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Abstract

This paper presents an application of the Infinite Unit Axiom, introduced by
Yaroslav Sergeyev, (see [11] - [14]) to the development of one-dimensional cel-
lular automata. This application allows the establishment of a new and more
precise metric on the space of definition for one-dimensional cellular automata,
whereby accuracy of computations is increased. Using this new metric, open
disks are defined and the number of points in each disk is computed. The for-
ward dynamics of a cellular automaton map are also studied via defined equiva-
lence classes. Using the Infinite Unit Axiom, the number of configurations that
stay close to a given configuration under the shift automaton map can now be
computed.

Keywords: cellular automata, Infinite Unit Axiom, grossone, metric,
nonarchimedean metric.

1. Introduction

Unlike natural systems, which eventually evolve to maximal entropy, cellu-
lar automata are discrete dynamical systems that are known for their strong
modeling and self-organizational properties. Defined on an infinite lattice (in
the usual one-dimensional case, an infinite sequence defined on the integers),
even starting with complete disorder, evolution of cellular automata can gen-
erate organized structure. Originally developed by Von Neuman in the 1940’s
to model biological self-reproduction, cellular automata have long been used
in computational, physical, and biological applications. For a more complete
description of applications of cellular automata see [1, 7, 8, 9, 15, 16, 17, 21],
and [22]. As with all dynamical systems, it is interesting to understand the long
term behavior under forward time evolution and achieve an understanding or
classification of the system. Cellular automata can be defined for any dimension
greater than or equal to one. This paper is concerned with one-dimensional or
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linear cellular automata defined on the integers (when no confusion arises, we
will refer to one-dimensional cellular automata as simply cellular automata).
See figure 1 for an example of a one-dimensional cellular automaton. This is
Wolfram binary rule 20 with range equal to 2, see [18] and [19]. Starting with
a random initial configuration, the cellular automaton evolves (under repeated
applications) downward. In this example, it’s interesting to note the two per-
sisting structures that emerge. The structure on the left evolves straight down,
while the structure on the right evolves down on an angle and can eventually
“crash” into other persisting structures.

The concept of classifying cellular automata was initiated by Stephen Wol-
fram, see [19]. In [19], one-dimensional cellular automata are partitioned into
four classes depending on their dynamical behavior. Figure 1 (rule 20) is an
example of a Wolfram class 4 cellular automaton. A later and more rigorous
classification scheme, see [5], was developed by Robert Gilman. Here a proba-
bilistic/measure theoretic classification was developed based on the probability
of choosing a sequence that will stay arbitrarily close to a given initial sequence
under forward evolution (iteration). Gilman uses a metric that considers the
central window where two sequences (configurations) agree and continue to agree
upon forward iterations of a cellular automaton map. However, in the develop-
ment, this metric is limited because it doesn’t take into account configurations
that agree on an infinite interval to the right (or respectively to the left). In-
deed, the metric considers the absolute value of the first integral place where
configurations disagree and uses that as their distance apart, see [4] and [5].
For example, if configurations agree on the right hand side out to infinity but
disagree in some finite position on the left, their distance apart is determined
by where they disagree on the left. In this paper, the definition of cellular au-
tomata and the metric involved are extended to include configurations that do
not necessarily agree on a finite central window symmetric around 0, and also
which can agree on not necessarily symmetric infinite intervals.

The classical concept of infinity has presented limitations in computations.
Indeed, metrics used on infinite sequences, and hence cellular automata, either
do not allow us to observe minute differences or can lead to calculations beyond
finite computations. Analogous to the Hamming distance for finite sequences,
the following metric is used to compute distances between infinite sequences.

d(x, y) =
∞
∑

i=−∞

|x(i)− y(i)|

2|i|
(1)

Here the differences in the respective sequence values are computed and divided
by 2|i| to ensure convergence. However, this procedure can lead to a calculation
beyond finite computation and to possible inaccuracies. For instance, using the
binary alphabet S={0,1}, suppose two sequences agree completely on the left of
and at the 0th place, and disagree elsewhere. That is, they disagree on the right
of 0 or for integral values i > 0. Applying the traditional well known formula



Figure 1: Example of a One-dimensional Cellular Automaton (Wolfram rule 20)

to (1) yields
k

∑

i=1

1

2i
= 1−

1

2k
(2)

and taking limits as k approaches infinity, results in a value of 1. By using
the Infinite Unit Axiom, see [11] - [14], and |N| = ① (the symbol ① is called
grossone by Sergeyev and represents the number of elements in the set of natural
numbers), the computational limitations caused by sequences that agree out to
one-sided infinity or that are subject to infinite computations are overcome. As
shown for infinite k, that is for k = ①

①
∑

i=1

1

2i
= 1−

1

2①
(3)

and note that 1

2①
is infinitesimal (see [11]). Hence (3) produces a more precise

representation of the infinite sum computation.
Before defining cellular automata with the infinite metric we need a few

preliminaries. The set of integers is denoted by Z; N is the set of natural
numbers and let N0 = N ∪ {0}. Given a finite alphabet S with two or more
symbols, i.e. |S| ≥ 2, consider the space of all functions from the integers to
the finite alphabet, i.e. SZ. This space may also be considered as the space
of all bi-infinite sequences, defined on the integers, with values taken from the
alphabet S. In [5] the following metric was used on the space SZ. Let

d(x, y) = 2−n, where n = inf{|i| : x(i) 6= y(i)} (4)

It is noted that this metric satisfies the ultrametric property. A metric d(x, y)



satisfies the ultrametric property iff it is a metric and obeys the inequality:

d(x, y) ≤ max [d(x, z), d(z, y)]

A space that satisfies the ultrametric inequality is also called a nonarchimedean
space, see [10]. It is obvious that the triangle inequality is implied by the
ultrametric inequality. As can be seen, the metric defined in (4) above considers
only the symmetric window around i = 0. Two sequences may agree in more
integral values on one side but this information is not communicated by the
metric. In this paper this inaccuracy is overcome by using the Infinite Unit
Axiom, |N| = ①, and developing new machinery to work with infinite sequences.
It is noted that, in a nonarchimedean space given two open disks either one
contains the other or they intersect trivially.

2. Metric Development

The following definitions, lemmas and theorem will be used to develop the
framework for a generalized nonarchimedean metric on the space of bi-infinite
sequences.

Definition 1. A LTSL (Lower Tree Semi-Lattice) is a Lower Semi-Lattice with
lower element ∗ having the Semi-Total Ordering property. A Lower Semi Lattice
has the binary operator infimum (∧) such that the following laws hold:

1. Idempotent law a ∧ a = a

2. Commutative law a ∧ b = b ∧ a

3. Associative law (a ∧ b) ∧ c = a ∧ (b ∧ c)

4. Lower element ∗ obeys the lower unit law ∗ ∧ a = ∗

The Semi-Total Ordering property is: If x ∧ y = a and x∧ z = b then either
a ≤ b or b ≤ a.

Lemma 1. In a LTSL, if x ∧ y = a, x ∧ z = b and y ∧ z = c then the set of
elements {a, b, c} is a totally ordered set.

Proof: By definition of a LTSL, say that a ≤ b. Now a ≤ c or c ≤ a. If
the latter is true then we are done, since in this case c ≤ a ≤ b holds true.
Otherwise, a ≤ c and c ≤ b or b ≤ c. So a ≤ c ≤ b or a ≤ b ≤ c holds. �

Lemma 2. In a LTSL, if x∧ y = a, x∧ z = b, and y ∧ z = c then the smallest
two elements from {a, b, c} are equal.

Proof: From lemma 1 {a, b, c} is totally ordered. Without loss of generality,
say a ≤ b ≤ c, we will show b ≤ a. Using x ∧ y ∧ z = (x ∧ z) ∧ (y ∧ z) ≤ x ∧ y

gives b ∧ c ≤ a, but b ∧ c = b, hence a = b. �

Definition 2. An Evaluation function is defined by F : X → (0, 1], with X a
LTSL, F (∗) = 1, and F monotonically decreasing (i.e. a ≤ b implies F (a) ≥
F (b)).



Theorem 1. If d : X ×X → [0, 1], with X a LTSL, and F is an evaluation
function where d(x, y) = F (x ∧ y) whenever x 6= y, and d(x, y) = 0 otherwise,
then d is a nonarchimedean metric.

Proof: By construction d is positive definite, and symmetric. The ultramet-
ric triangle inequality: d(x, y) ≤ max[d(x, z), d(z, y)] holds since if two or
more elements in {x, y, z} are equal then at least one term from d(x, y) ≤
max[d(x, z), d(z, y)] is zero and the others are equal to each other. Other-
wise F (x∧ y) ≤ max [F (x ∧ z), F (z ∧ y)] holds true and applying Lemma 2 and
the non-increasing property of F , it follows that the two largest terms among
F (x ∧ y), F (x ∧ z), and F (z ∧ y) must be equal. �

A nonarchimedean metric d is thus defined on a LTSL X , for f, g ∈ X, as
follows:

d(f, g) =

{

0 if f = g

F (f ∧ g) otherwise

Let S be a finite alphabet of size s ≥ 2 and let X = (S ∪{∗})Z. X is the set
of all maps from the integers to S ∪ {∗}. That is, for x ∈ X , x : Z → S ∪ {∗}.
It is noted that the set S ∪ {∗} is compact and hence the product space X

is also compact. As the next definitions show, the Infinite Unit Axiom will be
applied and used in the construction of the metric for computations with infinite
sequences. The above lemmas and theorem show that the constructed metric is
an ultrametric and the space is nonarchimedean.

Definition 3. Let

x ∧ y =







x if x = y

∗ if x(0) 6= y(0) or x(0) = ∗
x(m)...x(0)...x(n) if x(i) = y(i)∀i ∈ [m,n] and ∗ outside

Note: m ≤ 0 and can equal −①, similarly n ≥ 0 can equal ①. Hence compu-
tations on infinite sequences are allowed. Thus, x ∧ y is the place where two
sequences agree on the largest stretch around 0 and is ∗ valued outside.

Definition 4.

F (x ∧ y) =

{

1 if x ∧ y = ∗

2−(n+1−m) if x ∧ y = ... ∗ ∗ ∗ x(m)...x(0)...x(n) ∗ ∗ ∗ ...

We form the following metric on the space of bi-infinite sequences:

d(x, y) =

{

0 if x = y

F (x ∧ y) otherwise

Example 1. Given S = {0, 1}, let x = ...111〈1〉111... and y = ...00011〈1〉111...
In our examples, when not explicitly denoted, we will use the symbol 〈 〉 to denote
the zeroth place. The sequences x and y agree completely on the right hand side,
and at integral values 0,−1, and −2.

x ∧ y = ... ∗ ∗ ∗ x(−2)x(−1)x(0)....x(n)....x(①)



F (x ∧ y) = 2−(①+1−(−2))

and

d(x, y) =
1

2①+3

Hence, the distance between the two points x and y is infinitesimal. As the
following example shows, the above construction easily covers the finite distance
case.

Example 2. Again, using the binary alphabet S = {0, 1}, let x = ...1110〈1〉0111...
and y = ...1100〈1〉0101...

x ∧ y = ... ∗ ∗ ∗ x(−1)x(0)x(1)x(2) ∗ ∗ ∗ ...

That is, the sequences differ in the −2 and 3rd integral positions. Hence,

F (x ∧ y) = 2−(2+1−(−1)) = 2−4

and

d(x, y) =
1

24

3. Cellular Automata

As before, S is an alphabet of size s such that s ≥ 2 and let X = SZ, i.e. the
set of all maps from the lattice Z to the set S. That is, for x ∈ X , x : Z → S.
Cellular automata are induced by arbitrary (local) maps:

F : S(2r+1) −→ S

These are usually called local rules or block maps in the literature, see [6] and
[5]. The value r ∈ N0 is called the range of the map. The automaton map f

induced by F is defined by f(x) = y with

y(i) = F [x(i − r), ..., x(i + r)]

To illustrate the importance of discrete time steps in the forward evolution of
the automaton, we will use the following formula where t represents time.

y(i)t+1 = F [x(i − r)t, ..., x(i + r)t]

The restriction of x ∈ X to a non-empty interval [i, j] of Z, where −① ≤ i ≤ j ≤
① is called a word. Words are written x[i, j]. The length of a word w = x[i, j] is
|w| = j − i+ 1. It is important to note that, using ①, words (or the length of a
word) can be infinite, however cannot have an endpoint greater than ① (nor less
than −①). Also, for any a ∈ S, define xa ∈ X by xa(i) = a, for i ∈ Z. Under
the usual product topology, a cylinder is a set C(i, j, w) = {x ∈ X |x[i, j] = w},



where |w| = j − i+1. Note that cylinders are both open and closed. We define
the open disk of radius 2−(n−m) around x to be C[m,n](x) = C(m,n, x[m,n])
for m ≤ 0 ≤ n. It will be shown that the number of points in an open disk can
now be determined.

The following is a simple, but important, example of a cellular automaton of
range r = 1. The evolutionary behavior of this automaton is clearly exhibited.

Example 3. Let S = {0, 1} and let f be the automaton induced by the local rule
F : S3 → S by F (1, 1, 1) = 1 and F (a, b, c) = 0 otherwise. If we apply forward
iterations of the induced automaton map f , all sequences eventually go to the
quiescent state of x0, except for the initial sequence x1 which remains constant.

In the previous example, given any finite word x[i, j] with at least one element
in the word not equal to 1, and an open disk C[i,j](x) around it, every point in
the open disk C[i,j](x), will eventually evolve, under forward iterations, to the
quiescent state of x0. Hence it makes sense to determine how many elements
are in these open disks. Theorem 2 and its corollary below will answer this
question. There are numerous other examples of cellular automata maps. A
more chaotic rule can be seen via the following example.

Example 4. Let S = {0, 1} and let f be the automaton induced by the local
rule F : S3 → S by F (a, b, c) = (a+ c)mod 2. Applying forward iterations of the
induced automaton map f yields no particular pattern. Beginning with an initial
random configuration in S = {0, 1}Z can yield many different configuration
sequences.

Theorem 2. Given the space SZ of bi-infinite sequences, the number of ele-

ments x ∈ SZ is equal to |S|2①+1.

Proof: |S| is the number of elements of the finite alphabet S. Over the integers,
Z, there are exactly ① elements to the right and exactly ① elements to the left

of 0. Hence there are |S|① choices in the sequence to the right and |S|① choices
in the sequence to the left of 0, plus |S| choices at the 0th place. Therefore

|SZ| = |S|① · |S|① · |S| = |S|2①+1. �

The proof of the following corollary is similar to that of the previous theorem
and hence omitted.

Corollary 1. The open disk C[m.n](x) around x contains |S|2①−(n−m) ele-
ments.

As mentioned in the introduction of this paper, Wolfram, [18], [19], observed,
after extensive computer simulations, that the dynamics of a cellular automaton
map can behave differently under different initial configurations. However, it
was also observed that if the configuration was chosen at random, the probability
is high that the dynamical behavior of the automaton map f will lie in one of
four classes. In [5] Gilman shows that a cellular automaton must lie in one
of three classes. These classes are determined by the probability of finding



another configuration that stays arbitrarily close to an initial configuration.
Hence it makes sense to study cellular automata by determining the number
of configurations that stay within a certain distance of the initial configuration
under the automaton map.

To understand the dynamics of cellular automata it is necessary to study the
forward iterates of configurations that stay “close” to those of a given configu-
ration, call it “x”. f i(x) is used to represent the ith iterate of the automaton
function f . That is, f i(x) = f ◦f ◦f ···◦f(x). Here an equivalence relation x ≈ y

iff ∀i ∈ N0, d(f
i(x), f i(y)) < 2−|n+1−m| is defined. The equivalence classes are

Bm,n(x). That is,

Bm,n(x) = {y | d(f i(y), f i(x)) < 2−|n+1−m| ∀i ∈ N0}

Bm,n(x) is the set of y for which (f i(y))[m,n] = (f i(x))[m,n], ∀i ∈ N0. Recall,
(f i(y))[m,n] represents words and that m ≤ 0 ≤ n.

Example 5. The left shift map, σ, is a cellular automaton of range 1, defined
by σ(xi) = xi+1. i.e. the map that shifts all symbols of a configuration to the
left, as illustrated below:

x = ...0 1 1 1 0 0 1 1 0 1 1 〈1〉 0 1 0 0 1 0 1 0 0 0 1 1...
σ(x) = ...1 1 1 0 0 1 1 0 1 1 1 〈0〉 1 0 0 1 0 1 0 0 0 1 1 ...

σ2(x) = ...1 1 0 0 1 1 0 1 1 1 0 〈1〉 0 0 1 0 1 0 0 0 1 1 ...

·
·
·

All configurations y ∈ Bm,n(x) would have to agree with x to the right, out to
① and at the zeroth place. Hence it is obvious that Bm,n(x) contains elements.

The number of elements in Bm,n(x) is at most |S|① + 1

The previous example can be extended for the right shift as well. Hence it is
shown that, given the right or left shift automaton map, the number of elements

in Bm,n(x) is at most |S|① + 1.

4. Conclusion

In this paper, the framework for defining and working with cellular automata
has been extended by applying the Infinite Unit Axiom, |N| = ①. In the classical
sense, the space SZ is considered uncountable and beyond our computational
abilities. Moreover, in the classical sense, the open disks C[i,j](x) around a point
x contain uncountably many points. By assuming the Infinite Unit Axiom, the
number of points in each open disk can now be known. Usual metrics on the
space SZ (the space of definition for cellular automata) are limited in accuracy.
Indeed, sequences can agree on infinite intervals and not have this information
communicated by the metric. This inaccuracy has also been overcome by ap-
plying the Infinite Unit Axiom and developing a new metric. In studying the



dynamics of an automaton map, it is necessary to analyze the elements of the
forward iterations and the quantity of elements that stay infinitesimally close
to a given configuration under the map. This was accomplished by looking at
the sets Bm,n(x) for the shift map and, using ①, determining the number of
elements contained within.
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