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Abstract

The concepts of infinity and infinitesimal in mathematics date back to an-
ciens Greek and have always attracted great attention. Very recently, a new
methodology has been proposed by Sergeyev [10] for performing calculations
with infinite and infinitesimal quantities, by introducing an infinite unit of
measure expressed by the numeral ① (grossone). An important character-
istic of this novel approach is its attention to numerical aspects. In this
paper we will present some possible applications and use of ① in Operations
Research and Mathematical Programming. In particular, we will show how
the use of ① can be beneficial in anti–cycling procedure for the well–known
simplex method for solving Linear Programming Problems and in defining
exact differentiable Penalty Functions in Nonlinear Programming.
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1. Introduction

A novel approach to infinite and infinitesimal numbers has been recently
proposed by Sergeyev in a book and in a series of papers [10, 11, 12, 13]. By
introducing a new infinite unit of measure (the numeral grossone, indicated
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by ①) as the number of elements of the set of the natural numbers, he shows
that it is possible to effectively work with infinite and infinitesimal quantities
and to solve many problems connected to them in the field of applied and
theoretical mathematics. In this new system, there is the opportunity to
treat infinite and infinitesimal numbers as particular cases of a single struc-
ture, offering a new view and alternative approaches to important aspects of
mathematics such as sums of series (in particular, divergent series), limits,
derivatives, etc.

The new numeral grossone can be introduced by describing its properties
(in a similar way as done in the past with the introduction of 0 to switch
from natural to integer numbers). The Infinity Unit Axiom postulate (IUA)
[11, 10] is composed of three parts: Infinity, Identity, and Divisibility:

• Infinity. Any finite natural number n is less than grossone, i.e., n < ①.

• Identity. The following relationships link ① to the identity elements
0 end 1

0 ·① = ① · 0 = 0, ①−① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0 (1)

• Divisibility. For any finite natural number n, the sets Nk,n, 1 ≤ k ≤ n,

Nk,n = k, k + n, k + 2n, k + 3n, ...., 1 ≤ k ≤ n,

n⋃

k=1

Nk,n = N (2)

have the same number of elements indicated by ①
n
.

The axiom above states that the infinite number ①, greater than any finite
number, behaves as any natural number with the elements 0 and 1. Moreover,

the quantities ①
n

are integers for any natural n. This axiom is added to
the standard axioms of real numbers and, therefore, all standard properties
(commutative, associative, existence of inverse, etc.) also apply to ①.

Sergeyev [12, 13] also defines a new way to express the infinite and in-
finitesimal numbers using a register similar to traditional positional number
system, but with base number ①. A number C in this new system can be
constructed by subdividing it into groups corresponding to powers of ① and
has the following representation:

C = cpm①pm + .... + cp1①
p1 + cp0①

p0 + cp−1
①p−1 + .... + cp

−k
①p

−k . (3)
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where the quantities ci (the grossdigits) and pi (the grosspowers) are ex-
pressed by the traditional numerical system for representing finite numbers
(for example, floating point numbers). The grosspowers are sorted in de-
scending order:

pm > pm−1 > .... > p1 > p0 > p−1 > ...p−(k−1) > p−k

with p0 = 0.
In this new numeral system, finite numbers are represented by numerals

with only one grosspower p0 = 0. Infinitesimal numbers are represented by
numeral C having only negative finite or infinite grosspowers. The simplest
infinitesimal number is ①−1 for which

①−1① = ① ①−1 = 1. (4)

We note that infinitesimal numbers are not equal to zero. In particular,
1

①
> 0. Infinite numbers are expressed by numerals having at least one finite

or infinite grosspower greater than zero.
A peculiar characteristic of the newly proposed numeral system is its

attention to its numerical aspects and to applications. The Infinity Computer
proposed by Sergeyev is able to execute computations with infinite, finite, and
infinitesimal numbers numerically (not symbolically) in a novel framework.

In this paper we will present two possible uses of this numeral system
in Mathematical Programming and Operations Research. In particular, in
Section 2 we will show a simple way to implement anti–cycling strategies in
the simplex method for solving Linear Programming problems. Various anti–
ciclyng procedures have been proposed and implemented in state–of-the–art
softwares. The lexicographic strategies has received particular attention since
it allows, in contrast to Bland’s rule, complete freedom in choosing, at each
iteration, the entering variable. In Section 3 we revert our attention to Non-
linear Programming problems and, in particular, to differentiable penalty
functions. In the new numeral system it is possible to define an exact, dif-
ferentiable penalty function and we will show that stationary points of this
penalty function are KKT points for the original Nonlinear Programming
problem. Two simple examples are also provided showing the effectiveness
of this approach. Conclusions and indications for further applications of ①

in Mathematical Programming are reported in Section 4.
We briefly describe our notation now. All vectors are column vectors and

will be indicated with lower case Latin letter (x, z, . . .). Subscripts indicate
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components of a vector, while superscripts are used to identify different vec-
tors. Matrices will be indicated with upper case roman letter (A, B, . . .).
If A ∈ R

m×n, A.j is the j–th column of A; if B ⊆ {1, . . . , n}, A.B is the
submatrix of A composed by all columns A.j such that j ∈ B. The set of
real numbers and the set of nonnegative real numbers will be denoted by R

and R+ respectively. The rank of a matrix A will be indicated by rankA.
The space of the n–dimensional vectors with real components will be indi-
cated by R

n and R
n
+ is an abbreviation for the nonnegative orthant in R

n.
The symbol ‖x‖ indicates the Euclidean norm of a vector x. Superscript T

indicates transpose. The scalar product of two vectors x and y in R
n will be

denoted by xT y. Here and throughout the symbols := and =: denote defini-
tion of the term on the left and the right sides of each symbol, respectively.
The gradient ∇f(x) of a continuously differentiable function f : Rn → R at
a point x ∈ R

n is assumed to be a column vector. If F : Rn → R
m is a

continuously differentiable vector–valued function, then ∇F (x) denotes the
Jacobian matrix of F at x ∈ R

n.

2. Lexicograhic rule and grossone

The simplex method, originally proposed by G.B. Dantzig [4] more than
half a century ago, is still today one of the most used algorithms for solving
Linear Programming problems. Finite termination of the method can only
be guaranteed if special techniques are employed to eliminate cycling. In
this section we will show how in the new numeral system it is very simple to
implement such anti–cycling rules.

Given a matrix A ∈ R
m×n with rankA = m and vectors b ∈ R

m and
c ∈ R

n, the Linear Programming problem in standard form can be stated as
follows

min
x

cTx

subject to Ax = b
x ≥ 0.

(5)

The simplex algorithm moves from a Basic Feasible Solution (BFS) to
an adjacent Basic Feasible Solution until an optimal solution is reached or
unboundness of the problem is detected.

More precisely, a submatrix AB. ∈ R
m×m is a basis matrix if it is non-

singular; a point x̄ ∈ R
n is a BFS if it is feasible and the columns of A

corresponding to positive components of x̄ are linearly independent. Basic
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Feasible Solutions correspond to vertices of the feasible region. A vertex x̄ is
non–degenerate if exactly m components of x̄ are positive: in this case there
is a single Basis matrix associated to the point. A vertex x̄ is degenerate if
fewer than m components are strictly positive: in this case more than one
basis matrix can be associated to the point.

Finding an initial Basic Feasible Solution, if it exists, requires to solve (al-
ways using the Simplex Method) an auxiliary problem, whose initial solution
is trivially obtained adding artificial variables.

A single iteration of the (primal) simplex method requires the following
steps:

Step 0 Let B ⊆ {1, . . . , n} be the current base and let x ∈ X the
current BFS

xB = A−1
.B b ≥ 0, xN = 0, |B| = m.

Assume

B = {j1, j2, . . . , jm}

and
N = {1, . . . , n} \B = {jm+1, . . . , jn} .

Step 1 Compute
π = A−T

.B cB

and the reduced cost vector

c̄jk = cjk − A.jk
Tπ, k = m+ 1, . . . , n.

Step 2 If
c̄jk ≥ 0, ∀k = m+ 1, . . . , n

the current point is an optimal BFS and the algorithm stops.
Instead, if c̄N 6≥ 0, choose jr with r ∈ {m+ 1, . . . , n} such that c̄jr < 0.
This is the variable candidate to enter the base.

Step 3 Compute
Ā.jr = A−1

.B A.jr
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Step 4 If
Ā.jr ≤ 0

the problem is unbounded below and the algorithm stops.
Otherwise, compute

ρ̄ = min
i:Āijr>0

{(
A−1

.B b
)
i

Āijr

}

and let s ∈ {1, . . . , m} such that

{(
A−1

.B b
)
s

Āsjr

}
= ρ̄; js is the leaving

variable.

Step 5 Define

x̄jk = 0, k = m+ 1, . . . , n, k 6= r
x̄jr = ρ̄
x̄B(ρ) = A−1

.B b− ρ̄Ā.jr .

and

B̄ = B \ {js} ∪ {jr} = {j1, j2, . . . , js−1, jr, js+1, . . . , jm}

Note that, when a non–degenerate step is performed, the objective func-
tion value strictly decreases. Therefore, the Simplex Method will terminate
after a finite number of steps if all the BFS are non–degenerate. In case
of degenerate BFS, the objective function value may remain the same for a
number of steps and the algorithm will cycle. Therefore, specific anti–cycling
rules must be implemented to avoid this negative feature.

Among the various anti–cycling criteria, the lexicographic pivoting rule
[5, 15] has received special attention since, in contrast to other rules such as
Bland’s rule, there is a complete freedom in choosing the entering variable.

The lexicographic simplex method requires, at each iteration, to choose
the leaving variable using a specific procedure (the lexicographic rule) [15].

Let B0 be the initial base and N0 = {1, . . . , n} \ B0. We can always
assume, after columns reordering, that A has the form

A =

[
A.B0

... A.N0

]

6



Let

ρ̄ = min
i:Āijr>0

(A.−1
B b)i

Āijr

if such minimum value is reached in only one index, this is the leaving vari-
able. Otherwise, let

I1 :=

{
i ∈ {1, . . . , m} : Āijr > 0 and

(A.−1
B b)i

Āijr

= ρ̄

}

and

ρ̄1 := min
i∈I1

(A.−1
B A.B0

)i1
Āijr

.

and choose the index i1 ∈ I1 getting the minimum, that is the index i1 such
that

(A.−1
B A.B0

)i11
Āi1jr

= ρ̄1.

If the minimum is reached by only one index i1, then this is the leaving
variable. Otherwise, let

I2 :=

{
i ∈ I1 :

(A.−1
B A.B0

)i1
Āijr

= ρ̄1

}
and ρ̄2 := min

i∈I2

(A.−1
B A.B0

)i2
Āijr

and choose the index i2 ∈ I2 getting the minimum, that is the index i2 such
that

(A.−1
B A.B0

)i22
Āi2jr

= ρ̄2.

This procedure will terminate providing a single index since the rows of
the matrix (A−1

.B A.B0
) are linearly independent. The finiteness of the lexi-

cographic simplex method follows from the simple observation that the vec-
tor whose first element is the current objective function value and the other
components are the reduced costs, strictly lexicographically decreases at each
iteration.

The procedure outlined above is equivalent to perturb each component
of the RHS vector b by a very small quantity [2].

If this perturbation is small enough, the new Linear Programming prob-
lem is nondegerate and the simplex method produces exactly the same pivot
sequence as the lexicographic pivot rule.
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However, is very difficult to determine how small this perturbation must
be. More often a symbolic perturbation is used (with higher computational
costs).

In the new numeral system obtained by the introduction of ① we propose
to replace bi by

b̃i = bi +
∑

j∈B0

Aij①
−j. (6)

More specifically, let

e =




①−1

①−2

...
①−m




and define
b̃ = A.−1

B (b+ A.B0
e) = A.−1

B b+ A.−1
B A.B0

e. (7)

Therefore, b̃i = (A.−1
B b)i +

m∑

k=1

(A.−1
B A.B0

)ik①−k and

min
i:Āijr>0

(A.−1
B b)i +

m∑

k=1

(A.−1
B A.B0

)ik①−k

Āijr

= min
i:Āijr>0

(A.−1
B b)i

Āijr

+
(A.−1

B A.B0
)i1

Āijr

①−1 + . . .+
(A.−1

B A.B0
)im

Āijr

①−m (8)

Taking into account the properties of the power of ①, the index i that will
be chosen by the formula (8) will be exactly the same obtained by the lexi-
cographic pivoting rule outlined before.

3. Nonlinear programming

Nonlinear constrained optimization problems are an important class of
problems with a broad range of engineering, scientific, and operational ap-
plications. The problem can be stated as follows:

min
x

f(x)

subject to g(x) ≤ 0
h(x) = 0

(9)
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where f : Rn → R, g : Rn → R
m , and h : Rn → R

p. For simplicity we will
assume that the functions f , g, and h are twice continuously differentiable.
The feasible set will be indicated by X . In this section we will show how,
using the new numeral system, it is possible to introduce exact differentiable
penalty functions and we will discuss the relationship between stationary
point of the penalty function and KKT points of the original constrained
problem. After introducing some basic concepts and definitions, we consider
in Subsection 3.1 the equality constrained case and later, in Subsection 3.2,
the most general case of equality and inequality constraints.

Definition 1. Given a point x0 ∈ X, the set of active constraints at x0 is

I(x0) = {1, . . . p} ∪
{
i ∈ {1, . . .m} : gi(x

0) = 0
}
.

Definition 2. The linear independence constraint qualification (LICQ) con-
dition is said to hold true at x0 ∈ X if the set of gradients of the active
constraints at x0 is linearly independent.

The associated Lagrangian function L(x, µ, π) is :

L(x, π, µ) := f(x) + µTg(x) + πTh(x) (10)

where π ∈ R
p and µ ∈ R

m are the multipliers associated to the equality and
inequality constraints respectively.

Definition 3. A triplet (x∗, π∗, µ∗) is a Karush-Kuhn-Tucker (KKT) point
if

∇xL(x
∗, µ∗, π∗) = ∇f(x∗) +

m∑

i=1

∇gi(x
∗)µ∗

i +

p∑

j=1

∇hj(x
∗)π∗

j = 0

∇µL(x
∗, µ∗, π∗) = g(x∗) ≤ 0

∇πL(x
∗, µ∗, π∗) = h(x∗) = 0

µ∗ ≥ 0

µ∗T∇µL(x
∗, µ∗, π∗) = 0

The following theorem [9] states the first order necessary optimality con-
ditions for the nonlinear optimization problems.
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Theorem 3.1. Consider the nonlinear optimization problem (9). Let x∗ ∈
X be a local minimum of Problem (9), and assume that at x∗ the LICQ1

condition holds true. Then, there exist vectors µ∗ and π∗ such that the triplet
(x∗, π∗, µ∗) is a Karush-Kuhn-Tucker point.

Different algorithms have been proposed and studied for solving the gen-
eral nonlinear optimization problems. We refer the interested reader to the
classical book of Fletcher [7] and to the more recent book of Boyd and Van-
denberghe [1] for a general discussion of Nonlinear Programming algorithms.
Here we will concentrate our attention on exact penalty functions and we
will show how the use of ① can be beneficial in defining exact differentiable
penalty functions.

Let φ : x ∈ R
n → R+ be a continuously differentiable function such that

φ(x)

{
= 0 if x ∈ X
> 0 otherwise

A possible choice for the function φ(x) is

φ(x) =

m∑

i=1

max
{
gi(x), 0

}2
+

k∑

j=1

hj(x)
2

Note that this function is continuously differentiable but not twice differen-
tiable.

From the function φ(x), the exterior penalty function

P (x, ǫ) = f(x) +
1

2ǫ
φ(x)

can be constructed and the following unconstrained optimization problem
can be defined:

min
x

P (x, ǫ). (11)

It can be shown that there is no finite value of the penalty parameter
ǫ for which, by solving Problem (11), a solution of the original Problem
(9) is obtained. Sequential penalty methods require to solve a sequence of
minimization problems (similar to Problem (11)) for decreasing values of

1Weaker Constraint Qualification conditions can be imposed. See [14] for a review of
different Constraints Qualification conditions and the relationship among them.
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the parameter ǫ. It is possible to construct exact non–differentiable penalty
functions [7] as well as differentiable exact penalty function but, in this case,
it is necessary to introduce terms related to first order optimality conditions
[6], thus making the penalty function much more complicate.

We propose here to substitute the term 1/ǫ with ①. In the next sub-
section we will present convergence results for the simpler case of equality
constraints, while Subsection 3.2 will present results and a simple example
of exact penalty function for the more general case.

3.1. The equality constraint case.

Consider the optimization problem with equality constraints:

min
x

f(x)

subject to h(x) = 0
(12)

where f and h are defined as before.
The following theorem [7, Theorem 12.1.1] states the convergence for the

sequential penalty method.

Theorem 3.2. Let f(x) be bounded below in the (nonempty) feasible region,
and let {ǫk} be a monotonic non-increasing sequence such that {ǫk} ↓ 0, and
assume that for each k there exists a global minimum x(ǫk) of P (x; ǫk). Then

(i) {P (x(ǫk); ǫk)} is monotonically non–decreasing

(ii) {φ(x(ǫk))} is monotonically non–increasing

(iii) f(x(ǫk)) is monotonically non–decreasing

Moreover, limk h(x(ǫk)) = 0 and each limit point x∗ of the sequence {x(ǫk)}k
solves Problem (12).

In order to derive first order optimality condition, we will make the fol-
lowing assumptions on the functions f(x) and h(x), on the gradient ∇f(x)
and on the Jacobian ∇h(x):

Assumption 1. If

x = x0 + ①−1x1 + ①−2x2 + . . .

11



with xi ∈ R
n, then

f(x) = f(x0) + ①−1f (1)(x) + ①−2f (2)(x) + . . .

h(x) = h(x0) + ①−1h(1)(x) + ①−2h(2)(x) + . . .

∇f(x) = ∇f(x0) + ①−1F (1)(x) + ①−2F (2)(x) + . . .

∇h(x) = ∇h(x0) + ①−1H(1)(x) + ①−2H(2)(x) + . . .

where f (i) : Rn → R, h(i) : Rn → R
p, F (i) : Rn → R

n, H(i) : Rn → R
p×n are

all finite–value functions.

In the sequel, we will always suppose that the assumption above holds.
Note that Assumption 1 is satisfied (for example) by functions that are prod-
uct of polynomial functions in a single variable, i.e.,

p(x) = p1(x1)p2(x2) · · ·pn(xn)

where pi(xi) is a polynomial function.
We are now ready to state the convergence theorem for the exact penalty

function using ①.

Theorem 3.3. Consider Problem (12) and define the following unconstrained
problem

min
x

f(x) +
①

2
‖h(x)‖2. (13)

Let
x∗ = x∗0 + ①−1x∗1 + ①−2x∗2 + . . .

be a stationary point for (13) and assume that the LICQ condition holds true
at x∗0. Then, the pair

(
x∗0, π∗ = h(1)(x∗)

)
is a KKT point of (12).

Proof. Since x∗ = x∗0 +①−1x∗1 +①−2x∗2 + . . . is a stationary point we have
that

∇f(x∗) + ①

p∑

j=1

∇hj(x
∗)hj(x

∗) = 0

12



Therefore, from Assumption 1

∇f(x∗0) + ①−1F (1)(x∗) + ①−2F (2)(x∗) + . . .+

+①

p∑

j=1

[(
∇hj(x

∗0) + ①−1H
(1)
j (x∗) + ①−2H

(2)
j (x∗) + . . .

)

(
hj(x

∗0) + ①−1h
(1)
j (x∗) + ①−2h

(2)
j (x∗) + . . .

)]
= 0

and rearranging the terms we obtain:

①

(
p∑

j=1

∇hj(x
∗0)hj(x

∗0)

)
+

+

(
∇f(x∗0) +

p∑

j=1

∇hj(x
∗0)h

(1)
j (x∗) +

p∑

j=1

H
(1)
j (x∗)hj(x

∗0)

)
+

+①−1

(
. . .

)
+ ①−2

(
. . .

)
+ .... = 0

Hence,
p∑

j=1

∇hj(x
∗0)hj(x

∗0) = 0

and, from the LICQ condition, it follows that

h(x∗0) = 0. (14)

Therefore, the point x∗0 is feasible for (12). Moreover, from

∇f(x∗0) +

p∑

j=1

∇hj(x
∗0)h

(1)
j (x∗) +

p∑

j=1

H
(1)
j (x∗)hj(x

∗0) = 0

and (14) above, it follows that

∇f(x∗0) +
k∑

j=1

∇hj(x
∗0)h

(1)
j (x∗) = 0 (15)

that shows that
(
x∗0, π∗ = h(1)(x∗)

)
is a KKT point of (12).
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3.1.1. A simple example

Consider the following simple 2–dimensional optimization problem with
a single linear constraint2:

min
x

1

2
x2
1 +

1

6
x2
2

subject to x1 + x2 = 1
(16)

The pair (x̄, π̄) with x̄ =

[
1/4
3/4

]
, π̄ = −

1

4
is a KKT point. The correspond-

ing unconstrained optimization problem is

min
x

1

2
x2
1 +

1

6
x2
2 −

1

2
①(1− x1 − x2)

2 (17)

and the first Order Optimality Conditions are
{

x1 − ①(1− x1 − x2) = 0
1
3
x2 − ①(1− x1 − x2) = 0

Therefore, the point

x∗
1 =

1①

1 + 4①
, x∗

2 =
3①

1 + 4①

is a stationary point of Problem (17). Note that

x∗
1 = 1

4
− ①−1

(
1
16

− 1
64

①−1 . . .
)

x∗
2 = 3

4
− ①−1

(
3
16

− 3
64

①−1 . . .
)

and x∗0
1 = 1

4
= x̄1 and x∗0

2 = 3
4
= x̄2. Moreover,

−①(1− x∗
1 − x∗

2) =− ①
(
1−

1

4
+ ①−1 1

16
−

1

64
①−2 . . .

−
3

4
+ ①−1 3

16
−

3

64
①−2 . . .

)

=− ①

(
①−1 1

16
+ ①−1 3

16
− ①−2 4

64
. . .

)

=−
1

4
+

4

64
①−1 . . .

and h(1)(x∗) = −1
4
= π̄

2The example is taken from [8]
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3.2. The general constrained case.

In this subsection we return back to the most general nonlinear optimiza-
tion problem (9) with equality and inequality constraints and we introduce
the following corresponding unconstrained optimization problem:

min
x

f(x) +
1

2
① ‖max{0, gi(x)}‖

2 +
1

2
① ‖h(x)‖2 (18)

In addition to the conditions stated in Assumption 1 we similarly require
that, under the same hypothesis on x, the following conditions hold true:

g(x) = g(x0) + ①−1g(1)(x) + ①−2g(2)(x) + . . .

∇g(x) = ∇g(x0) + ①−1G(1)(x) + ①−2G(2)(x) + . . .

In order to derive optimality conditions we need a modified version of the
LICQ condition.

Definition 4. Let x0 ∈ R
n. The Modified LICQ (MLICQ) condition is said

to hold true at x0 if the vectors
{
∇gi(x

0)i:gi(x0)≥0,∇hj(x
0)j=1,...,k

}
are linearly

independent.

The following theorem shows the relationship between stationary points
of Problem (18) and KKT points of the general optimization Problem (9).

Theorem 3.4. Consider the Problem (9) and the corresponding unconstrained
Problem (18). Let

x∗ = x∗0 + ①−1x∗1 + ①−2x∗2 + . . .

be a stationary point for (18) and assume that MLICQ condition holds true

at x∗0. Then, the triplet
(
x∗0, µ∗, π∗ = h(1)(x∗)

)
is a KKT point of (9) where

µ∗
i =

{
0 if gi(x

∗0) < 0

max
{
0, g

(1)
i (x∗)

}
if gi(x

∗0) = 0

Proof. Since x∗ = x∗0 +①−1x∗1 +①−2x∗2 + . . . is a stationary point we have

∇f(x∗) + ①

m∑

i=1

∇gi(x
∗)max {0, gi(x

∗)}+ ①

p∑

j=1

∇hj(x
∗)hj(x

∗) = 0.
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From Assumption 1 we obtain

∇f(x∗0) + ①−1F (1)(x∗) + ①−2F (2)(x∗) + . . .+

+①

m∑

i=1

[(
∇gi(x

∗0) + ①−1G
(1)
i (x∗) + ①−2G

(2)
i (x∗) + . . .

)

(
max

{
0, gi(x

∗0) + ①−1g
(1)
i (x∗) + ①−2g

(2)
i (x∗) + . . .

})]
+

+①

p∑

j=1

[(
∇hj(x

∗0) + ①−1H
(1)
j (x∗) + ①−2H

(2)
j (x∗) + . . .

)

(
hj(x

∗0) + ①−1h
(1)
j (x∗) + ①−2h

(2)
j (x∗) + . . .

)]
= 0

Note that the following implications hold:

gi(x
∗0) > 0 ⇒ max {0, gi(x

∗)} = gi(x
∗0) + ①−1g

(1)
i (x∗) + ①−2g

(2)
i (x∗) . . .

gi(x
∗0) < 0 ⇒ max {0, gi(x

∗)} = 0

gi(x
∗0) = 0 ⇒ max {0, gi(x

∗)} = ①−1max
{
0, g

(1)
i (x∗) + ①−1g

(2)
i (x∗) + . . .

}
.

Therefore,

∇f(x∗0) + ①−1F (1)(x∗) + ①−2F (2)(x∗) + . . .+

+①

m∑

i=1
gi(x∗0)>0

[(
∇gi(x

∗0) + ①−1G
(1)
i (x∗) + ①−2G

(2)
i (x∗) + . . .

)

(
gi(x

∗0) + ①−1g
(1)
i (x∗) + ①−2g

(2)
i (x∗) + . . .

)]
+

+①

m∑

i=1
gi(x∗0)=0

[(
∇gi(x

∗0) + ①−1G
(1)
i (x∗) + ①−2G

(2)
i (x∗) + . . .

)

(
①−1max

{
0, g

(1)
i (x∗) + ①−1g

(2)
i (x∗) + . . .

})]
+

+①

p∑

j=1

[(
∇hj(x

∗0) + ①−1H
(1)
j (x∗) + ①−2H

(2)
j (x∗) + . . .

)

(
hj(x

∗0) + ①−1h
(1)
j (x∗) + ①−2h

(2)
j (x∗) + . . .

)]
= 0
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Similarly to the equality constraint case, after rearranging terms we obtain:

m∑

i=1
gi(x∗0)≥0

∇gi(x
∗0)gi(x

∗0) +

p∑

j=1

∇hj(x
∗0)hj(x

∗0) = 0

and, since MLICQ holds at x∗0, g(x∗0) ≤ 0 and h(x∗0) = 0. Morever, taking
into account that g(x∗0) ≤ 0, we obtain that

∇f(x∗0) +
m∑

i=1
gi(x∗0)=0

∇gi(x
∗0)max

{
0, g

(1)
i (x∗)

}
+

p∑

j=1

∇hj(x
∗0)h

(1)
j (x∗) = 0

that completes the proof.

It is worth to note that, when gi(x
∗0) = 0, it is still possible that g

(1)
i (x∗)+

①−1g
(2)
i (x∗) + . . . > 0 and, therefore, the quantity

m∑

i=1
gi(x

∗0)=0

∇gi(x
∗0)g

(1)
i (x∗) is

present in the last equation of the proof.

3.2.1. A second example

Also in this case we present a very simple example to clarify the previous
result. Consider the minimization problem

min
x∈R

x

subject to x ≥ 1
(19)

(i.e., g(x) = 1 − x) for which the optimal solution is x̄ = 1 with associated
multiplier µ̄ = 1. The corresponding unconstrained optimization problem is

min
x∈R

x+
①

2
max {0, 1− x}2 . (20)

The first order optimality condition is

1− ①max {0, 1− x} = 0.

The above equation has no solution when 1 − x ≤ 0 and for x < 1 the only
solution is

x∗ =
① − 1

①
= 1− ①−1

Therefore, as expected, x∗0 = 1. Moreover, g(x∗) = 1 −
(
1− ①−1

)
= ①−1

and µ∗ = 1.
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4. Conclusions

In this paper we have presented possible uses of ① in Linear and Nonlinear
Programming. In the new numerical system, making full use of ①, it is possi-
ble to implement, in a very simple way, anti–cycling strategies for the simplex
method. Moreover, we have shown that exact, differentiable penalty meth-
ods can be constructed for general nonlinear programming. These are not
the only possible applications of ① in Operations Research and Mathemat-
ical Programming. Another interesting application is in Data Envelopment
Analysis (DEA) methodology. In the basic version proposed by Charnes,
Cooper and Rhodes [3] the use of a infinitesimal non–archimedean quantity
ǫ is proposed. Negative power of ① will allow to achieve the same theoretical
results and, thus, the efficiency of a single Decision Making Unit (DMU) can
be easily obtained by solving a single Linear Programming problems using
the new arithmetic based on ①.
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