic type, and we then call system (3.1)
having elliptic equilibria structure;
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(ii) If D(p̃, q̃) > 0 for all (p̃, q̃) ∈ EH , then the equilibrium points for
system (3.1) are all of hyperbolic type, and we call system (3.1)
having hyperbolic equilibria structure;

(iii) If D(p̃, q̃) ≥ 0 for some (p̃, q̃) ∈ EH , while D(p̃, q̃) ≤ 0 for some
(p̃, q̃) ∈ EH , we call system (3.1) having mixed-type equilibria struc-
ture.

As an example, we suppose that system (3.1) have hyperbolic structure
and apply an s-stage SRK method Rs for its discretization to yield

(3.3)

{
P = ples + hAF (P,Q), pl+1 = pl + hbTF (P,Q),

Q = qles + hAG(P,Q), ql+1 = ql + hbTG(P,Q),

where F (P,Q) = [f(P1, Q1), . . . , f(Ps, Qs)]
T and G(P,Q) = [g(P1, Q1), . . . ,

g(Ps, Qs)]
T are the internal stage vectors. The corresponding discrete dy-

namical system for scheme (3.3) is

(3.4)

{
δ+pl = bTF (P,Q),

δ+ql = bTG(P,Q).

Clearly, the points in EH are still the equilibrium points (or fixed points) of
(3.4). The stability matrix for (3.4) is

JN =

[
bT ∂F/∂pl bT∂F/∂ql
bT∂G/∂pl bT∂G/∂ql

]
.

Therefore, in order to preserve the underlying equilibria structure for the
numerical scheme, we need to study the matrix structure of JN (p̃, q̃) with
(p̃, q̃) ∈ EH , as what we have done before. Obviously, such arguments apply
equally to SPRK methods, and to Hamiltonian systems having the other
two kinds of equilibria structures. In the sequel, as an application, we give
an example. Consider the following separable 1-d.o.f. Hamiltonian system

(3.5)

{
ṗ = αp(1− p),

q̇ = α(2p − 1)q,

where α > 0. This problem has been studied in [3], and the solutions p(t) ↑
1(t → +∞) if 0 < p(t0) < 1, and p(t) ↓ 1(t → +∞) if p(t0) > 1; while for
any q(t0) > 0, q(t) ↑ +∞(t → +∞) if p(t0) > 1/2, and if 0 < p0 < 1/2, q(t)
is first monotonically decreasing for t < t0 = (ln(1 − p(t0)) − ln p(t0)/ lnα)
and then q(t) ↑ +∞ for t(> t0) → +∞. It can be seen that (0, 0) and (1, 0)
are two hyperbolic equilibrium points for (3.5). The stability matrices here
are

(3.6) JS(0, 0) =

[
α 0
0 −α

]
, and JS(1, 0) =

[
−α 0
0 α

]
.

The symplectic Euler method for (3.5) is read as
{

pl+1 = (1 + z)pl − zp2l ,

ql+1 = ql + z(2pl − 1)ql+1, z = αh.
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or, equivalently,

(3.7)





δ+t pl = αpl(1− pl),

δ+t ql = α
(2pl − 1)ql
1 + z − 2zpl

.

We have the following theorem for scheme (3.7) to give a true simulation
(see [3])

Theorem 3.1. The sequence {pl} → 1 and {ql} → +∞ as n → +∞ iff

(3.8) 0 < z < 1 and p(t0) <
1 + z

2z
.

If condition (3.8) is destroyed, then it is shown in [3] that spurious solu-
tions or even periodic solutions will be encountered. Through straightfor-
ward calculations, the stability matrices of the discrete dynamic (3.7) at its
equilibrium points are given by

JN (0, 0) =

[
α 0
0 −α/(1 + z)

]
and JN (1, 0) =

[
−α 0
0 α/(1 − z)

]
.

In comparison with the stability matrices in (3.6), we see that for scheme (3.7)
to preserve the hyperbolic equilibria structure, we need require 1 − z > 0,
i.e., 0 < z < 1. That is, the preservation of equilibria structures only endows
the numerical integrator a prerequisite for successful simulations.

For Hamiltonian systems of higher dimensions, the situation will become
much more complicated. However, we can make use of the usual linearization
techniques for our investigations, which are interesting topics for our future
study.
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