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Abstract

This paper presents the formulations of the expected long-run cost per time unit
for a system monitored by a static control chart and by an adaptive control chart
respectively. The static chart has a fixed sampling interval and a fixed sample size.
The adaptive chart has a fixed sample size but variable sampling intervals. The
system is supposed to have three states, normal working state, failure delay time
state, and failed state. Two levels of repair are used to maintain the system. A
minor repair is used to restore the system if a detectable defect is confirmed by
an inspection. A major repair will be performed if the system fails. The expected
cost per time unit for maintaining such a system is obtained. The objective of
such analysis is to find an optimal sampling policy for the inspection process. An
artificially generated data example and a real data example are used to compare
the expected cost per time unit for both the static and adaptive control charts.
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1 Introduction

The delay time concept introduced by Christer and Waller [1] regards the failure process
as a two-stage process with the first stage (or called normal working state) being from
new to the point of a detectable defect arising and the second stage (or called failure delay
time state) from this point onward to the failure if no other maintenance interventions
were taken. The concept of failure delay time can be used in planning condition-based
maintenance policy (see [2], for example): if one can successfully detect the changing point,
at which the process shifts from the first stage to the second stage, then we can conduct
maintenance during the second stage (before the system fails).

Control charts, a tool from statistical process control (SPC), can be used to detect the
changing point. If we use SPC terminologies, the normal working state is said an in-control
state and the failure delay time state is said an out-of-control state. Control charts are
commonly employed for the purpose of signalling the occurrence of assignable causes every
time when the process parameter has shifted. As control charts may produce false signals
that incorrectly indicate the state of the system, optimally designing the parameters of
control charts to minimizing the cost incurred by the false signals is an important re-
search topic. To this end, various scenarios have been considered by researchers. Tagaras
and Lee [3] and Tagaras [4] separated the X̄-chart into several zones and optimized the
chart for monitoring a process whose deterioration can be classified into two states in
which one state requires minor repair and the other requires major repair, and considered
economic design of control charts. Cheng et al [5] used the p-chart to derive thresholds
for aviation inspection. Cassady et al [6] considered economic design of control charts
for optimization of preventive maintenance policies for systems. Chan and Wu [7] ap-
ply the concept of cumulative count of conforming chart (CCC chart) in inspection and
maintenance planning for systems where minor inspection, major inspection, minor main-
tenance and major maintenance are available. Control charts have also been applied to
condition-based maintenance for monitoring two-stage processes that was mentioned in
the preceding paragraph (see [8] for example). Other examples of research in this area
can also been seen in [9,10]. Typical application areas of control charts can be found
in continuous manufacturing processes such as canning lines, high precision component
machining centres, and electronic item assembly lines.

Commonly, the decision variables in designing control charts include the sampling interval
between consecutive sampling points, sample sizes or control limits. The parameters in
control charts can be fixed or variable, then we have two different control charts: static and
adaptive. A static control chart has fixed parameters, including sample size n, sampling
interval h, lower control limit (LCL) and upper control limit (UCL), whereas an adaptive
control chart has at least one of its parameters (n, h, LCL and UCL) allowed to be changed
based on the information about the state of the process. Compared with the static control
charts, the adaptive control chart can utilise the inspection capacity more effectively for
a better process control ([11,12,13,14]). Recent research on adaptive control charts can be
found in [15,16,17,18].

2



However, in existing literature, there has been little work in investigating the potential of
the adaptive control charts to monitor processes where a failure delay time exists. This
paper presents the formulations of the expected long-run cost per time unit for such a
process monitored by adaptive control charts with variable sampling intervals.

A system with a failure delay time is essentially a three-state system that is a typical
case of a multistate system. Research in multistate systems is another interesting topic in
reliability theory and engineering, and the reader is referred to [19,20] for more information
in this area.

The novelty of this paper lies in the formulations and analysis of the expected cost per
time unit for the scenarios where adaptive control charts are applied to monitor three-state
systems.

This paper is structured as follows. Section 2 presents assumptions and notation that are
used in the paper. In order to compare the efficiency of static and adaptive control charts,
Section 3 formulates the expected long-run cost per unit for a system monitored by static
and adaptive charts respectively. Section 4 discusses the relationship between the formulas
of the expected long-run cost per unit of the static and adaptive charts. Section 5 gives
numerical examples to study the sensitive analysis for various parameter settings. Section
6 concludes the findings of this paper.

2 General assumptions and notation

This section first presents the usage of the static and adaptive control charts, then makes
assumptions for these two charts.

Consider a system with three states: in-control, out-of-control and failed. It produces
outputs that can be monitored by a control chart: either a static or an adaptive chart.

Static chart The sampling interval h is fixed. n samples are taken at every h time units.
Figure 1 shows a typical example of a control chart with two zones: Zf0 is a central
zone, Zf1 is an action zone, and they are defined as: Zf0={0, UCL}, Zf1 ={UCL,∞},
for example. The following policy is adopted.
• If the characteristics of the n samples falls in Zf0, no further action will be taken and

the next sampling interval will be h.
• If the characteristics of the n samples falls in Zf1, then an inspection will be carried

out to check the occurrence of assignable causes. If the occurrence is confirmed by
the inspection, then a minor repair is performed. Otherwise no further action will be
taken and the next sampling interval will be h.

Adaptive chart The first sampling interval is h0 time units and the samples are taken
immediately after the start of the system. After that, n samples are taken at every h0
time units. Figure 2 shows a typical example of a control chart with three zones: Za0
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is a central zone, Za1 is a warning zone, Za2 is an action zone, and they are defined as:
Za0 = {0, w}, Za1 = {w,UCL}, and Za2={UCL,∞}, for example. The following policy
is adopted.
• If the characteristics of the n samples falls in Za0, then the next sampling interval

will be h0 time units;
• If the characteristics of the n samples falls in Za1, then the next sampling interval will

be h1 time units, and an inspection will be carried out to check whether the system
is in control or not. If the system is confirmed to be in the out-of-control state, then
a minor repair is performed to restore the system, otherwise no further action will be
taken and the next sampling interval will be h0.
• If the characteristics of the n samples falls in Za2, then an inspection will be carried

out to check the occurrence of the assignable causes. If occurrence is confirmed, then
a minor repair is performed. Otherwise no further action will be taken and the next
sampling interval will be h0, which is the same as normal.

The following assumptions are also held for both the static and the adaptive control
charts.

(1) Suppose that the system can shift either from an in-control state to an out-of-control
state and then to a failure state; or directly from an in-control state to an failure
state without going through an out-of-control state. The system itself in a failure
state or an out-of-control state cannot restore back to the in-control state without
any repair.

(2) When the system is in an in-control state or an out-of-control state, the defective
probability of the product is p0 or p1, respectively, where p1 > p0.

(3) The inspection is assumed to be perfect in that it can reveal whether the system is in
control or not. During the inspection, the system carries on running. As long as the
system has been confirmed to be in an out-of-control state, repairmen will carry out
a minor repair which can bring the system back to an in-control state. The system
is as good as new immediately after the minor repair has been completed, and it is
still operating while it is under a minor repair. Once the system fails, repairmen will
conduct a major repair that can bring it back to the as-good-as-new state.

(4) For simplicity, times spent on an inspection, minor or major repair are small com-
pared with the sampling interval, and therefore are negligible, but their costs are
considered.

Th following notation is also used.

X1: random time from the beginning of an in-control state to the occurrence of an
assignable cause;
f1(x1): pdf. of X1, and F1(x1) = Pr(X1 < x1) is the cdf. of X1;
X2: random time from the beginning of the out-control state to failure;
f2(x2): pdf. of X2, and F2(x2) = Pr(X2 < x2), cdf. of X2;
n: sample size;
h: sampling interval when a static control chart is used;
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h0: a longer sampling interval when an adaptive control chart is used;
h1: a shorter sampling interval when an adaptive control chart is used;
αi: the probability that the characteristics of the n samples falls in Zf0 when the system
is in the in-control state for i = 0, or in the out-of-control state for i = 1. It is for a
static control chart, where α0 + α1 = 1.
βij: the probability that the characteristics of the n samples falls in Zaj (j = 0, 1, 2) when
the system is in the in-control state for i = 0, or in the out-of-control state for i = 1. It
is for the adaptive control chart, where β00 + β01 + β02 = 1 and β10 + β11 + β12 = 1.
Tn: time to the first minor repair with an assignable cause when no control chart is used;
Tf1: the random time from the beginning of the in-control state to the occurrence of an
assignable cause when a static control chart is used;
Tf2: time between the occurrence of an assignable cause and failure when a static control
chart is used;
Ta1: expected time between the start of the system and a minor repair triggered by an
inspection due to a warning signal in zone Za1;
Ta2: expected time between the start of the system and a minor repair triggered by an
inspection due to a warning signal in zone Za2;
Ta3: expected time between the start of the system and a major repair;
cs: sampling cost per item;
ci: inspection cost for a possible assignable cause;
cr1: cost for a minor repair;
cr2: cost for a major repair;
Cn: time to failure when no control chart is used;
Cf1, Cf2: costs incurred within times Tf1 and Tf1, respectively;
Ca1, Ca2, Ca3: costs incurred within times Ta1, Ta2 and Ta3, respectively. They are for an
adaptive chart.

Throughout the modelling development, we use the renewal reward theorem, which simply
states that the expected long-run cost per time unit is the ratio between the expected
renewal cycle cost and expected renewal cycle length [21].

3 Expected long-run cost per time unit

This section derives the expected long-run cost per time unit for both the static control
chart scenario and the adaptive control chart scenario.
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3.1 No control chart scenario

In the case there is no control chart used to monitor the system, the expected long-run
time is given by

E(Tn) =
∫ ∞
0

∫ x

0
xf1(x1)f2(x− x1)dx1dx, (1)

and the expected cost is

E(Cn) = cr2

∫ ∞
0

∫ x

0
f1(x1)f2(x− x1)dx1dx. (2)

The expected long-run cost per time unit is given by

En(T,C) =
E(Cn)

E(Tn)
(3)

3.2 Static control chart scenario

In the case when a static control chart is employed to monitor the system, the expected
time length and expected cost are derived as follows.

3.2.1 Expected time length

There can be two renewals: a renewal after a minor repair is conducted, and a renewal
after a major repair is completed. The expected renewal cycle length is E(Tf ) = E(Tf1)+
E(Tf2).

Then we have

E(Tf1) =
∞∑
i=1

ih
i∑

j=1

αi−j1 (1− α1)
∫ jh

(j−1)h
f1(x1)[1− F2(ih− x1)]dx1. (4)

Proof. In this case, a renewal occurs after a minor repair is conducted at the ih time
point. There are i− j false signals followed by one true signal. The false signals wrongly
indicate that the system is in an in-control state whereas it is actually in an out-of-control
state. The time length is ih that includes i sampling intervals in both the in-control state
and the out-of-control state. 2

The expected value of Tf2 is given by

E(Tf2) =
∞∑
i=1

i∑
j=1

αi−j1

∫ ih

(i−1)h

∫ τij

(j−1)h
xf1(x1)f2(x− x1)dx1dx, (5)
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where τij =

 jh if j < i;

x if j = i.

Proof. In this scenario, There are i− j false signals followed by a failure. 2

The expected renewal cycle length E(Tf ) is the summation of E(Tf1) and E(Tf2), and it
is given by

E(Tf ) =
∞∑
i=1

i∑
j=1

ihαi−j1 (1− α1)
∫ jh

(j−1)h
f1(x1)[1− F2(ih− x1)]dx1

+
∞∑
i=1

i∑
j=1

αi−j1

∫ ih

(i−1)h

∫ τij

(j−1)h
xf1(x1)f2(x− x1)dx1dx. (6)

3.2.2 Expected renewal cycle cost

Denote cij = (i − 1)ncs + (1 − α0)(j − 1)ci which is the expected cost of samplings and
false alarm inspections before a renewal at ih or x, x ∈ ((i − 1)h, ih], and the assignable
cause occurs at x1, x1 ∈ ((j − 1)h, jh], then summing over all possible sampling intervals
and events, we have

E(Cf )

=
∞∑
i=1

i∑
j=1

αi−j1 (1− α1)
∫ jh

(j−1)h
(cij + ncs + ci + cr1)f1(x1)[1− F2(ih− x1)]dx1

+
∞∑
i=1

i∑
j=1

αi−j1

∫ ih

(i−1)h

∫ τij

(j−1)h
(cij + cr2)f1(x1)f2(x− x1)dx1dx. (7)

Hence, the expected long-run cost per time unit is given by

Ef (T,C) =
E(Cf )

E(Tf )
. (8)

3.3 Adaptive control chart scenario

There are two possible kinds of transition of the system: a transition from the in-control
state to the out-of-control state detected by signals either in the warning zone or in the
action zone, and a transition from the out-of-control state to failure. We assume that any
level of maintenance can renew the system.
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3.3.1 Expected renewal cycle length

The expected renewal cycle length is E(Ta) = E(Ta1)+E(Ta2)+E(Ta3), which is explained
as follows.

The expected time between the start and a minor repair triggered by an inspection due
to a signal in zone Za1 is given by

E(Ta1) =
∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

{
βk1−k210 βk311β11(1− β10)H0

∫ H1−h1

H1−h0−h1
f1(x1)(1− F2(H0 − x1))dx1

+ β01β
k1−k2+1
10 βk3+1

11 (1− β10)(H0 + h0 + h1)
∫ H1

H1−h1
f1(x1)(1− F2(H0 + h0 + h1 − x1))dx1

}

+
∞∑
k2=0

{
β01(1− β10)H2

∫ H2

H2−h1
f1(x1)(1− F2(H2 − x1))dx1

}
, (9)

where H0 = k1h0 + (β01(k2 − 1) + k3 + 1)h1, H1 = k2h0 + (β01(k2 − 1) + 1)h1, and
H2 = (k2 + 1)h0 + (β01k2 + 1)h1.

Proof. The description of three units in Eq (9) is given below. There are three scenarios
for the system transiting from an in-control state to an out-of-control state. These three
states correspond to the following the three units in Eq (9).

Denote k1 as the total number of longer sampling intervals (ie. h0) in both the in-control
and out-of-control states, k2 as the total number of longer sampling intervals in an in-
control state, and k3 as the number of false signals followed by true ones in the out-of-
control state.

Unit 1 The system transits from the in-control state to the out-of-control state in a longer
sampling interval h0. Apparently, the effectiveness of the control chart is associated with
the length of an out-of-control state, but independent of the length of the in-control
state.

When the system is in the out-of-control state, there might be false signals (with
a probability of βk1−k2−k310 ) in h0, or true signals in h0 but followed by false signals in
h1 (with a probability of (β11β10)

k3). These two scenarios make up an event with a
probability of (β10)

k1−k2−k3(β11β10)
k3(or βk1−k210 βk311), and take time (k1 − k2)h0 + k3h1.

Eventually, a correct signal in h0 is followed by another correct signal in h1, which has
a probability of β11(1− β10) and a time length of h0 + h1.

Before the system has transited from the in-control state to the out-of-control state,
the time length is (k2− 1)h0 +β01(k2− 1)h1. Hence, the total length is k1h0 + (β01(k2−
1) + k3 + 1)h1 = H0. The transition occurs in the time interval ((k2 − 1)h0 + β01(k2 −
1)h1, k2h0 + β01(k2 − 1)h1), or (H1 − h0 − h1, H1 − h1).

Unit 2 The system might also transit from the in-control state to the out-of-control state
within a short sampling interval h1 after a false signal appears in the in-control state,
but a correct signal follows. This event has a probability of β01β10. A correct signal can
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appear in the sample of this short sampling interval. This event has a probability of
β01(1−β10) and a time length of h0+h1. The time length of the system in the in-control
state is (k2 − 1)h0 + β01(k2 − 1)h1, then the transition from the in-control state to the
out-of-control state occurs in (H1−h1, H1) (where H1 = k2h0+β01(k2−1)h1+h1). After
the system has transited to the out-of-control state, the probability of the appearance
of a correct signal is given by βk1−k2−k310 (β11β10)

k3β11(1− β10) (or βk1−k210 βk3+1
11 (1− β10))

and has a time length of H0 + h0 + h1.
Unit 3 When the system is in the in-control state, a false signal appears in a longer

sampling interval h0. Then a short sampling interval is followed and the system transits
to the out-of-control state in this short sampling interval, and then a true signal appears.
This event has a probability of β01(1− β10).2

The expected time between the start and a minor repair triggered by an inspection due
to a signal in zone Za2 is given by

E(Ta2) =
∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

{
βk1−k210 βk311β12(H0 − h1)

∫ H1−h1

H1−h0−h1
f1(x1)(1− F2(H0 − h1 − x1))dx1

}
.

(10)

Proof. The proof is similar to that of E(Ta1), apart from the appearance of the out-of-
control signals in a longer interval h0 in this case. 2

The expected time between the start and a major repair is given by

E(Ta3) =
∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

βk1−k210 βk311

{∫ H0−h1

H0−h0−h1

∫ τk1k2k3

H1−h0−h1
xf1(x1)f2(x− x1)dx1dx

+ β11

∫ H0

H0−h1

∫ τk1k2k3

H1−h0−h1
xf1(x1)f2(x− x1)dx1dx

+
∫ H0−h1

H0−h0−h1

∫ τ
′
k1k2k3

H1−h1
xf1(x1)f2(x− x1)dx1dx

+ β11

∫ H0

H0−h1

∫ τ
′
k1k2k3

H1−h1
xf1(x1)f2(x− x1)dx1dx

}
. (11)

where τk1k2k3 =

H1 − h1 if k1 − k2 6= 0

x if k1 − k2 = 0,
and τ

′
k1k2k3

=

H1 if k1 − k2 6= 0

x if k1 − k2 = 0.

Proof. The system might transit from the in-control state to the out-of-control state either
in a longer sampling interval h0 or in a shorter sampling interval h1, and the system can
then fail in either h0 or h1 as well, which creates four scenarios. The first two components
in Eq (11) correspond to the scenarios when the transition from the in-control state to the
out-of-control state occurs in a h0, and the last two components in Eq (11) correspond
to the scenarios when the transition from the in-control state to the out-of-control state
occurs in a h1.
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The first component in Eq (11) is the scenario when the two transitions (i.e., from the in-
control state to the out-of-control state and then fail) occur in longer sampling intervals.
The second component means that a correct signal appears in a longer sampling interval
h0 (with a probability β11) followed by a shorter sampling interval h1 for confirmation,
but the system fails within this h1. The third component means that the transition from
the in-control state to the out-of-control state occurs (with a probability β01 followed by
a shorter sampling interval). The last component means that the two scenarios occur in
short sampling intervals. 2

3.3.2 Expected renewal cycle cost

The costs incurred during periods E(Tf1), E(Tf2), and E(Tf3) are derived in the following.

E(Ca1) =
∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

{
βk1−k210 βk311β11(1− β10)

∫ H1−h1

H1−h0−h1
C0f1(x1)(1− F2(H0 − x1))dx1

+ β01β10β
k1−k2
10 βk311β11(1− β10)

∫ H1

H1−h1
C1f1(x1)(1− F2(H0 + h0 + h1 − x1))dx1

}

+
∞∑
k2=0

{
β01(1− β10)

∫ H2

H2−h1
C2f1(x1)(1− F2(H2 − x1))dx1

}
, (12)

where C0 = (k1 + β01(k2 − 1) + k3 + 1)ncs + ((β02 + β01(1 − β00))(k2 − 1) + 1)ci + cr1,
C1 = C0 + 2ncs, and C2 = k2ncs + β01k2ncs + 2ncs + (β02 + β01(1− β00))k2ci + ci + cr1.

Proof. After the system transited from an in-control state to an out-of-control state within
a longer interval h0, there will be two possible scenarios before two warning signals appear
consecutively in a longer interval and shorter interval, respectively. The first scenario is
incorrect signals (with a probability of β10) appears, the second scenario is a correct signal
followed by an incorrect signal (with a probability of β11β10). These two scenarios makes
up an event with a probability of (β10)

k1−k2−k3(β11β10)
k3β11(1−β10), and the event incurs

sampling cost (k1− k2 + 1)ncs + (k3 + 1)ncs. Before the system has transited from the in-
control state to the out-of-control state, the sampling cost is k2ncs + β01k2ncs, inspection
cost (β02 +β01(1−β00)k2 + 1)ci and level 1 repair cost cr1. Hence, the sub-total cost is C0.

The system might also transit from the in-control state to the out-of-control state within
a short interval h1 after a false signal appear in the in-control state. This event incurs
cost ncs+ ci+ cr1. The cost incurred before the transition is k2ncs+β01k2ncs+β01β01k2ci.
The sub-total cost is C1.

A similar explanation to the third component in Eq (12) can be given. 2
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Similarly, we have

E(Ca2) =
∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

{
βk1−k210 βk311β12

∫ H1−h1

H1−h0−h1
C3f1(x1)(1− F2(H0 − h0 − x1))dx1

}
(13)

where C3 = C0 − ncs. Finally, we have

E(Ca3) =
∞∑
k1=1

k1∑
k2=1

k1−k2∑
k3=0

βk1−k210 βk311

{∫ H0−h1

H0−h0−h1

∫ τk1k2k3

H1−h0−h1
C4f1(x1)f2(x− x1)dx1dx

+ β11

∫ H0

H0−h1

∫ τk1k2k3

H1−h0−h1
C5f1(x1)f2(x− x1)dx1dx

+
∫ H0−h1

H0−h0−h1

∫ τ
′
k1k2k3

H1−h1
C6f1(x1)f2(x− x1)dx1dx

+ β11

∫ H0

H0−h1

∫ τ
′
k1k2k3

H1−h1
C7f1(x1)f2(x− x1)dx1dx

}
. (14)

where C4 = (k1 + β01(k2 − 1) + k3 − 1)ncs + ((β02 + β01(1 − β00))(k2 − 1))ci + cr2, C5 =
C4 + ncs + ci, C6 = C4, and C7 = C5.

Hence, the expected cost per time unit is given by

Ea(T,C) =
E(Ca1) + E(Ca2) + E(Ca3)

E(Ta1) + E(Ta2) + E(Ta3)
. (15)

4 Discussion

4.1 Comparison between the two types of control charts

For the static control chart, if we set UCL=∞ and n = 0, then Eq. (6) becomes

E(Tf ) =
∞∑
i=1

i∑
j=1

∫ ih

(i−1)h

∫ τij

(j−1)h
xf1(x1)f2(x− x1)dx1dx

=
∫ ∞
0

x
∫ x

0
f1(x1)f2(x− x1)dx1dx (16)

Eq. (7) becomes
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E(Cf ) =
∞∑
i=1

i∑
j=1

∫ ih

(i−1)h

∫ τij

(j−1)h
cr2f1(x1)f2(x− x1)dx1dx,

= cr2

∫ ∞
0

∫ x

0
f1(x1)f2(x− x1)dx1dx. (17)

Then the expected cost per time unit,
E(Cf )

E(Tf )
based on Eq (17) and Eq (16), is the same

as Eq (3) where no control chart is employed.

Similarly, if we set Za1 = φ, or β01 = β11 = 0, then the adaptive np chart becomes
the static np control chart. Then we have E(Ta1) = E(Ca1) = 0, E(Ta2) = E(Tf1),
E(Ta3) = E(Tf2), and E(Ca2) +E(Ca3) = E(Cf ). The expected costs per time unit from
the adaptive and static np control charts are the same.

By minimising Eq. (8) and Eq. (15), we can obtain the optimal h when using static
control charts and h0 and h1 when using adaptive control charts, respectively. For given
cdf’s (F1(x1) and F2(x2)) and costs, h, h0 and h1 can be obtained by using heuristic search
algorithms such as genetic algorithms and simulated annealing [19].

4.2 Design procedure

When designing an optimal inspection policy, one can adopt the following steps.

It is reasonable to assume that in practice we can obtain cost parameters cs, ci, cr1, cr2,
cumulative distribution functions F1(x1) and F2(x2).

If the values of α0, α0 (where α0 + α1 = 1), β00, β01, and β02 (where β00 + β01 + β02 = 1),
β10, β11, and β12 (where β10 + β11 + β12 = 1) are given, we can minimise the expected
costs in Eq. (8) and Eq. (15), respectively, to obtain the optimal values h0, h1, and n.

5 Numerical experiments

In this section, we use both artificial generated data and real data for validating the
approaches proposed in this paper.

5.1 Artificial generated data

Assume that F1(x1) = 1− exp(−( x1
300

)2.5), and F2(x2) = 1− exp(−( x2
200

)4). We also assume
the parameter values in Table 1 in this example.
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With the parameter values listed in Table 1, we can compare the values of the expected
cost per time unit derived by Eq (8) and Eq (15). Table 2 shows the expected cost per time
unit against sampling intervals h for the system monitored with the static control chart.
Table 3 shows the expected cost per time unit against longer sampling intervals h0 and
shorter sampling intervals h1. For example, when h0 is 80, then h1 = 48 makes the expected
value per time unit minimised (the minimised value is 3.510). This experiment offers the
following optimal solutions for the static and adaptive control charts, respectively.

• When h is 88, the expected cost per time unit achieves the minimal value 3.531847 for
the static control chart.
• When h0 = 104, and h1 = 9, the expected long-run cost per time unit is 3.306189 for

the adaptive control chart.

It can be seen from the above solutions that the adaptive control chart is superior over the
static control chart. However, for given sampling intervals, for example, h0 = h1 = h = 40,
then the optimal expected cost per time unit, Ea(T,C), incurred in the static control chart
case can be smaller than in the adaptive control chart case. This is because there is cost
added by an additional sampling interval h1 immediately followed by sampling interval
with another length h0 in the adaptive control chart case.

Table 3 also indicates that for minimising the expected long-run cost per time unit a larger
value h0 should be followed by a smaller value h1, whereas a smaller value h0 should be
followed by a larger value h1, although in both cases h0 > h1. For example, when h0 is
smaller than 60, every long sampling interval h0 should be followed by the same length of
short sampling interval h1: the values of the two columns h1 and h0 are the same. When
h0 is larger than 60, every long sampling interval h0 should be followed by the smaller
length of short sampling interval h1.

5.2 Vibration data of bearings

Figure 3 shows the data of the overall vibration level in root mean square (RMS) value of
six bearings. The data were collected from an accelerated laboratory experiment. It has
been generally accepted in the case of vibration monitoring that a consistent increase in
the overall vibration level is a good indicator of the presence of a hidden defect which
indicates clearly a two-stage process [2,8].

If we use RMS=4.15 as a threshold: the RMS larger than 4.15 implies that the process is
in the failure delay time and the RMS less than 4.15 suggests that the process is in the
normal working stage. We can obtain the exact time before each bearing passes over the
threshold. By treating these data as time-to-failure data and using maximum likelihood
estimation, we can obtain that F1(x1) = 1 − exp(−( x1

161.58
)0.72). Similarly, we can obtain

F2(x2) = 1 − exp(−( x2
78.62

)1.80). Assume cs=0.08, ci=80, cr1=1500, cr2=5000, and n = 5,
and the rest parameter values are the same as those in Table 1. Then we can obtain the
optimal solution Ea(T,C) = 7.75 when an adaptive control chart with h0 = 13 and h1 = 1

13



is used, whereas the optimal value Ef (T,C) = 7.95 when a static control with a sample
interval h = 9 is used.

6 Conclusions

In this paper, we formulated the expected long-run cost per time unit for a three-state
system monitored by an adaptive control chart with variable parameters and a control
chart with static parameters. The adaptive control chart has variable sampling intervals:
if the control chart signals that the system is near out-of-control at a time point, the
subsequent sampling will be conducted in a shorter time period.

The numerical example shows that applying an adaptive control chart to monitor a three-
state system is more cost effective than applying a static one. It also shows that for
economically maintaining a three state system, an adaptive control chart should be de-
signed to be that the length of the longer sampling interval should be inverse proportional
to the length of the shorter sampling interval.
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Fig. 1. A control chart with two zones Fig. 2. A control chart with three zones

Fig. 3. Vibration data of six bearings. (X-axis: operating hours since new; Y-axis: vibration
levels (rms))
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Table 1
Parameters used in the numerical example.

α0 α1 β00 β01 β02 β10 β11 β12 cs ci cr1 cr2 n

0.95 0.05 0.833 0.147 0.02 0.02 0.08 0.9 1 100 500 5000 100

Table 2
The expected cost per time unit of different sampling intervals.

h cost h cost h cost h cost h cost h cost

40 4.659 60 3.842 80 3.586 100 3.613 120 3.805 140 4.092

45 4.367 65 3.742 85 3.572 105 3.649 125 3.870 145 4.174

50 4.145 70 3.668 90 3.573 110 3.694 130 3.940 150 4.259

55 3.974 75 3.617 95 3.587 115 3.746 135 4.014

Table 3
The expected cost per time unit with changing longer and shorter sampling intervals.

h0 h1 Ea(T,C) h0 h1 Ea(T,C) h0 h1 Ea(T,C) h0 h1 Ea(T,C)

40 36 4.684 70 49 3.646 100 10 3.374 130 3 3.431

45 45 4.391 75 52 3.572 105 9 3.354 135 3 3.471

50 50 4.162 80 48 3.510 110 4 3.351 140 3 3.520

55 55 3.983 85 34 3.457 115 4 3.357 145 3 3.577

60 60 3.842 90 27 3.422 120 4 3.372 150 3 3.642

65 58 3.730 95 19 3.387 125 3 3.398
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