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Univalence criterion for meromorphic functions and Loewner chains
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Abstract. The object of the present paper is to obtain a more general condition for univa-

lence of meromorphic functions in the U∗. The significant relationships and relevance with other

results are also given. A number of known univalent conditions would follow upon specializing the

parameters involved in our main results.
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1. Introduction

We denote by Ur the disk {z ∈ C : |z| < r} , where 0 < r ≤ 1, by U = U1 the open unit disk

of the complex plane and U∗ = C�U, where U is closure of U.

Let A denote the class of all analytic functions in the open unit disk U normalized by

f(z) = z + a2z
2 + ... (z ∈ U)

and we denote by S the subclass of A consisting of functions which are also univalent in U. Closely

related to S is the class
∑

of all meromorphic functions in U∗ by

f(ζ) = bζ + b0 +
b1
ζ

+ ... (ζ ∈ U∗)

and
∑

0 stands for all functions from
∑

with normalization b = 1 and b0 = 0. These classes have

been one of the important subjects of research in complex analysis especially, Geometric Function

Theory for a long time (see, for details, [12]).

Two of the most important and known univalence criteria for analytic functions defined in

U∗ were obtained by Becker [1] and Nehari [8]. Some extensions of these two criteria were given

by Lewandowski [5], [6] and Ruscheweyh [11]. During the time, unlike there were obtained a lot of

univalence criteria by Miazga and Wesolowski [7], Wesolowski [13], Kanas and Srivastava [4] and

Deniz and Orhan [2].

In the present paper we consider a general univalence criterion for functions f belonging to

the class
∑

in terms of the Schwarz derivative defined by

Sf (z) =

(
f ′′(z)

f ′(z)

)′

−
1

2

(
f ′′(z)

f ′(z)

)2

.
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2. Loewner chains and related theorem

Before proving our main theorem we need a brief summary of the method of Loewner chains.

Let L(z, t) = a1(t)z+ a2(t)z
2 + ..., a1(t) 6= 0, be a function defined on U× [0,∞), where a1(t)

is a complex-valued, locally absolutely continuous function on [0,∞). L(z, t) is called a Loewner

chain if L(z, t) satisfies the following conditions;

(i) L(z, t) is analytic and univalent in U for all t ∈ [0,∞)

(ii) L(z, t) ≺ L(z, s) for all 0 ≤ t ≤ s < ∞,

where the symbol ”≺ ” stands for subordination. If a1(t) = et then we say that L(z, t) is a

standard Loewner chain.

In order to prove our main results we need the following theorem due to Pommerenke [9] (also

see [10]). This theorem is often used to find out univalency for an analytic function, apart from

the theory of Loewner chains;

Theorem 2.1. Let L(z, t) = a1(t)z + a2(t)z
2 + ... be analytic in Ur for all t ∈ [0,∞). Suppose

that;

(i) L(z, t) is a locally absolutely continuous function in the interval [0,∞), and locally uni-

formly with respect to Ur.

(ii) a1(t) is a complex valued continuous function on [0,∞) such that a1(t) 6= 0, |a1(t)| → ∞

for t → ∞ and {
L(z, t)

a1(t)

}

t∈[0,∞)

forms a normal family of functions in Ur.

(iii) There exists an analytic function p : U × [0,∞) → C satisfying Re p(z, t) > 0 for all

z ∈ U, t ∈ [0,∞) and

(2.1) z
∂L(z, t)

∂z
= p(z, t)

∂L(z, t)

∂t
, z ∈ Ur, t ∈ [0,∞).

Then, for each t ∈ [0,∞), the function L(z, t) has an analytic and univalent extension to

the whole disk U or the function L(z, t) is a Loewner chain.

The equation (2.1) is called the generalized Loewner differential equation.

3. Univalence criterion for the functions belonging to the class
∑

In this section, making use of the Theorem 2.1, we obtain an univalence criterion for mero-

morphic functions. The method of prove is based on Theorem 2.1 and on construction of a suitable

Loewner chain.
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Theorem 3.1. Let f, g ∈
∑

be locally univalent functions in U∗. If there exists an analytic

function h such that Reh(ζ) ≥ 1
2 and h(ζ) = 1 + h2

ζ2 + ... for ζ ∈ U∗, and for arbitrary α ∈ C we

have
∣∣∣∣
1− h(ζ)

h(ζ)
|ζ|

2
− (|ζ|

2
− 1)

[
ζh′(ζ)

h(ζ)
+ (1− 2α)

ζf ′′(ζ)

f ′(ζ)
+ 2α

ζg′′(ζ)

g′(ζ)

]
(3.1)

+α(|ζ|
2
− 1)2

ζ

ζ
h(ζ)

[(
α−

1

2

)(
f ′′(ζ)

f ′(ζ)
−

g′′(ζ)

g′(ζ)

)2

+ Sf (ζ)− Sg(ζ)

]∣∣∣∣∣ 6 1

for all ζ ∈ U∗, then f is univalent in U∗.

Proof. Without loss of generality we can consider the functions of the form

f(ζ) = ζ +
a1
ζ

+ ... and g(ζ) = ζ +
b1
ζ

+ ...

since the Schwarzian derivative is invariant under Möbius transformations. Consider the functions

defined by

(3.2) v(ζ) =

[
g′(ζ)

f ′(ζ)

]α
= 1 +

v2

ζ2
+ ..., α ∈ C

where we choose this branch of the power (·)α, which for ζ → ∞ has value 1, and

(3.3) u(ζ) = f(ζ)v(ζ) = ζ +
u2

ζ
+ ....

The functions u and v are meromorphic in U∗ since f and g do not have multiple poles and f ′ and

g′ are different from zero.

For all t ∈ [0,∞) and 1
ζ
= z ∈ U the function f : Ur × [0,∞) → C defined formally by

f(z, t) =



u
(

et

z

)
+ (e−t − et)1

z
h
(

et

z

)
u′

(
et

z

)

v
(
et

z

)
+ (e−t − et)1

z
h
(
et

z

)
v′
(
et

z

)



−1

(3.4)

= etz +Ψ(e−pt, z2), p = 1, 2, ...

is analytic in U since Ψ(e−pt, z2) is analytic function in U for each fixed t ∈ [0,∞) and p = 1, 2, ....

From (3.4) we have a1(t) = et and

lim
t→∞

|a1(t)| = lim
t→∞

et = ∞.

After simple calculation we obtain, for each z ∈ U,

lim
t→∞

f(z, t)

et
= lim

t→∞

{
z +Ψ(e−(p+1)t, z2)

}
= z.

The limit function k(z) = z belongs to the family {f(z, t)�et : t ∈ [0,∞)} ; then, there exists a

number r0 (0 < r0 < 1) that in every closed disk Ur0 , there exists a constant K0 > 0, such that
∣∣∣∣
f(z, t)

et

∣∣∣∣ < K0, z ∈ Ur0 , t ∈ [0,∞)



4

uniformly in this disk, provided that t is sufficiently large. Thus, by Montel’s Theorem, {f(z, t)�et}

forms a normal family in each disk Ur0 .

Since the function Ψ(e−pt, z2) is analytic in U,Ψ(k)(e−pt, z2) k ∈ N0 = {0, 1, 2...} is continuous

on the compact set, so Ψ(k)(e−pt, z2), k ∈ N0 is bounded function. Thus for all fixed T > 0, we can

write et < eT and we obtain that for all fixed numbers t ∈ [0, T ] ⊂ [0,∞) , there exists a constant

K1 > 0 such that ∣∣∣∣
∂f(z, t)

∂t

∣∣∣∣ < K1, ∀z ∈ Ur0 , t ∈ [0, T ] .

Therefore, the function f(z, t) is locally absolutely continuous in [0,∞); locally uniformly with

respect to Ur0 .

After simple calculations from (3.4) we obtain

∂f(z, t)

∂z
(3.5)

=
1

z

et

z

{(
1 + (e−2t − 1)

[
h

(
et

z

)
+

et

z
h′

(
et

z

)])
(u′v − v′u)

+(e−2t − 1)
et

z
h

(
et

z

)
(u′′v − v′′u) + (e−2t − 1)2

e2t

z2
h2

(
et

z

)
(u′′v′ − v′′u′)

}

×f2(z, t)/

[
v

(
et

z

)
+ (e−t − et)

1

z
h

(
et

z

)
v′
(
et

z

)]2

and

∂f(z, t)

∂t
(3.6)

= −
et

z

{(
1− (e−2t + 1)h

(
et

z

)
+ (e−2t + 1)

et

z
h′

(
et

z

))
(u′v − v′u)

+(e−2t − 1)
et

z
h

(
et

z

)
(u′′v − v′′u) + (e−2t − 1)2

e2t

z2
h2

(
et

z

)
(u′′v′ − v′′u′)

}

×f2(z, t)/

[
v

(
et

z

)
+ (e−t − et)

1

z
h

(
et

z

)
v′
(
et

z

)]2

where

(3.7) u′v − v′u = f ′

(
g′

f ′

)2α

, α ∈ C

(3.8) u′′v − v′′u = (1− 2α)f ′′

(
g′

f ′

)2α

+ 2αg′′
(
g′

f ′

)2α−1

, α ∈ C

(3.9) u′′v′ − v′′u′ = αf ′

(
g′

f ′

)2α{
(Sf − Sg) +

(
α−

1

2

)(
f ′′

f ′
−

g′′

g′

)}
, α ∈ C

and u, v, u′, v′, u′′, v′′ are calculated at et

z
.
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Consider the function p : Ur × [0,∞) → C for 0 < r < r0 and t ∈ [0,∞) , defined by

p(z, t) = z
∂f(z, t)

∂z
�

∂f(z, t)

∂t
.

From (3.5) to (3.9), we can easily see that the function p(z, t) is analytic in Ur, 0 < r < r0. If the

function

(3.10) w(z, t) =
p(z, t)− 1

p(z, t) + 1
=

z∂f(z,t)
∂z

− ∂f(z,t)
∂t

z∂f(z,t)
∂z

+ ∂f(z,t)
∂t

is analytic in U× [0,∞) and |w(z, t)| < 1, for all z ∈ U and t ∈ [0,∞) , then p(z, t) has an analytic

extension with positive real part (Re p(z, t) > 0) in U, for all t ∈ [0,∞) .

To show this we write (3.5) and (3.6) in the equation (3.10), then we obtain

w(z, t)(3.11)

=
2 et

z

{(
1− h

(
et

z

)
+ (e−2t − 1) e

t

z
h′

(
et

z

))
(u′v − v′u)

2e−2t et

z
h
(
et

z

)
(u′v − v′u)

+
(e−2t − 1) e

t

z
h
(

et

z

)
(u′′v − v′′u) + (e−2t − 1)2 e2t

z2 h
2
(

et

z

)
(u′′v′ − v′′u′)

}

2e−2t et

z
h
(
et

z

)
(u′v − v′u)

= e2t




1− h

(
et

z

)

h
(
et

z

)



+ (1 − e2t)
et

z




h′

(
et

z

)

h
(
et

z

) +
u′′v − v′′u

u′v − v′u





+e2t(e−2t − 1)2
e2t

z2
h

(
et

z

)
u′′v′ − v′′u′

u′v − v′u

and from (3.7)-(3.9) for all z ∈ U and t ∈ [0,∞)

w(z, t)(3.12)

= e2t




1− h

(
et

z

)

h
(
et

z

)



+ (1− e2t)
et

z




h′

(
et

z

)

h
(
et

z

) + (1 − 2α)
f ′′

(
et

z

)

f ′
(
et

z

) + 2α
g′′
(

et

z

)

g′
(
et

z

)





+αe2t(e−2t − 1)2
e2t

z2
h

(
et

z

)((
Sf (

et

z
)− Sg(

et

z
)

)
+

(
α−

1

2

)(
f ′′( e

t

z
)

f ′( e
t

z
)
−

g′′( e
t

z
)

g′( e
t

z
)

))
.

The right hand side of the equation (3.12) is equal to

w(z, 0) =
1− h

(
1
z

)

h
(
1
z

)

for t = 0. Thus, from hypothesis of theorem for 1
z
= ζ ∈ U∗ we have

∣∣∣∣
1− h (ζ)

h (ζ)

∣∣∣∣ 6 1.

Since
∣∣∣e

t

z

∣∣∣ > |et| > 1 for all z ∈ U and t > 0, we find that w(z, t) is an analytic function in U. Then

putting et

z
= ζ̃ ∈ U∗, ζ̃ = ζet,

∣∣∣ζ̃
∣∣∣ = et for |z| = 1, from (3.12) by assumption (3.1) replacing ζ̃ by
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ζ we have

|w(z, t)| =

∣∣∣∣|ζ|
2

(
1− h (ζ)

h (ζ)

)
− (|ζ|

2
− 1)

(
ζh′ (ζ)

h (ζ)
+ (1− 2α)

ζf ′′ (ζ)

f ′ (ζ)
+ 2α

ζg′′ (ζ)

g′ (ζ)

)

+α(|ζ|2 − 1)2
e2t

z2
h (ζ)

(
(Sf (ζ)− Sg(ζ)) +

(
α−

1

2

)(
f ′′(ζ)

f ′(ζ)
−

g′′(ζ)

g′(ζ)

))∣∣∣∣
6 1.

Therefore |w(z, t)| < 1 for all z ∈ U and t ∈ [0,∞) .

Since all the conditions of Theorem 2.1 are satisfied, we obtain that the function f(z, t) is

a Loewner chain or has an analytic and univalent extension to the whole unit disk U, for all

t ∈ [0,∞) .

From (3.2)-(3.4) it follows in particular that

f(z, 0) =
v(1

z
)

u(1
z
)
=

1

f(1
z
)
∈ S

and for 1
z
= ζ ∈ U∗ we say that f(ζ) is univalent in U∗. Thus the proof is completed. �

For α = 0 in Theorem 3.1 we obtain following new result:

Corollary 3.2. Let f ∈
∑

be locally univalent function in U∗. If there exists an analytic function

h with Reh(ζ) ≥ 1
2 in U∗ and h(ζ) = 1 + h2

ζ2 + ... such that

(3.13)

∣∣∣∣
1− h(ζ)

h(ζ)
|ζ|2 − (|ζ|2 − 1)

[
ζh′(ζ)

h(ζ)
+

ζf ′′(ζ)

f ′(ζ)

]∣∣∣∣ 6 1

for all ζ ∈ U∗, then f is univalent in U∗.

For α = 1
2 in Theorem 3.1 we obtain univalence criterion given by Miazga and Wesolowski

[7].

Corollary 3.3. Let f, g ∈
∑

be locally univalent functions in U∗. If there exists an analytic

function h with Reh(ζ) ≥ 1
2 in U∗ and h(ζ) = 1 + h2

ζ2 + ... such that

∣∣∣∣
1− h(ζ)

h(ζ)
|ζ|

2
− (|ζ|

2
− 1)

[
ζh′(ζ)

h(ζ)
+

ζg′′(ζ)

g′(ζ)

]
(3.14)

+
1

2
(|ζ|

2
− 1)2

ζ

ζ
h(ζ) [(Sf (ζ)− Sg(ζ))]

∣∣∣∣ 6 1

for all ζ ∈ U∗, then f is univalent in U∗.

For h(ζ) = 1 and α = 1
2 in Theorem 3.1 we obtain sufficient condition of Epstein type [3] on

the exterior of the unit disk obtained earlier by Wesolowski [13].
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Corollary 3.4. Let f, g ∈
∑

be locally univalent functions in U∗. If the following inequality

(3.15)

∣∣∣∣
1

2
(|ζ|

2
− 1)2

ζ

ζ
[(Sf (ζ)− Sg(ζ))]− (|ζ|

2
− 1)

ζg′′(ζ)

g′(ζ)

∣∣∣∣ 6 1

is satisfied for all ζ ∈ U∗, then f is univalent in U∗.

For f(ζ) = g(ζ), h(ζ) = 1 and α = 1
2 in Theorem 3.1 we obtain well-known Becker’s univalence

criterion [1] in U∗.

Corollary 3.5. Let f ∈
∑

be locally univalent function in U∗. If the following inequality

(3.16) (|ζ|
2
− 1)

∣∣∣∣
ζf ′′(ζ)

f ′(ζ)

∣∣∣∣ 6 1

is satisfied for all ζ ∈ U∗, then f is univalent in U∗.

For g(ζ) = ζ, h(ζ) = 1 and α = 1
2 in Theorem 3.1 we obtain Nehari type univalence criterion

[8] in U∗.

Corollary 3.6. Let f ∈
∑

be locally univalent function in U∗. If the following inequality

(3.17) |Sf (ζ)| 6
2

(|ζ|
2
− 1)2

is satisfied for all ζ ∈ U∗, then f is univalent in U∗.
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