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Abstract

In this paper some global optimality conditions for general quadratic {0, 1} programming problems with linear equali-
ty constraints are discussed and then some global optimality conditions for quadratic assignment problems (QAP) are
presented. A local optimization method for (QAP) is derived according to the necessary global optimality conditions.
A global optimization method for (QAP) is presented by combining the sufficient global optimality conditions, the lo-
cal optimization method and some auxiliary functions. Some numerical examples are given to illustrate the efficiency
of the given optimization methods.
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1. Introduction

The quadratic assignment problem (QAP) was introduced by Koopmans and Beckmann in 1957, as a mathematical
model for the location of indivisible economical activities, see [1]. The (QAP) in Koopmans-Beckmann form can be
written as

n n n n n
(QAP) min Z Z Z Z a,-kbﬂx,-jxkl + Z CijXij
i=1 j=1 k=1 I=1 ij=1
n n
S.t. inj = 1, Zx,-j =1
i=1 =1
xi;€{0,1),i,j=1,2,....n.

It is astonishing how many real life applications can be modeled as (QAP)s. An early natural application in location
theory was used by Dickey and Hopkins (see [2]) in a campus planning model. In addition to facility location, (QAP)s
appear in a variety of applications such as computer manufacturing, scheduling, process communications and turbine
balancing. The traveling salesman problem may be seen as a special case of (QAP) if one assumes that the flows
connect all facilities only along a single ring, all flows have the same non-zero (constant) value. Many other problems
of standard combinatorial optimization problems may be also written in this form , see [3].

Besides the wide range of practical applications of the problem (QAP), it is NP-hard. The proof that the (QAP) is
indeed NP-complete was first shown by Sahni and Gonzalez [4] in 1976. Sahni and Gonzalez [4] also proved that any
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routine that finds even an g-approximate solution is also NP-complete, thus making the (QAP) among the “hardest of
the hard” of all combinatorial optimization problems. It is therefore not surprising that verifying optimality is also an
NP-hard problem. In fact, even checking local optimality is a hard problem, see [5].

Because of their many real world applications and complexity, many authors have investigated this problem class,
see [5, 6, 7, 8, 9]. When it comes to the global optimization methods, there are two classes of strategies: exact or
heuristic [3]. In the first case, the different methods used to achieve a global optimum for the (QAP) include branch-
and-bound, cutting plane methods [10, 11] or combinations of these methods, like branch-and-cut [12] and dynamic
programming [13]. Heuristic procedures include constructive methods [14, 15, 16], limited enumeration methods
[17], improvement methods [18], simulated annealing [19], genetic algorithms [20], scatter search [21], ant colony
optimization [22], tabu search [23, 24], greedy randomized adaptive search procedures [25] and variable neighborhood
search [26]. However, no dominant algorithm has emerged [27].

In this paper, we will first investigate some global optimality conditions for problem (QAP), including some
sufficient global optimality conditions and some necessary global optimality conditions. We will then present a new
local optimization method for problem (QAP) by using the presented necessary global optimality conditions. Finally
we present a new global optimization method by combining the presented sufficient global optimality conditions, the
local optimization methods and some auxiliary functions, which belongs to improvement methods.

The rest of the paper is organized as follows. In section 2, we discuss some global optimality conditions for
general quadratic {0, 1} programming problem with linear equality constraints. We provide in section 3 some global
optimality conditions for problem (QAP). In section 4, we present some optimization methods for problem (QAP),
including a local optimization method and a global optimization method based on the presented global optimality
conditions. In section 5, we give some numerical examples to illustrate the efficiency of these optimization methods
for problem (QAP).

2. Global Optimality Conditions for {0, 1} Quadratic Problems with Linear Equivalent Constraints

The real line is denoted by R and the n-dimensional Euclidean space is denoted by R". For vectors x,y € R", x > y

means that x; > y;, fori = 1,...,n. The notation A > B means A — B is a positive semidefinite matrix and A < 0
means —A > 0. A diagonal matrix with diagonal elements a4, .. ., @, is denoted by diag(ay, ..., @,) or diag(a), where
@ = (ay,...,a,)T. S" denotes the set of all the n X n symmetric matrixes.

Firstly, consider the following unconstrained quadratic {0, 1} programming problem: (UQP):

(UQP) min  f(x) := xT Agx + xT ag
s.t. xeU=1{0,1}",

where Ag € §",ag = (a),...,a))" € R". Foragiven x € U, let X = diag(x) and let e := (1,..., 1)” and I = diag(e).
By Theorem 3.1 in reference [28], we can obtain the following sufficient global optimality condition for problem

(UQP).

Proposition 1. [28] (Sufficient Global Optimality Condition for (UQP)) Let x € U. If
[SCU] Diag((2X — I)(ag + 2A¢%)) < Ao,

then X is a global minimizer of problem (U QP).

Proof. Let y := 2x — e. Then problem (U QP) is equivalent to the following problem:

(UQPYy min () := 1/2y" Aoy + ¥ (Age + ap)
st ye{-1,1}".

Thus X satisfies condition [S CU] implied that y := 2% — e satisfies that

Diag()_’(ao + Age + Apy)) < Ao,



which satisfies the sufficient condition for problem (UQP)’ given by Theorem 3.1 in reference [28]. Hence, y is a
global minimizer of problem (UQP)’, which means that X is a global minimizer of problem (U QP).
Let

I={y={i,,....,ie 1i;€{1,....,nLi; #i, 1< jr <k 1<k<n} (1)
Obviously, I' is a finite set. For A = (a;j)uxn € S",a := (aj)px1 = (ay, . .. va)T e R"andy = {iy,...,ik} €T, let
diag(A) : = diag(aii,.-.,aum)
Qiyiy  Qiyiy -+ - Qi
= | g
Qigiy  Qigiy, -+ Qigiy /oy
laly : = (@), = @ sa), 3)
ey: = e,....,en, 4)
where e/ = { (1): iijzz

Theorem 1. (Necessary and Sufficient Global Optimality Condition for Problem (UQP)) Let X € U. Then X is a
global minimizer of problem (U QP), if and only if

[NSCU] [2x - e]g[diag((Z)_( = I)(ag + 2A0%)) — Aol,[2% —e], <0,Vy €T
Proof. By definition, X is a global minimizer of problem (UQP) if and only if
(x =) Ag(x = %) + (x — 0 (ap + 240%) > 0,Yx € U. )
Forany y = {ij,..., i} €T, let

1-x%x, ifiey
Y — T L e— 4]
x’ =(x1,...,x,)" , where x; : {)_Ci, ifigy ’

then x” € U and x” — X = (I — 2X)e,. Furthermore, we can easily to verify that x € U if and only if there exists a
vy €T, such that x = x”. For any y € I, from (5), we can obtain that

(I = 2X)ey)" Ao((I = 2X)ey) — (2X — Dey) (ag + 2A0%) > 0,

which is equivalent to
[2x - e]i[diag((ZX = I)(ag + 2A0%)) — Aol,[2X — €], <0

by

((2X = Dey)" Ap((2X = Dey)
((2X = De,)" (ap + 2A0%)

[2% — e]] [Aoly[2% — €],

[2% — e]] [ag + 2A0%],,

and
[2% — e]) [ao + 2A0%], = [2% — e]} [diag((2X — I)(ag + 2A0X)],[2X — €],

since 2%; — 1)>=1,Vi=1,...,n. Thus, Xisa global minimizer of problem (U QP) if and only if condition [NS CU]
holds.
Now consider the following quadratic {0, 1} problem with linear equality constraints:

(LOP) min  f(x) := xT Agx + x" ag
st. Bx+b=0
xeU={0,1}",
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where Ag € S",a0 = (@),...,a))" € R, B = (By,...,B,) = (bjj)uxn i @ m X n matrix, b € R", where B; =

(bli,...,bmi)T,iZ 1,...,n. Let

U,: = {xeU|Bx+b=0}
my: = min (Bx+b) (Bx+b)
xeU\UyL
My: = min f(x)
xeU

For convenience, let ming = +co. Let x* € U, be a global minimizer of problem (LQP), and let

J&x) - My
my ’

q0: =
Then mg > 0 and g > 0. For a given g € R, let
Fy(x) := xTAox + xTag + q(Bx + b)Y (Bx + b),

ie.,
Fy(x) = x" (Ao + ¢B" B)x + x" (ap + 2gB"b) + gb" b.

For given g € R, 1 € R", let
Gya(x) = x" Aox + x"ag + q(Bx + b)" (Bx + b) + AT (Bx + b),

ie.,
Gya(x) = x"(Ag + gB" B)x + x" (ag + 2gB"b + B" ) + gb" b + A" b.

Consider the following problems:

(LOP)] min  Fy(x)
st. xeU
and
(LOP)S, min G, (x)
s.t. xeU.

We have the following results:

(6)
@)

®)

(€))

(10)

)

Proposition 2. Let X € U. Then when q > qq, X is a global minimizer of problem (LQP) if and only if X is a global

minimizer of problem (LQP)IqF .

Proof. Let X be a global minimizer of problem (LQP). Then, X € Uy. And for any x € U, we have that f(x) > f(%).

By the definition of gy, we know that gy = / (’_CIZ;)MO. Then, for any g > go and x € U \ U, we have that
F,(x) = f(x)+q(Bx+b) (Bx+b)
> Mo+ gmy
> Mo+ f(X)— My
= Fy%.

For any x € U, we have that

Fy(x) = f(x) + q(Bx + b)' (Bx + b) = f(x) > f(%) = Fy(%).

Hence, for any x € U, we have that F;,(x) > F,(x). Thus, X is a global minimizer of problem (LQP){; .
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Conversely, if ¥ is a global minimizer of problem (LOP)F, then when q > qo, we can prove that ¥ € U;. Indeed,
if x € U\ Uy, then (Bx + b)T(BX + b) > mg and

Fy(3)

f(X) + q¢(BX + b)T (Bx + b)
f(Z) + gomg = f(X) + f(x") = My
f(x*) = Fy(x),

where x* is a global minimizer of problem (LQP). This contradicts that X is a global minimizer of problem (LQP)g .
Hence x € U;. Therefore, for any x € Uy, we have that

J(x) = Fg(x) 2 Fg(%) = f(%),

\ARY

which means that X is a global minimizer of problem (LQOP).

Proposition 3. Let X € Uy. If there exist g € R and A € R™ such that X is a global minimizer of problem (LQP)ZA,
then X is a global minimizer of problem (LQP).

Proof. If there exist ¢ € R and A € R™ such that x is a global minimizer of problem (LQP)g 1 then for any x € Uj, we
have that

F(x) = Gga(x) 2 Gga(X) = f(X).

Hence, x is a global minimizer of problem (LQOP).
By Propositions 1 and 3, we can obtain the following results.

Theorem 2. (Sufficient Condition for Problem [LQP)) Let x € U;, X = diag(%). If there exist q; € Rand A € R"
such that
[SCL] A+ qB'B > diag((2X — I)(ap + B' A + 2A,%)),

then X is a global minimizer of problem (LQP).
Proof. By Proposition 1, we know that if
Ao + qi1B" B > diag((2X - I)(ap + 2q1B"b + B' A + 2(Ag + 1 B” B)X)), (12)

then X is a global minimizer of problem (LQP)g]q 1+ By Proposition 3, we know that if ¥ € Uy, then X is also a global
minimizer of problem (LQP). We can verify that (12) is equivalent to [SCL] since b + Bx = 0.

Corollary 1. Let x € U, X = diag(X). If there exists a q» > qo such that
[SCL1] Ao+ ¢2B"B > diag((2X — I)(ap + 24¢X%)),
then X is a global minimizer of problem (LQP).

Proof. If x € U, by Theorem 2, we know that if [S CL1] holds, then X is a global minimizer of problem (LQP), where
A = 0. Here we just need to prove that if [S CL1] holds, then X € U.. By Proposition 1, we know that if

Ao + ¢2BT B > diag((2X — I(ag + 2¢2B" b + 2(A¢ + ¢2B” B)X)), (13)

then X is a global minimizer of problem (LQP)I;2 . By Proposition 2, we know that if also g, > qo, then X € U and X
is a global minimizer of problem (LQP). Moreover, (13) is equivalent to [S CL1] since b + Bx = 0.

Remark 1. Theorem 2.1 in reference [29] gives the following sufficient condition [S CL2] for problem (LQP):
[SCL2] Ag > diag((2X — I(ap + BT A + 2A¢%),

where A € R™. Obviously, condition [S CL2] implies condition [S CL], but the following numerical example illustrates
that [S CL] does not imply [S CL2]. Hence, sufficient condition [S CL] strictly extends the sufficient condition [S CL2]
given in [29].



Example 1. Consider the problem

[EX] min  f(x) = Sx% +2x1%2 + 6x§ +2x1x3 — x% —8x1 —8xy — x3
st x1—xp—x3=0

x;€{0,1},i=1,2,3.

51 1
LetA():[ 1 6 0 ],B:(l,—l,—l)andb:O,ao:(—8,—8,—1)T. Let Uy :={xe€{0,1)3 | x; —x — x3 = 0}
1 0 -1

and ¥ = (1, 1,0)T. Then, ¥ € U;. We can verify that for ¢ = 1 and A = 0, condition [S CL] holds, but for any 4 € R,
condition [§ CL2] does not hold. Indeed, obviously,

11 1
Ao — diag(2X — I(ap +2400)=| 1 0 0 |.
1 0 0

1 -1 -1
gB"B=| -1 1 1 |[.

-1 1 1

For g = 1, we have that

Thus, we have that

200
Ao — diag((2X — I)(ag + 2A0X) + ¢B'B = { 01 1 ] >0,
0 1 1

i.e., condition [S CL] holds for g = 1 and 4 = 0. Hence, X is a global minimizer of problem (EX).
But for any A € R, diag((2X — )BT 1) = diag(4, -4, 1). Thus,

1
0

1-1 1
Ag — diag((2X - D(ag + 2A%) — diag((2X — DB' 1) = { 1 A
1 0 -4

Then, we can easily verify that for any 1 € R, Ag—diag((2X — I(ag+ B” 1+2A,%) is not a positive semidefinite matrix,
i.e., condition [S CL2] does not hold for any 1 € R.

From necessary and sufficient condition [NS CU] for problem (U QP), we can obtain the following necessary and
sufficient condition for problem (LQP). Fory = {iy,...,i,} € ' and B = (b;j)mxn = (B1,...,B,), where 1 < p <nand
Bi = (bli’ RN bmi)T’ let

B” :=(Bj,....Bi),ij€y,j=1,....,p. (14)
Then B? is a m X p matrix.
Theorem 3. ( Necessary and Sufficient Condition for Problem (LQOP)) Let X € U;. Then X is a global minimizer

of problem (LQP) if and only if

forany y € I with BY[2x — e], = 0,
INSCLL 9\ px-ef [diag((z)‘( ~ Day + 2A0)'c)) - Ao]y[zx e, <0.

Proof. By Proposition 2, we know that if ¢ > g, then X is a global minimizer of problem (LQP) if and only if X is
a global minimizer of problem (LQP)’, where gy is given by (9). By Theorem 1, % is a global minimizer of problem

[LQP]] if and only if

foranyy €T,
2% el [diag((ZX — 1) (a0 +2gB"b + 2(Aq + 4B B)Y) ) ~ (Ao +¢B"B)| 25 -], <0.
Y
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By X € Uj, i.e., Bx + b = 0, the above condition is equivalent to the following condition:
forany y €T,
INSCLI" 3 pz—ef [diag((z)‘( ~ D(ay + 2A0)‘c)) — (Ao +qB"B)| 2% —el, < 0.
Y

Here we just need to prove that there exists a g; > go, such that condition [NS CL] is equivalent to condition [NS CL]’
when g > g;. In fact, [NSCL]’ is equivalent to the following condition:

forany y €T,
[2x — e]] [diag((2X — I)(ag + 2A0X)) — Aol [2% — €], < q[2% — e]} [B” B],[2X — ¢],.

[NSCL)” {
Furthermore, [B” B], = B"" B”. Hence
[2% - el] [B" B],[2% — e], = (B"[2% - el,)' BY[2% - e],.
Thus, if [NS CL]’ holds, then for any y € I with
B'[2% —e], = 0,

we must have that
[2x — e],f[diag((ZX — D(ay + 2A0%)) — Ao]y[Z)"c —e], <0,

i.e., [NS CL] holds.
Conversely, if [NS CL] holds, then for any ¢ > 0 and y € I" with

B'[2x—e], =0,
we have that
[2% — e]] [diag((2X — I)(ap + 240%)) — Aol [2% — e, < 0 = g[2X - ¢]][B" B],[2% — €],

So here we just need to prove that there exists a g; > 0 such that when g > g;, forany y € I' with B"[2X —¢], # 0,
we also have that

[2x — e]] [diag((2X — I)(ap + 240X)) — Aol [2% — €], < ¢[2X — €] [B" B],[2% - e],.
For any y € I, if BY[2% — e], # 0, then
[2% - el [B"B],[2% — e], > 0.
Hence, there must exist a g, > 0, such that when g > ¢,,
[2% — e]] [diag((2X — I)(a + 2A0X)) — Aol [2% — €], < ¢[2% — €] [B" B],[2X — e],.

For y € I' with BY[2X — e], = 0, let ¢, = 0. Let g = max{g,.er,qo}. Then q; > g is a finite nonnegative number
since I is a finite set. When g > ¢q;, for any y € I', we have

[2% — e]] [diag((2X — I)(ap + 240X)) — Aol [2% — €], < q[2X — €] [B" B],[2% - €],

i.e., [NSCL]’ holds.



. Global Optimality Conditions for Quadratic Assignment Problems

Consider the following quadratic assignment problem (QAP):

n n n n n
(QAP) min Z Z Z Z aikbﬂx,-jxkl + Z CijXij
i=1 j=1 k=1 I=1 i,j=1
n n
S.t. inj: 1, injZ 1
i=1 =1
xi; €0, 1),ij=1,2,....n,

Xt = (xl'ls"',-xin)sizlv"~9ns
X = ('x13'~-’xn)T3
¢i: = (Cilse--sCin)s
c: = (e,
UA: = {xlejzl, Z_xijzl,xije{o,l},i,jz1,2,...,”
i=1 =1
0: = (bij)nxm
Rij: = a;0,
R Rin
R: = : ,
Rnl Rnn
R T
D = +R,
2
1 1 1 0 0 0 00
0 1 1 1 0 0
o 0 000 0 11
T 1 01 0 0 1 0
1 0 1 0 1
o0 ... 100 ...1 ... ...00O0

|

)

—

So R;j is a n X n matrix, R is a n® x n® matrix, D is a n* X n? symmetric matrix and f(x)

(QAP) min f(x):=x"Dx+c'x
sit. gx):=Ex—e=0
xef{0, 1),

By Theorem 2, we can obtain the following sufficient condition for problem (QAP).

[SCA] D + GETE > diag(2X — I)(c + ET 1 + 2D%)),

then X is a global minimizer of problem (QAP).

(QAP) can be rewritten as the following equivalent problem, which is also noted as (QAP):

which is a very famous combinatorial optimization problem suggested by Koopmans and Beckmann [1]. Let

2nxn?

:= xTDx + ¢T x. Problem

Theorem 4. (Sufficient Condition for Assignment Problem (QAP)) Let x € Uy, X = diag(X). If there exist § € R
and A € R™ such that



Proof. It can be obtained easily from Theorem 2.

Remark 2. Condition [S CA] extends the results given by Theorem 2.2 in reference [29], which is equivalent to the
following condition:

[SCA1] D > diag((2X - I)(c + E" A + 2Dx)).
Let
Ca:={yly="{iji,. o ipjp} lics ju €{l,...,n}, 1 <k < p,1 < p<n}. (15)

For D = (d; j),exn> € S”Z, E = (eij)onsiz = (e1,...,€,), where ¢; € R a = (ay,...,ap) € R”Z, for any y =
{iiji,---sipjpt €T4,1 < p <, let

[Dly : = (dij)pxp, Where i, je{(ix— Dn+ ji,ixjr €v,k=1,...,p}, (16)
EV: = (ekl,u.,ekp)ZnXI?a krz(ir_l)n+jrair'jr€y’r: 1""’p’ (17)
lal,: = (ay.....ax)" €R", ky =iy = Dn+ jrivjr €y.,r=1,...,p, (18)
.o T 2 _ )1, ifijey
ey = (e1,...,€n,...,lu,...,m) ER", e —{ 0. otherwise (19)

By Theorem 3, we can obtain the following necessary and sufficient conditions for problem (QAP).

Theorem 5. (Necessary and Sufficient Condition for Assignment Problem (QAP)) Let X € U, and let X = diag(X).
Then X is a global minimizer of problem (QAP), if and only if

for anyy € Ts such that EY[2% — e, = 0,

[NSCA] { [25 - elf|diag((2X - e + 2D9)) - D] [25 -], <0
Y

wheree=(1,...,D7 ¢ R".
Proof. It can be obtained easily from Theorem 3.

Proposition 4. Let x € Uy. Then
(1) foranyi=1,...,n, there exists one and only one j;z € {1,...,n} such that

Xij, =1
)_Cij = O,Vje {1,...,1’1},j¢ ji,jc
X =0 ¥r=1,....n,r #1,

(2) forany j=1,...,n, there exists one and only one i;z € {1,...,n} such that
X =1
)_C,'j =0,Vie{l,...,n},i # ij,)?
Xior=0,Yre{l,...,nhr #j;

3)I'y, oTI'zy, and T'zy,| = n(n — 1), where

Iy, : {y ela| E'[2X —e], = 0}, (20)
Trv,: = Wijisifijeiinijzt L 7€, .,n),i# i J# jiz) 21)

Proof. (1) Forany i = 1,...,n, by Z’}:l X; = 1 and X;; € {0,1}, we know that there exists one and only one
Jiz €1{1,...,n} such that X;;, . = 1 and for the other j € {1,...,n}, j # jiz, X;; = 0. By X'_, %, = 1, we know that
foranyr=1,...,nandr # i, X,j,, = 0.

Similarly, (2) can be also obtained.



(3)Forany y € {ijis,ij,ijzjiz ijxj} | 1, J €{1,...,n},i # i j # jiz}, We can obtain that
E'[2x—e], =0

by [2)2 - e]’y = (17 _1’ _19 I)T and EY = (el’ > 62763564)2}1)(47 Where

er=(e11,...,e1am), ey = (1): gt;ei;:is‘;’ji,x
e3=(e31,....e30) €3, = (1)’ gtl?eiﬁji’s’:; Jis
es = (eats- - eam)’seap = (1): gtl?ei{ji,sz-rj

Thus, {{ijix, 1), 1 c/izijef} L J€L,...,n}, i #i% ] # jizx} CTry,. Obviously [I'zy,| = n(n—1).
By Proposition 4 and Theorem 5, we can obtain the following necessary condition.

Theorem 6. (Necessary Condition for Assignment Problem (QAP)) Let X € Uy. If X is a global minimizer of
problem (QAP), then

[NCA] [2x - e]g[diag((zX —D)(c +2Dx)) - D] [2x -], <0,Vy € [z y,.
For a given x € Uy, the following algorithm gives a method to obtain the set I'z ;/,:

Algorithm 1. ( Algorithm for Set T’z y,:)

Step 0. Seti:=1andI" = 0, goto Step 1;

Step 1. If i > n, goto Step 4; otherwise, let p; := argmax{¥;;, j = 1,...,n}, i.e, X;, = 1, and let j := 1, goto Step
2;

Step 2. If j = p;, let j := j+ 1, goto Step 3; otherwise let g; := argmax{X;;,i = 1,...,n}, i.e., Xg,; = 1, and let
T :=T Ulip,ij,q;pi-q;j},j:= j+ 1, goto Step 3; ’

Step 3. If j > n,leti:=i+ 1, goto Step 1; otherwise, goto Step 2;

Step 4. Stop. I' is the set of 'z, .

4. Optimization Methods for Quadratic Assignment Problems

In this section, we will first derive a new local optimization method for quadratic assignment problem (QAP), then
we will introduce an auxiliary function to derive a global optimization method for problem (QAP).

4.1. Local Optimization Method
Consider the following general problem (AGP).

(AGP) min  f(x)
x € Uy,

where f is a general objective function,

n

XY xi=1 Y xj=Lxyel01hij=12,..,n

i=1 j=1

(x| Ex=1,x€{0,1}")}.

Uy

10



If f(x) = x" Dx + ¢" x, where D and c are given in problem (QAP), then (AGP) is the quadratic assignment problem
(QAP). Let X € U, and let

Di: = {dy=U-2%)ey|yeTley,) (22)
NG : = {(¥U{i+d|deDs), (23)

where X = diag(¥) and e, is defined by (19). N(X) is said to be the neighborhood of x. Obviously, we have that
N(x) C Us and IN(X)| = n(n — 1) + 1. Indeed, for any d € D(%), there exists ay = (ijix, 1J,1%jiz ijzj) € [xu, such
thatd = (I — 2X)e,. Hence,

x=F+d =X+ T =2X)ey = (Xi1s -y Xinseeos Xnlsnvs X)) s

1—-X, krey

where xi, = { o kr ¢y

€{0,1} and

Zf:] )_Ckr = ], Yk * i, ij,)'c
n

Z )_Cir+(1 —)_C,‘j,.j)+(1—J_C,‘J')Z(I—J_C,‘_I‘)Z 1, ifk=1i
r=1
n r#j

Zxk, = r# jiz

n
D R (=% )+ (=% )= -%,)=1, ifk=i;
r=1
r#j
r¥ Jis
Zzzl X =1, Yr# J, j,',;»
n

Z ijij +(1- xiji.}) +(1 - )_Cij,,zj;,;) =(- xij.iji,i) =1, ifr= ij:)_‘
k=1

Zxkr = k;/:l'j,;c

D R+ -F )+ -E)=(1-%)=1, ifr=j
k=1
k#i
k¢l'jj(

=~
1]

Thus, x = x+d € Uy.
By I’z y,| = n(n — 1), we have that IN(X)| = n(n — 1) + 1.

Definition 1. Let X € Uy. X is said to be a local minimizer (maximizer) of problem (AGP) if for any x € N(X), f(x) >
FO(f(x) £ f(X)). X is said to be a strict local minimizer (maximizer) of problem (AGP) if for any x € N(X) \ {x},

Fx) > fO(f(x) < f(X).
Definition 2. Let x € Uy4. X is said to be a global minimizer of problem (AGP) if for any x € Uy,, f(x) > f(%).
Definition 3. d € Dy is said to be a descent direction of problem (AGP) at point X € U, if f(X + d) < f(X).

Algorithm 2. (Local Optimization Method for Problem (AGP):)

Step 1. Take an initial point x € Uy.

Step 2. If x is already a local minimizer of problem (AGP), i.e., f(x + d) = f(x) for any d € D,, then stop;
otherwise, let d, be a descent direction of problem (AGP) at point x, i.e., f(x + d,) < f(x), go to Step 3.

Step 3. Set x := x + d,, and go to Step 2.

11



Theorem 7. Let X € Uy and let f(x) = x' Dx + ¢ x. Then X is a local minimizer of problem (QAP) if and only if
[NCA] holds.

Proof. By the definition of local minimizer of problem (QAP) given by Definition 1, we know that X is a local
minimizer of problem (QAP) if and only if for any y € I'zy,, we have that

f(x+d,) - f(%) =0,
where d, = (I — 2X)e,, i.e.
(x+d) ' D(x+d))+c"(F+d) - Dx-c"x20. (24)

We can easily to verify that (24) is equivalent to (NCA).

Note that here we design a local optimization method for problem (QAP) by using the necessary global optimality
condition (NCA). In the following, we will derive a global optimization method for problem (QAP) by using the
global optimality sufficient condition [S CA], the local optimization method given by Algorithm 5.1 and some auxiliary
functions.

4.2. Global Optimization Method for Quadratic Assignment Problem (QAP)

In order to derive the global minimization method, here we need to introduce the following auxiliary functions.
Let x* be a local minimizer of quadratic assignment problem (QAP) and let

0 t<-r
1) = {§+1 -r<t<0 , (25)
1 t>0
O = 00 - £ 26)
’ [lx = x*|| + 1

where f(x) = x'Dx + c¢'x, D, c are given in problem (QAP), and ||x — x*|| = Zl’f =1 |xij — xl’.‘jl. Consider the following
problem:

(AQAP) min @, (x)
XEUA,

where r > 0 is a parameter.

Theorem 8. For any r > 0, x* is a strict local maximizer of problem (AQAP).

Proof. Since x* is a local minimizer of problem (QAP), for any d € D,-, we have that
f(xX"+d) = f(x).

Hence, for any r > 0 and for any d € D,-, we have that

1

(I)rr* *+d e —
(D) = T

= 1/5<1 =0 (x),

where we can easily verify that ||d|| = 4 for any d € D,-. Thus, x* is a strict local maximizer of problem (AQAP).

Theorem 9. Let % be a local minimizer of problem (AQAP) obtained by Algorithm 5.1 with x' := x* + d° being an
initial point, where d° € D,.. Then, X € U, and one of the following conditions holds:

M f) < fx)

or
) Fx=0.
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Proof. Let X be a local minimizer of problem (AQAP). By Algorithm 5.1, we know that ¥ € U,. Suppose that
f(X) > f(x*) and X" x* # 0, then there exists an index pair ij such that X = xl’.‘j = 1. Lety € I'yy, such that ij € y.
Then there existk,r € {1,...,n} and k # i,r # jsuchthaty = {ij,ir,kj,kr} and X;, = X;; = 0, X%, = 1. Theny € 'y y,.
Obviously, we also have that x; = x,tj =0 by x:fj =1.Letd=(- ZX)ey, where X = diag(x). Then d € D; and

1

D, -(Xx+d) < m
< 1
Zpgey Xpg = Xpgl +4
< 1
Zpagy Epg = X5l +2
< (Dr,x*()_c)»

which contradicts that ¥ is a local minimizer of problem (AQAP).

Theorem 10. If x* is not a global minimizer of problem (QAP), then there exists a ro > 0 such that when r < ry, any
x € Uy with f(x) < f(x*) is a local and also a global minimizer of problem (AQAP).

Proof. Let L,- := {x € Uy | f(x) < f(x*)} and ry := min{f(x*) — f(x) | x € L,+}. Then ry > 0 since L,- is a finite set.
And for any r < rg, for any x € L,-, we have that

f(x) = f(x") < =rg < —r.

Hence, we have that
D, (x) =0 < D, - (y), Vy € Ug.

Thus, x € L,- is a local and also a global minimizer of problem (AQAP).

Theorem 11. Let X € Us. Then when r < ry, X satisfies that f(X) < f(x*) if and only if ®,,-(X) = 0, where ry is
decided by Theorem 10.

Proof. If x satisfies that f(X) < f(x*), then ry > 0 and f(X) — f(x*) < —r when r < ry. Thus, ®,,-(X) = 0.

Obviously, for any r > 0, if @, ,-(X) = 0, then we must have that f(X) — f(x*) < —r.

In the following, we will give a global optimization method for problem (QAP) based on the given local optimiza-
tion method, the global optimality sufficient condition [S CA] and the filled function @, ..

Algorithm 3. (Global Optimization Method for Quadratic Assignment Problem (QAP):)

Step 0. Take an initial point x; € U4 (for example, in the following examples, we take x; = (xi1 ;)» Where xli=1,i=
1,...,nand xlij =0,i,j €{l,...,n},i # j), a sufficiently small positive number g, and an initial r; > 0. Set k := 1
and r := ry.

Step 1. Use the local optimization method (Algorithm 2) to solve problem (QAP) starting from x;. Let x; be the
obtained local minimizer. If £ > 2 and f(x}) = f(x;_,), go to Step 5; otherwise, go to Step 2.

Step 2. Verify whether x7 satisfies the following global optimality sufficient condition: there exist g € R and 4 € R”
such that
[SCAl.  D+qE"E > diag((2X; — I)(c + E" 1+ 2Dx)),

where X = diag(x;). If [S CA]X; holds, then go to Step 7; otherwise, go to Step 3.

Step 3. Let
D, e Tarra— - ).
500 = U@ = D)
Consider the following problem:
min @, (x) 27
s.t.  x € Ujy.
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Set D ={I - 2X[e, |y € v,} = {di(x)), . ... duu-1y(xp)}, set i := 1 and (xp); = x; + di(xp), go to Step 4.

Step 4. Use the local optimization method (Algorithm 2) to solve problem (27) starting from (x;);. If in the process
of minimization, at some point Yy € Uy, the condition CD,,)C; (v7) = O holds, then set x4y := y;, k:=k+1, goto Step 1;
otherwise continue the procedure. Let (x)i" be the local minimizer of problem (27) and let x4 := x)i k =k +1,
go to Step 1.

Step 5. If i > n(n — 1), go to Step 6; otherwise, set i := i+ 1 and (x;)] := X, + di(xp), go to Step 4.
Step 6. If r > u, decrease r, such as, let r := r/10, and let i := 1, go to Step 3; otherwise, go to Step 7.
Step 7. Stop x}, is the obtained global minimizer of problem (QAP).

4.3. Numerical Examples

In this subsection, we will give several numerical examples to illustrate the efficiency of the given optimization method
Algorithm 3 (note that Algorithm 2 is used here for local optimization) to obtain a global minimizer of problem
(QAP). In the following numerical examples, we use the following notations:

x is the initial point taken arbitrarily;

Xk, k > 2 is the point obtained by solving the auxiliary function problem (27) with local optimization method Algo-
rithm 2;

Xy, k = 11is the local minimizer of problem (QAP) obtained by Algorithm 2 starting from x;.

Example 2. [30] Consider the following quadratic assignment problem:

10 10 10 10
[EX1] min f(x)ZZZZZZfijdklxikle
i=1 j=1 k=1 I=1
10
st Y xp=1j=1,...,10,
i=1
10
Zx,-jzl,izl,...,lo,
j=1
xi;€{0,14i,j=1,...,10,

where f;; and dj; are given by the following matrices, respectively:

[0 5 3 7 9 3 9 2 9 0]
507 8 3 2 3 3 57
37 0 9 3 5 3 3 93
7 8 9 0 8 4 1 8 0 4
9 2 2 8 0 8 8 7 5 9
F = (fioxi0 = 32 4 4 9 0 4 8 0 3
8 4 1 18 407095
3228686055
96 9 07 0 9 5 0 5
(0724091474 0]

14



and

0 7 4 6 8 8 8 6 6 5
70 8 2 6 5 6 8 3 6
4 8 0 10 4 4 7 2 6 7
6210 0 6 69 3 2 6
8 6 4 6 0 6 4 8 8 6
Di=ahoo=|g 5 4 6 60 3 8 3 2
8 6 7 9 4 3 0 6 7 8
6 8 2 3 8 8 6 0 8 8
6 3 6 2 8 3 7 8 0 9
56 7 6 6 2 8 8 90

The optimal permutation given by [30] is (9, 1,8,3,6,7,2,5,4, 10) and the optimal objective value given by [30] is
f* =2227. Table 1 records the numerical results of solving Example [EX1] by Algorithm 3.

Table 1: Numerical results for Example [EX1]

k Xy f(x)  local minimizer x;  f(x})
1 10
2 2
3 9
4 4
5 5
1 6 2879 | 2413
7 3
8 8
9 6
10 7
1 1
3 9
4 4
9 2
6 6
2 10 2701 10 2399
2 3
7 5
5 8
8 7
4 9
5 1
1 8
3 3
7 6
3 3 2653 7 2227
2 2
9 5
10 4
6 10

From Table 1, we see that the first local minimizer is not the global one, and then we use the filled function to obtain
the second and the third one. The third local minimizer is the global one.

Example 3. [30] Consider the following quadratic assignment problem:

15



[EX2]

10 10 10 10
min  f(x) := Z Z Z Zﬁjdklxikle
i1 =1 k=l =l
10
s.t. xijzl,jzl,...,IO,
1

1

0

Xij = 1,i= 1,...,10,
j=1
xi; €10,1),4,j=1,...,10,

where f;; and dj; are given by the following matrices, respectively:

F = (fipioxio =

and

D := (di)10x10 =

\SEENEN S INoREN e N s =)

[0 9 4 2 2 9 7 4 4 3

8 06 90 9 7 2 5 8
1701997953

0 090 4888 8 2
546 20288 7 27
78 04 40 9 3 43

8 55 98 3 09 52
715 0 35 40 9 9
75 3 2 6 3 3 400
|3 71 3 3 3 5 8 90

8 7 6 8 8 6 106 5 9 ]
0 8 2 10 2 8 8 4 7
7 0 10 7 7 8 1 5 10
1 9 0 6 6 10 3 3 2
21 5 0 5 1 7 10 10
8 1.7 6 0 4 9 3 1
4 6 8 6 2 0 4 6 9
8 34 9 6 8 0 8 8
27 2 7 4 9 8 0 9
4 3 10 1 3 7 9 10 O

The optimal permutation given by [30] is x* = (9,4, 5, 10,7, 2,6, 3, 1, 8) and the optimal objective value given by [30]
is f* = 2025. Note that the optimal objective value given by [30] is not right, the correct optimal objective value is
f* =2027. Table 2 records the numerical results of solving Example [EX2] by Algorithm 3.

From Table 2, we see that the obtained third local minimizer of problem [EX2] is the global one.

Example 4. [30] Consider the following quadratic assignment problem:

[EX3]

15 15 15 15

min  f(x) := Z Z

i=1 j=1 k=1 I=1

Sijdaxixxji

15

st Y xj=1j=1,.,15
1
5

xj=1i=1,...,15

i

—

j=1
)CijE{O,l},i,jZ 1,

16
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Table 2: Numerical results for Example [EX2]

)

fx

*
k

local minimizer x

S

Xk

k

2434

VIS oS NI

2777

2388

O NN oo —I~N A <+

2676

2027

AT E N0V~ ®

2672

— Nt O~0 S

— Nt~V e

N—=OoANTFTE a1

where f;; and dj; are given by the following matrices, respectively:

0

OoOnNntTonaAaun TN~ 0N —
NNt A—~ANNAN — O —~
T AN NFNN AN —~=ANA—~O AN
naAaN T VNMA——AaNT —~O — Ao
AN TV O —AN N <N O — A on <t
Nt —~<nAN —OWn <t on A —
t NN AN —AaA NN —~O =<t N A — A
A AN O AN — AN 0N
AN— ANt — O — AN NN — AN <t
— NNt WnNO—A Nt —A N <t n
TN AN OV <ttNA —~0OWnNn T on A
NN O~ NN~ AWV TN AN
AN — O AN AN <t 0N on <t
— O = AN NN —AN<t AN <N
S — AN Nt —~ANFTInANtT NV O

I

a

X

i

~~

i)

=

N

I

9
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and

0O 10 0 5 1
10 O 1 3 2
0 1 0 10 2
5 3 10 0 1
1 2 2 1 0
o 2 O 1 3
1 2 2 5 5
D:=(dwisxis=| 2 3 5 0 5
2 2 4 0 5
2 0 5 2 1
2 2 2 1 0
o 0 2 0 3
4 10 5 2 0
O 5 5 5 5
O 0 5 0 5

NN OO~ DDNDOW~ONDO

—_

0

— L= O NN UL NN

0

DN O AN N O L W

—_
o

S b O

0

SO NO = WO N

—_ —_
VO 5 WS

OO PR OO = U= DNDWBOMN

5

2 0 4 0 0]
2 0 10 5 0
2 2 5 5 5
1 0 2 5 0
0 3 0 5 5
0 0 2 5 10
55 5 1 0
100 5 0 O
10 5 10 0 2
0 4 0 0 5
0 5 0 5 0
50 3 3 0
0 3 0 10 2
5 3 10 0 4
0 0 2 4 0

The optimal permutation given by [30] is x* = (1,2,13,8,9,4,3,14,7,11,10, 15,6, 5, 12) and the optimal objective
value given by [30] is f* = 1150. Table 3 records the numerical results of solving Example [EX3] by Algorithm 3.

Table 3: Numerical results for Example [EX3]

k f(x)

local minimizer X

ACH)

1616

p— — p—
CWDEGON LA TSNS

—
)

e

1
2
14
6
15
4
13
3
5
10
7
8
11
9
12

1200
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10
1 3
3 4
4 2
5 1
6 6
7 14
14 1630 13 1186
15 8
8 7
13 15
10 5
9 0
11 11
2 12
12 12
2 1
5 4
3 3
10 10
7 9
8 2
9 1466 13 1174
14 14
6 15
11 11
4 8
13 7
15 5
1 6
15 4
2 14
3 3
4 5
6 15
7 2
1 13
8 1502 8 1160
11 7
5 6
14 1
13 9
9 11
12 12
10 10
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12 1
2 2
5 13
3 8
8 9
14 4
6 3
5 15 1560 14 1150
9 7
13 11
4 10
7 15
10 6
1 5
11 12

From Table 3, we see that 5 local minimizers are obtained by Algorithm 3 and the 5th local minimizer is the global
one of problem [EX3].

5. Conclusion

The quadratic assignment problem (QAP) has a wide range of practical applications. For this problem, we provided
a new improvement method. We presented global optimality conditions for problem (QAP). Then we designed a
new local optimization method by using necessary global optimality condition. Furthermore we provided a new
global optimization method by combining sufficient global optimality condition, new local optimization method and
auxiliary functions.
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