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Abstract

A new and straightforward proof of the unisolvability of the problem of multivari-
ate polynomial interpolation based on Coatmèlec configurations of nodes, a class of
properly posed set of nodes defined by hyperplanes, is presented. The proof gener-
alizes a previous one for the bivariate case and is based on a recursive reduction of
the problem to simpler ones following the so-called Radon-Bézout process.

Key words: multivariate interpolation, properly posed set of nodes, geometric
characterization, Coatmèlec lattices

1 Introduction

The problem of polynomial interpolation of one-dimensional data has a widely
known solution. However, despite its apparent simplicity, multivariate poly-
nomial interpolation remains a topic of current research [1–3]. The existence
and uniqueness of the interpolation polynomial strongly depends on the ge-
ometrical distribution of the interpolation points. The distribution of points
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for which the interpolation problem is unisolvable is referred to as properly
posed set of nodes (PPSN).

The mathematical characterization of the most general PPSN is not currently
known. The configurations of nodes based on algebraic varieties, such as those
of Bos [4] and Liang et al. [5,6], are very general but non-constructive. In a
computational setting, configurations based on hyperplanes, such as those of
Coatmèlec [7] and Chung and Yao [8], are preferred.

Surprisingly, the configuration of nodes introduced by Coatmèlec [7] in the
plane has received several names: DH-set [2], straight line type node configu-
ration [5], PPSN with node configuration A [9], straight line type node config-
uration A [10], PPSN by the recursive construction theorem using lines [11],
and PPSN by line-superposition process [12].

In this paper, a new proof of the unisolvability of the interpolation problem
for Coatmèlec configuration of nodes in arbitrary dimensions is presented. The
proof is based on a Bézout-Radon process [13,14]. Chui and Lai [9] present a
proof for the bivariate case only, state the result in arbitrary dimension, but
did not prove it because of complications in their notation. Multidimensional
interpolation is the basis to develop different numerical methods. The results of
this paper permit to design, for example, generalized finite difference methods
in irregular meshes based on Coatmèlec configuration of nodes in two [15] or
more dimensions.

The contents of this paper are as follows. The definitions and notation re-
quired to set our main theorem are presented in the next section. The proof
of this theorem is detailed in Section 3. Finally, in the last section, the main
conclusions are summarized.

2 Presentation of the problem

Let Πm(R
k) be the vector space of multivariate polynomials of degree not

greater than m with k variables. Let w = (x1, . . . , xk)
⊤ ∈ R

k, where ⊤ denotes
transpose, N0 = N ∪ {0}, j = (j1, . . . , jk)

⊤ ∈ Γ := N
k
0, |j| = j1 + · · · + jk,

wj = xj1
1 xj2

2 · · · xjk
k , and Γm := {j ∈ Γ : |j| ≤ m}. The set of multivariate

monomials {wj}j∈Γm
is a basis of Πm(R

k), i.e., every polynomial pm(w) may
be written uniquely as

∑

j∈Γm
aj w

j, with aj ∈ R. Hence, the vector space

Πm(R
k) has dimension N = Ck

k+m, where Ck
n is the binomial coefficient

(

n

k

)

.

Let Γs := {j ∈ Γm : |j| = s}, s = 0, 1, . . . , m. Note that Γm = ∪m
s=0Γ

s,
the cardinal #Γs = Ck−1

k−1+s, and #Γm =
∑m

s=0C
k−1
k−1+s = N . The set of s-

th degree monomials may be represented as a column vector of length #Γs
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given by w(s) := (xs
1, x

s−1
1 x1

2, . . . , xi1xi2 · · ·xis , . . . , x
1
k−1 x

s−1
k , xs

k)
⊤, for all i =

(i1, . . . , is)
⊤ ∈ N

s
0, and 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ k. Note that w(0) = (1) ∈

R, w(1) = w ∈ R
k, and each component of the vector w(s) corresponds to

a unique monomial wj with j ∈ Γs. Using this notation, every polynomial
pm(w) ∈ Πm(R

k) may be written as
∑m

s=0

∑

j∈Γs aj w
j.

Here on, a node refers to a point in R
k and a configuration of nodes (CN) is a

set of pairwise distinct nodes Xm = {wi}Ni=1 where wi ≡ (x(1,i), x(2,i), . . . , x(k,i))
⊤

∈ R
k.

The Lagrange interpolation problem may be stated as follows: Given a CN
Xm and an arbitrary set of real numbers {fi ∈ R}Ni=1, find a polynomial
pm(w) ∈ Πm(R

k) such that

pm(wi) :=
∑

j∈Γm

aj w
j
i = fi, i = 1, 2, . . . , N. (1)

This problem is properly posed with respect to Xm if it has a unique solu-
tion (unisolvability) for every set {fi}Ni=1. Compared with the one-dimensional
case where the solvability is always assured, the solvability of multivariate in-
terpolation depends strongly on the geometrical distribution of the nodes. A
CN Xm is said to be a properly posed set of nodes (PPSN) if the Lagrange
interpolation problem is properly posed with respect to Xm.

Equation (1) is a system of N linear equations with a multivariate Vander-
monde matrix Vm, i.e., (Vm)ij = wj

i , where j ∈ Γm, wi ∈ Xm, and 1 ≤ i ≤ N .
Note that this matrix looks a little bit bizarre since rows and columns are in-
dexed by different structural entities. A graded lexicographical order in the set
of multiindices Γm may be introduced to enhance the notation (see Ref. [16])
but this is not required in this paper.

The following theorem summarizes some previously known results.

Theorem 1 Let Xm = {wi}Ni=1 be a CN in k dimensions and Vm the cor-

responding multivariate Vandermonde matrix, then the following expressions

are equivalent:

(i) Xm is a PPSN in R
k.

(ii) Vm is a nonsingular matrix, i.e., det(Vm) 6= 0.
(iii) rank(Vm) = N .

Let Xm ≡ X(m,k) = {wi}Ni=1 ⊂ R
k be a CN with N = Ck

m+k nodes in k
dimensions. Let us define by induction on k the following CNs, first introduced
by Coatmèlec [7,9].

Definition 2 A CN Xm ≡ X(m,k) ⊂ R
k is Coatmèlec in k dimensions if

X(m,k) =
⋃m

p=0X(p,k−1) with #X(p,k−1) = Ck−1
p+k−1 and there exists m+ 1 hyper-
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planes γ0, γ1, . . . , γm such that X(m,k−1) ⊂ γm and X(p,k−1) ⊂ γp \
⋃m

q=p+1 γq,
for 0 ≤ p ≤ m− 1, with each X(p,k−1) being Coatmèlec in (k − 1) dimensions

by identifying each hyperplane γp with R
k−1.

Note that, in one dimension, every CN Xm ≡ X(m,1) ⊂ R is Coatmèlec because
all its nodes are pairwise distinct, i.e., wi 6= wj, if i 6= j. Note also that, in
Definition 2, only one node belongs to the hyperplane γm.

The main result of this paper is a proof of the following theorem.

Theorem 3 Every Coatmèlec CN Xm in k dimensions is a properly posed set

of nodes in R
k.

3 Proof of the main theorem

Our proof makes use of the following lemmas.

Lemma 4 Let us take the CN Xm where the nodes {wi}Ni=1 are represented

as column vectors in R
k, and the CN X̂m whose nodes are ŵi = w0 + H wi,

i = 1, . . . , N , where w0 is an arbitrary vector and H is a non-singular matrix

of dimension k. Let Vm and V̂m be the Vandermonde matrices associated to

the CNs Xm and X̂m, respectively. If rank(Vm) = N , then rank(V̂m) = N .

Proof of Lemma 4. For every set of real numbers {fi ∈ R}Ni=1, there exists
one and only one interpolating polynomial such that p̂m(ŵi) = fi, given by
p̂m(x̂) = pm(H

−1 (x−w0)) where pm(x) is the unique interpolating polynomial
for Xm given by Theorem 1. Therefore, rank(V̂m) = N .

Lemma 5 Let {x̂i : i = 1, . . . , k} be an orthonormal basis of Rk, and n1 an

arbitrary vector. There always exists an orthogonal matrix H, representing a

rotation in R
k, which transform the vector x̂1 onto H x̂1 = n̂1 = n1/‖n1‖.

Proof of Lemma 5. If n̂1 = x̂1, then H = I, the identity matrix. Otherwise,
let us apply the procedure of Gram-Schmidt orthonormalization to vectors
{x̂1, n1}, yielding

q̂1 = x̂1, q2 = n1 − (n1 · q̂1) q̂1, q̂2 =
q2√
q2 · q2

=
q2

‖q2‖
,

where the dot is the ordinary Euclidean dot product. An arbitrary vector q
can be written as q = q⊥+q‖, where q‖ = (q · q̂1) q̂1+(q · q̂1) q̂1 = QQ⊤ q, where
Q = [q̂1; q̂2] is the rectangular matrix whose columns are the vectors q̂i; note
that Q⊤ Q is the identity matrix of dimension 2. Taking the vector q⊥ = q−q‖
as the rotation axis for the rotation matrix H results in H q = q⊥ + H q‖ =
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(I − QQ⊤) q + QRQ⊤ q, where R is the standard two-dimensional rotation
matrix

R =







cos θ − sin θ

sin θ cos θ





 , cos θ = x̂1 · n̂1, sin θ =
√

1− (x̂1 · n̂1)2.

Hence, H = I −QQ⊤ +QRQ⊤ is a rotation matrix (HH⊤ = H⊤H = I and
det(H) = 1) such that H x̂1 = n̂1.

Proof of Theorem 3. Let us use the induction principle over m and k. Let us
first consider m = 0 and any k ∈ N. Clearly X0 = w1 and rank(V0) = 1 = N .
We consider next k = 1 and m 6= 0. The corresponding CN is Coatmèlec in
one dimension and the coefficient matrix is a (one-dimensional) Vandermonde
matrix with maximal rank C1

m+1 = m + 1 = N , since the nodes are pairwise
distinct.

By the induction hypothesis, let us assume that the theorem holds for either
m − 1 or k − 1, and let us prove that it holds for m and k. Here on, let us
take n = m+ k. Since Xm is a Coatmèlec CN in k dimensions, the following
conditions are fulfilled

X(m,k−1) =
{

w1, w2, . . . , wCk−1

n−1

}

⊂ γm,

X(m−1,k−1) =
{

wCk−1

n−1
+1, . . . , wCk−1

n−1
+Ck−1

n−2

}

⊂ γm−1\γm,

X(m−2,k−1) =
{

w
Ck−1

n−1
+Ck−1

n−2
+1, . . . , wCk−1

n−1
+Ck−1

n−2
+Ck−1

n−3

}

⊂ γm−2\γm−1 ∪ γm,
...

X(0,k−1) = {wN} ⊂ γ0\γ1 ∪ · · · ∪ γm,

where

Xm = X(m,k−1) ∪X(m−1,k−1) ∪ · · · ∪X(0,k−1).
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The multivariate Vandermonde matrix associated to the Lagrange interpola-
tion problem in the CN Xm may be written as

Vm =

























































1 1 · · · 1

w
(1)
1 w

(1)
2 · · · w

(1)
Ck

n

w
(2)
1 w

(2)
2 · · · w

(2)
Ck

n

...
...

...

w
(m)
1 w

(m)
2 · · · w

(m)

Ck
n

























































.

Let us apply the affine transformation ŵ = w0 +H w to all the nodes of the
CN, where H is the orthogonal matrix given in Lemma 5, that transforms the
xk coordinate axis in R

k into the normal vector to the hyperplane γm, and w0

is the distance between the intersection point of the (new) rotated xk axis and
the hyperplane γm.

The application of the affine transformation nullifies the k-th coordinates of

the vectors
{

ŵ1, ŵ2, . . . , ŵCk−1

n−1

}

, hence ŵi =
(

x̂(1,i), x̂(2,i), · · · , x̂(k−1,i), 0
)⊤

.

Let V̂m, where (V̂m)ij = ŵj
i , be the coefficient matrix of the transformed linear

system of equations. From Lemma 4, rank(Vm) = rank(V̂m).

The rows and columns of the matrix V̂m may be sorted by renaming the nodes
ŵi to w̃i, in order to group all its zero elements into its left-bottom part.
This process preserves the rank. The resulting matrix Ṽm has the following
structure







A B

0 A′ D





 , (2)
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where A is the Ck−1
n−1 × Ck−1

n−1 matrix given by

A =



























































1 1 · · · 1

w̃
(1)
1 w̃

(1)
2 · · · w̃

(1)

Ck−1

n−1

w̃
(2)
1 w̃

(2)
2 · · · w̃

(2)

Ck−1

n−1

...
...

. . .
...

w̃
(m)
1 w̃

(m)
2 · · · w̃

(m)

Ck−1

n−1



























































,

B is the Ck−1
n−1 × Ck

n−1 matrix

B =



























































1 1 · · · 1

w̃
(1)

Ck−1

n−1
+1

w̃
(1)

Ck−1

n−1
+2

· · · w̃
(1)
Ck

n

w̃
(2)

Ck−1

n−1
+1

w̃
(2)

Ck−1

n−1
+2

· · · w̃
(2)

Ck
n

...
...

. . .
...

w̃
(m)

Ck−1

n−1
+1

w̃
(m)

Ck−1

n−1
+2

· · · w̃
(m)

Ck
n



























































,
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D is the Ck
n−1 × Ck

n−1 diagonal matrix

D =











































x̂(k,Ck−1

n−1
+1) 0 · · · 0

0 x̂(k,Ck−1

n−1
+2) · · · 0

...
...

. . .
...

0 0 · · · x̂(k,Ck
n)











































,

A′ is the Ck
n−1 × Ck

n−1 matrix given by

A′ =













































1 1 · · · 1

w̃
(1)

Ck−1

n−1
+1

w̃
(1)

Ck−1

n−1
+2

· · · w̃
(1)

Ck
n

...
...

. . .
...

w̃
(m)

Ck−1

n−1
+1

w̃
(m)

Ck−1

n−1
+2

· · · w̃
(m)

Ck
n













































,

and finally 0, cf. Eq. (2), represents the null matrix of dimensions Ck
n−1 × Ck−1

n−1.
We recall that Ck

n = Ck−1
n−1 + Ck

n−1.

The square matrix A is a multivariate Vandermonde matrix in (k−1) variables
and the Ck−1

n−1 nodes {w̃i} are a Coatmèlec CN in (k−1) dimensions. Therefore,
by the induction hypothesis, rank(A) = Ck−1

n−1.

The diagonal matrix D is nonsingular, i.e., x̂k,i 6= 0, for i = Ck−1
n−1 + 1, . . . , Ck

n,
because if there existed at least an i with x̂k,i = 0, then there would be at least
Ck−1

n−1 + 1 different nodes lying in the hyperplane γm, but this is not possible
because Xm is a Coatmèlec CN. Hence, rank(A′ D) = rank(A′). Moreover, the
matrix A′ is also a multivariate Vandermonde matrix corresponding to the
Ck

n−1 nodes that do not belong to the hyperplane γm. Since the Coatmèlec
property of a CN does not change under either rotation or translation of all
the nodes, the CN {w̃i}, i = Ck−1

n−1 + 1, · · · , Ck
n, is also a Coatmèlec CN. The

induction hypothesis yields that the rank of matrix A′ is Ck
n−1.

Finally, the rank of the Ck
n × Ck

n matrix Ṽm is rank(A) + rank(A′) = Ck−1
n−1 +

Ck
n−1 = Ck

n, and the theorem is proved.
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4 Conclusions

The unisolvency of the problem of multivariate polynomial interpolation in a
Coatmèlec CN, a kind of properly posed set of nodes defined by hyperplanes,
has been shown through a new and straightforward proof. This proof uses el-
ementary techniques from linear algebra. This fact permits the understanding
of the topic by nonexperts and opens the possibility of it being incorporated
in numerical analysis textbooks.

The geometrical condition characterizing Coatmèlec CNs is one of the most
general conditions currently available for the characterization of properly posed
set of nodes defined by hperplanes, which is easier and more efficient to be
checked by an automatic computational software than the widely known ge-
ometrical characterization of Chung and Yao [8]. Therefore, Coatmèlec CNs
are useful in mesh generation for the numerical solution of partial differential
equations in irregular domains, such as generalized finite difference methods.
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