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Abstract

In this paper some global optimality conditions for general quadratic {0, 1} programming problems with linear equali-
ty constraints are discussed and then some global optimality conditions for quadratic assignment problems (QAP) are
presented. A local optimization method for (QAP) is derived according to the necessary global optimality conditions.
A global optimization method for (QAP) is presented by combining the sufficient global optimality conditions, the lo-
cal optimization method and some auxiliary functions. Some numerical examples are given to illustrate the efficiency
of the given optimization methods.
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1. Introduction

The quadratic assignment problem (QAP) was introduced by Koopmans and Beckmann in 1957, as a mathematical
model for the location of indivisible economical activities, see [1]. The (QAP) in Koopmans-Beckmann form can be
written as

(QAP) min
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

aikb jlxi jxkl +

n∑
i, j=1

ci jxi j

s.t.
n∑

i=1

xi j = 1,
n∑

j=1

xi j = 1

xi j ∈ {0, 1}, i, j = 1, 2, . . . , n.

It is astonishing how many real life applications can be modeled as (QAP)s. An early natural application in location
theory was used by Dickey and Hopkins (see [2]) in a campus planning model. In addition to facility location, (QAP)s
appear in a variety of applications such as computer manufacturing, scheduling, process communications and turbine
balancing. The traveling salesman problem may be seen as a special case of (QAP) if one assumes that the flows
connect all facilities only along a single ring, all flows have the same non-zero (constant) value. Many other problems
of standard combinatorial optimization problems may be also written in this form , see [3].

Besides the wide range of practical applications of the problem (QAP), it is NP-hard. The proof that the (QAP) is
indeed NP-complete was first shown by Sahni and Gonzalez [4] in 1976. Sahni and Gonzalez [4] also proved that any

IThis research is partially supported by the Australian Research Council under Grant DP0771709, by National Natural Science Foundation of
China 10971241, by SRF for ROCS, SEM and by Alexander von Humboldt Foundation.
∗Corresponding author
Email addresses: z.wu@ballarat.edu.au (Zhiyou Wu ), yjyang@mail.shu.edu.cn (Yongjian Yang), f.bai@ballarat.edu.au

(Fusheng Bai), jtian@students.ballarat.edu.au (Jing Tian)

Preprint submitted to Elsevier Received: date



routine that finds even an ε-approximate solution is also NP-complete, thus making the (QAP) among the “hardest of
the hard” of all combinatorial optimization problems. It is therefore not surprising that verifying optimality is also an
NP-hard problem. In fact, even checking local optimality is a hard problem, see [5].

Because of their many real world applications and complexity, many authors have investigated this problem class,
see [5, 6, 7, 8, 9]. When it comes to the global optimization methods, there are two classes of strategies: exact or
heuristic [3]. In the first case, the different methods used to achieve a global optimum for the (QAP) include branch-
and-bound, cutting plane methods [10, 11] or combinations of these methods, like branch-and-cut [12] and dynamic
programming [13]. Heuristic procedures include constructive methods [14, 15, 16], limited enumeration methods
[17], improvement methods [18], simulated annealing [19], genetic algorithms [20], scatter search [21], ant colony
optimization [22], tabu search [23, 24], greedy randomized adaptive search procedures [25] and variable neighborhood
search [26]. However, no dominant algorithm has emerged [27].

In this paper, we will first investigate some global optimality conditions for problem (QAP), including some
sufficient global optimality conditions and some necessary global optimality conditions. We will then present a new
local optimization method for problem (QAP) by using the presented necessary global optimality conditions. Finally
we present a new global optimization method by combining the presented sufficient global optimality conditions, the
local optimization methods and some auxiliary functions, which belongs to improvement methods.

The rest of the paper is organized as follows. In section 2, we discuss some global optimality conditions for
general quadratic {0, 1} programming problem with linear equality constraints. We provide in section 3 some global
optimality conditions for problem (QAP). In section 4, we present some optimization methods for problem (QAP),
including a local optimization method and a global optimization method based on the presented global optimality
conditions. In section 5, we give some numerical examples to illustrate the efficiency of these optimization methods
for problem (QAP).

2. Global Optimality Conditions for {0, 1} Quadratic Problems with Linear Equivalent Constraints

The real line is denoted by R and the n-dimensional Euclidean space is denoted by Rn. For vectors x, y ∈ Rn, x ≥ y
means that xi ≥ yi, for i = 1, . . . , n. The notation A ≽ B means A − B is a positive semidefinite matrix and A ≼ 0
means −A ≽ 0. A diagonal matrix with diagonal elements α1, . . . , αn is denoted by diag(α1, . . . , αn) or diag(α), where
α = (α1, . . . , αn)T . S n denotes the set of all the n × n symmetric matrixes.

Firstly, consider the following unconstrained quadratic {0, 1} programming problem: (UQP):

(UQP) min f (x) := xT A0x + xT a0

s.t. x ∈ U = {0, 1}n,

where A0 ∈ S n, a0 = (a0
1, . . . , a

0
n)T ∈ Rn. For a given x̄ ∈ U, let X̄ = diag(x̄) and let e := (1, . . . , 1)T and I = diag(e).

By Theorem 3.1 in reference [28], we can obtain the following sufficient global optimality condition for problem
(UQP).

Proposition 1. [28] (Sufficient Global Optimality Condition for (UQP)) Let x̄ ∈ U. If

[S CU] Diag((2X̄ − I)(a0 + 2A0 x̄)) ≼ A0,

then x̄ is a global minimizer of problem (UQP).

Proof. Let y := 2x − e. Then problem (UQP) is equivalent to the following problem:

(UQP)′ min g(y) := 1/2yT A0y + yT (A0e + a0)
s.t. y ∈ {−1, 1}n.

Thus x̄ satisfies condition [S CU] implied that ȳ := 2x̄ − e satisfies that

Diag(Ȳ(a0 + A0e + A0ȳ)) ≼ A0,
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which satisfies the sufficient condition for problem (UQP)′ given by Theorem 3.1 in reference [28]. Hence, ȳ is a
global minimizer of problem (UQP)′, which means that x̄ is a global minimizer of problem (UQP).

Let

Γ = {γ = {i1, . . . , ik} | i j ∈ {1, . . . , n}, i j , ir, 1 ≤ j, r ≤ k, 1 ≤ k ≤ n}. (1)

Obviously, Γ is a finite set. For A = (ai j)n×n ∈ S n, a := (a j)n×1 = (a1, . . . , an)T ∈ Rn and γ = {i1, . . . , ik} ∈ Γ, let

diag(A) : = diag(a11, . . . , ann)

[A]γ : = (a jr) j,r∈γ =


ai1i1 ai1i2 . . . ai1ik
ai2i1 ai2i2 . . . ai2ik
. . . . . . . . . . . .
aik i1 aik i2 . . . aik ik


k×k

(2)

[a]γ : = (a j) j∈γ = (ai1 , . . . , aik )
T , (3)

eγ : = (e1, . . . , en)T , (4)

where e j =

{
1, if j ∈ γ
0, if j < γ .

Theorem 1. (Necessary and Sufficient Global Optimality Condition for Problem (UQP)) Let x̄ ∈ U. Then x̄ is a
global minimizer of problem (UQP), if and only if

[NS CU] [2x̄ − e]T
γ [diag((2X̄ − I)(a0 + 2A0 x̄)) − A0]γ[2x̄ − e]γ ≤ 0,∀γ ∈ Γ.

Proof. By definition, x̄ is a global minimizer of problem (UQP) if and only if

(x − x̄)T A0(x − x̄) + (x − x̄)T (a0 + 2A0 x̄) ≥ 0,∀x ∈ U. (5)

For any γ = {i1, . . . , ik} ∈ Γ, let

xγ = (x1, . . . , xn)T , where xi :=
{

1 − x̄i, if i ∈ γ
x̄i, if i < γ ,

then xγ ∈ U and xγ − x̄ = (I − 2X̄)eγ. Furthermore, we can easily to verify that x ∈ U if and only if there exists a
γ ∈ Γ, such that x = xγ. For any γ ∈ Γ, from (5), we can obtain that

((I − 2X̄)eγ)T A0((I − 2X̄)eγ) − ((2X̄ − I)eγ)T (a0 + 2A0 x̄) ≥ 0,

which is equivalent to
[2x̄ − e]T

γ [diag((2X̄ − I)(a0 + 2A0 x̄)) − A0]γ[2x̄ − e]γ ≤ 0

by

((2X̄ − I)eγ)T A0((2X̄ − I)eγ) = [2x̄ − e]T
γ [A0]γ[2x̄ − e]γ

((2X̄ − I)eγ)T (a0 + 2A0 x̄) = [2x̄ − e]T
γ [a0 + 2A0 x̄]γ,

and
[2x̄ − e]T

γ [a0 + 2A0 x̄]γ = [2x̄ − e]T
γ [diag((2X̄ − I)(a0 + 2A0 x̄)]γ[2x̄ − e]γ

since (2x̄i − 1)2 = 1,∀i = 1, . . . , n. Thus, x̄ is a global minimizer of problem (UQP) if and only if condition [NS CU]
holds.

Now consider the following quadratic {0, 1} problem with linear equality constraints:

(LQP) min f (x) := xT A0x + xT a0

s.t. Bx + b = 0
x ∈ U = {0, 1}n,
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where A0 ∈ S n, a0 = (a0
1, . . . , a

0
n)T ∈ Rn, B = (B1, . . . , Bn) = (bi j)m×n is a m × n matrix, b ∈ Rm, where Bi =

(b1i, . . . , bmi)T , i = 1, . . . , n. Let

UL : = {x ∈ U | Bx + b = 0}. (6)
m0 : = min

x∈U\UL

(Bx + b)T (Bx + b) (7)

M0 : = min
x∈U

f (x) (8)

For convenience, let min∅ = +∞. Let x∗ ∈ UL be a global minimizer of problem (LQP), and let

q0 : =
f (x∗) − M0

m0
. (9)

Then m0 > 0 and q0 ≥ 0. For a given q ∈ R, let

Fq(x) := xT A0x + xT a0 + q(Bx + b)T (Bx + b), (10)

i.e.,
Fq(x) = xT (A0 + qBT B)x + xT (a0 + 2qBT b) + qbT b.

For given q ∈ R, λ ∈ Rm, let

Gq,λ(x) := xT A0x + xT a0 + q(Bx + b)T (Bx + b) + λT (Bx + b), (11)

i.e.,
Gq,λ(x) = xT (A0 + qBT B)x + xT (a0 + 2qBT b + BTλ) + qbT b + λT b.

Consider the following problems:

(LQP)F
q min Fq(x)

s.t. x ∈ U

and

(LQP)G
q,λ min Gq,λ(x)

s.t. x ∈ U.

We have the following results:

Proposition 2. Let x̄ ∈ U. Then when q > q0, x̄ is a global minimizer of problem (LQP) if and only if x̄ is a global
minimizer of problem (LQP)F

q .

Proof. Let x̄ be a global minimizer of problem (LQP). Then, x̄ ∈ UL. And for any x ∈ UL, we have that f (x) ≥ f (x̄).
By the definition of q0, we know that q0 =

f (x̄)−M0
m0

. Then, for any q > q0 and x ∈ U \ UL, we have that

Fq(x) = f (x) + q(Bx + b)T (Bx + b)
≥ M0 + qm0

> M0 + f (x̄) − M0

= Fq(x̄).

For any x ∈ UL, we have that

Fq(x) = f (x) + q(Bx + b)T (Bx + b) = f (x) ≥ f (x̄) = Fq(x̄).

Hence, for any x ∈ U, we have that Fq(x) ≥ Fq(x̄). Thus, x̄ is a global minimizer of problem (LQP)F
q .
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Conversely, if x̄ is a global minimizer of problem (LQP)F
q , then when q > q0, we can prove that x̄ ∈ UL. Indeed,

if x̄ ∈ U \ UL, then (Bx̄ + b)T (Bx̄ + b) ≥ m0 and

Fq(x̄) = f (x̄) + q(Bx̄ + b)T (Bx̄ + b)
> f (x̄) + q0m0 = f (x̄) + f (x∗) − M0

≥ f (x∗) = Fq(x∗),

where x∗ is a global minimizer of problem (LQP). This contradicts that x̄ is a global minimizer of problem (LQP)F
q .

Hence x̄ ∈ UL. Therefore, for any x ∈ UL, we have that

f (x) = Fq(x) ≥ Fq(x̄) = f (x̄),

which means that x̄ is a global minimizer of problem (LQP).

Proposition 3. Let x̄ ∈ UL. If there exist q ∈ R and λ ∈ Rm such that x̄ is a global minimizer of problem (LQP)G
q,λ,

then x̄ is a global minimizer of problem (LQP).

Proof. If there exist q ∈ R and λ ∈ Rm such that x̄ is a global minimizer of problem (LQP)G
q,λ, then for any x ∈ UL, we

have that
f (x) = Gq,λ(x) ≥ Gq,λ(x̄) = f (x̄).

Hence, x̄ is a global minimizer of problem (LQP).
By Propositions 1 and 3, we can obtain the following results.

Theorem 2. (Sufficient Condition for Problem [LQP]) Let x̄ ∈ UL, X̄ = diag(x̄). If there exist q1 ∈ R and λ ∈ Rm

such that
[S CL] A0 + q1BT B ≽ diag((2X̄ − I)(a0 + BTλ + 2A0 x̄)),

then x̄ is a global minimizer of problem (LQP).

Proof. By Proposition 1, we know that if

A0 + q1BT B ≽ diag((2X̄ − I)(a0 + 2q1BT b + BTλ + 2(A0 + q1BT B)x̄)), (12)

then x̄ is a global minimizer of problem (LQP)G
q1,λ

. By Proposition 3, we know that if x̄ ∈ UL, then x̄ is also a global
minimizer of problem (LQP). We can verify that (12) is equivalent to [S CL] since b + Bx̄ = 0.

Corollary 1. Let x̄ ∈ U, X̄ = diag(x̄). If there exists a q2 > q0 such that

[S CL1] A0 + q2BT B ≽ diag((2X̄ − I)(a0 + 2A0 x̄)),

then x̄ is a global minimizer of problem (LQP).

Proof. If x̄ ∈ UL, by Theorem 2, we know that if [S CL1] holds, then x̄ is a global minimizer of problem (LQP), where
λ = 0. Here we just need to prove that if [S CL1] holds, then x̄ ∈ UL. By Proposition 1, we know that if

A0 + q2BT B ≽ diag((2X̄ − I)(a0 + 2q2BT b + 2(A0 + q2BT B)x̄)), (13)

then x̄ is a global minimizer of problem (LQP)F
q2

. By Proposition 2, we know that if also q2 > q0, then x̄ ∈ UL and x̄
is a global minimizer of problem (LQP). Moreover, (13) is equivalent to [S CL1] since b + Bx̄ = 0.

Remark 1. Theorem 2.1 in reference [29] gives the following sufficient condition [S CL2] for problem (LQP):

[S CL2] A0 ≽ diag((2X̄ − I)(a0 + BTλ + 2A0 x̄),

where λ ∈ Rm. Obviously, condition [S CL2] implies condition [S CL], but the following numerical example illustrates
that [S CL] does not imply [S CL2]. Hence, sufficient condition [S CL] strictly extends the sufficient condition [S CL2]
given in [29].
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Example 1. Consider the problem

[EX] min f (x) = 5x2
1 + 2x1x2 + 6x2

2 + 2x1x3 − x2
3 − 8x1 − 8x2 − x3

s.t. x1 − x2 − x3 = 0
xi ∈ {0, 1}, i = 1, 2, 3.

Let A0 =

 5 1 1
1 6 0
1 0 −1

, B = (1,−1,−1) and b = 0, a0 = (−8,−8,−1)T . Let UL := {x ∈ {0, 1}3 | x1 − x2 − x3 = 0}

and x̄ = (1, 1, 0)T . Then, x̄ ∈ UL. We can verify that for q = 1 and λ = 0, condition [S CL] holds, but for any λ ∈ R,
condition [S CL2] does not hold. Indeed, obviously,

A0 − diag((2X̄ − I)(a0 + 2A0 x̄) =

 1 1 1
1 0 0
1 0 0

 .
For q = 1, we have that

qBT B =

 1 −1 −1
−1 1 1
−1 1 1

 .
Thus, we have that

A0 − diag((2X̄ − I)(a0 + 2A0 x̄) + qBT B =

 2 0 0
0 1 1
0 1 1

 ≽ 0,

i.e., condition [S CL] holds for q = 1 and λ = 0. Hence, x̄ is a global minimizer of problem (EX).
But for any λ ∈ R, diag((2X̄ − I)BTλ) = diag(λ,−λ, λ). Thus,

A0 − diag((2X̄ − I)(a0 + 2A0 x̄) − diag((2X̄ − I)BTλ) =

 1 − λ 1 1
1 λ 0
1 0 −λ

 .
Then, we can easily verify that for any λ ∈ R, A0−diag((2X̄− I)(a0+BTλ+2A0 x̄) is not a positive semidefinite matrix,
i.e., condition [S CL2] does not hold for any λ ∈ R.

From necessary and sufficient condition [NS CU] for problem (UQP), we can obtain the following necessary and
sufficient condition for problem (LQP). For γ = {i1, . . . , ip} ∈ Γ and B = (bi j)m×n = (B1, . . . , Bn), where 1 ≤ p ≤ n and
Bi = (b1i, . . . , bmi)T , let

Bγ := (Bi1 , . . . , Bip ), i j ∈ γ, j = 1, . . . , p. (14)

Then Bγ is a m × p matrix.

Theorem 3. ( Necessary and Sufficient Condition for Problem (LQP)) Let x̄ ∈ UL. Then x̄ is a global minimizer
of problem (LQP) if and only if

[NS CL]


for any γ ∈ Γ with Bγ[2x̄ − e]γ = 0,

[2x̄ − e]T
γ

[
diag
(
(2X̄ − I)(a0 + 2A0 x̄)

)
− A0

]
γ
[2x̄ − e]γ ≤ 0.

Proof. By Proposition 2, we know that if q > q0, then x̄ is a global minimizer of problem (LQP) if and only if x̄ is
a global minimizer of problem (LQP)F

q , where q0 is given by (9). By Theorem 1, x̄ is a global minimizer of problem
[LQP]F

q if and only if
for any γ ∈ Γ,
[2x̄ − e]T

γ

[
diag
(
(2X̄ − I)

(
a0 + 2qBT b + 2(A0 + qBT B)x̄

) )
− (A0 + qBT B)

]
γ
[2x̄ − e]γ ≤ 0.
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By x̄ ∈ UL, i.e., Bx̄ + b = 0, the above condition is equivalent to the following condition:

[NS CL]′


for any γ ∈ Γ,
[2x̄ − e]T

γ

[
diag
(
(2X̄ − I)(a0 + 2A0 x̄)

)
− (A0 + qBT B)

]
γ
[2x̄ − e]γ ≤ 0.

Here we just need to prove that there exists a q1 ≥ q0, such that condition [NS CL] is equivalent to condition [NS CL]′

when q ≥ q1. In fact, [NS CL]′ is equivalent to the following condition:

[NS CL]′′
{

for any γ ∈ Γ,
[2x̄ − e]T

γ [diag((2X̄ − I)(a0 + 2A0 x̄)) − A0]γ[2x̄ − e]γ ≤ q[2x̄ − e]T
γ [BT B]γ[2x̄ − e]γ.

Furthermore, [BT B]γ = BγT Bγ. Hence

[2x̄ − e]T
γ [BT B]γ[2x̄ − e]γ = (Bγ[2x̄ − e]γ)T Bγ[2x̄ − e]γ.

Thus, if [NS CL]′ holds, then for any γ ∈ Γ with

Bγ[2x̄ − e]γ = 0,

we must have that
[2x̄ − e]T

γ [diag((2X̄ − I)(a0 + 2A0 x̄)) − A0]γ[2x̄ − e]γ ≤ 0,

i.e., [NS CL] holds.
Conversely, if [NS CL] holds, then for any q ≥ 0 and γ ∈ Γ with

Bγ[2x̄ − e]γ = 0,

we have that

[2x̄ − e]T
γ [diag((2X̄ − I)(a0 + 2A0 x̄)) − A0]γ[2x̄ − e]γ ≤ 0 = q[2x̄ − e]T

γ [BT B]γ[2x̄ − e]γ.

So here we just need to prove that there exists a q1 > 0 such that when q ≥ q1, for any γ ∈ Γ with Bγ[2x̄ − e]γ , 0,
we also have that

[2x̄ − e]T
γ [diag((2X̄ − I)(a0 + 2A0 x̄)) − A0]γ[2x̄ − e]γ ≤ q[2x̄ − e]T

γ [BT B]γ[2x̄ − e]γ.

For any γ ∈ Γ, if Bγ[2x̄ − e]γ , 0, then

[2x̄ − e]T
γ [BT B]γ[2x̄ − e]γ > 0.

Hence, there must exist a qγ > 0, such that when q ≥ qγ,

[2x̄ − e]T
γ [diag((2X̄ − I)(a0 + 2A0 x̄)) − A0]γ[2x̄ − e]γ ≤ q[2x̄ − e]T

γ [BT B]γ[2x̄ − e]γ.

For γ ∈ Γ with Bγ[2x̄ − e]γ = 0, let qγ = 0. Let q1 = max{qγ|γ∈Γ, q0}. Then q1 ≥ q0 is a finite nonnegative number
since Γ is a finite set. When q ≥ q1, for any γ ∈ Γ, we have

[2x̄ − e]T
γ [diag((2X̄ − I)(a0 + 2A0 x̄)) − A0]γ[2x̄ − e]γ ≤ q[2x̄ − e]T

γ [BT B]γ[2x̄ − e]γ,

i.e., [NS CL]′ holds.
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3. Global Optimality Conditions for Quadratic Assignment Problems

Consider the following quadratic assignment problem (QAP):

(QAP) min
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

aikb jlxi jxkl +

n∑
i, j=1

ci jxi j

s.t.
n∑

i=1

xi j = 1,
n∑

j=1

xi j = 1

xi j ∈ {0, 1}, i, j = 1, 2, . . . , n,

which is a very famous combinatorial optimization problem suggested by Koopmans and Beckmann [1]. Let

xi : = (xi1, . . . , xin), i = 1, . . . , n,
x : = (x1, . . . , xn)T ,

ci : = (ci1, . . . , cin),
c : = (c1, . . . , cn)T ,

UA : =

x

∣∣∣∣∣∣∣∣
n∑

i=1

xi j = 1,
n∑

j=1

xi j = 1, xi j ∈ {0, 1}, i, j = 1, 2, . . . , n

 ,
Q : = (bi j)n×n,

Ri j : = ai jQ,

R : =


R11 . . . R1n
...

...
...

Rn1 . . . Rnn

 ,
D : =

R + RT

2
,

E : =



1 1 . . . 1 0 0 . . . 0 . . . . . . 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1 . . . . . . 0 0 . . . 0

. . . . . . . . . . . . . . .
0 0 . . . 0 0 0 . . . 0 . . . . . . 1 1 . . . 1
1 0 . . . 0 1 0 . . . 0 . . . . . . 1 0 . . . 0
0 1 . . . 0 0 1 . . . 0 . . . . . . 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 . . . 1 0 0 . . . 1 . . . . . . 0 0 . . . 1


2n×n2

So Ri j is a n × n matrix, R is a n2 × n2 matrix, D is a n2 × n2 symmetric matrix and f (x) := xT Dx + cT x. Problem
(QAP) can be rewritten as the following equivalent problem, which is also noted as (QAP):

(QAP) min f (x) := xT Dx + cT x

s.t. g(x) := Ex − e = 0

x ∈ {0, 1}n2
.

By Theorem 2, we can obtain the following sufficient condition for problem (QAP).

Theorem 4. (Sufficient Condition for Assignment Problem (QAP)) Let x̄ ∈ UA, X̄ = diag(x̄). If there exist q̄ ∈ R
and λ ∈ Rm such that

[S CA] D + q̄ET E ≽ diag((2X̄ − I)(c + ETλ + 2Dx̄)),

then x̄ is a global minimizer of problem (QAP).

8



Proof. It can be obtained easily from Theorem 2.

Remark 2. Condition [S CA] extends the results given by Theorem 2.2 in reference [29], which is equivalent to the
following condition:

[S CA1] D ≽ diag((2X̄ − I)(c + ETλ + 2Dx̄)).

Let

ΓA := {γ | γ = {i1 j1, . . . , ip jp} | ik, jk ∈ {1, . . . , n}, 1 ≤ k ≤ p, 1 ≤ p ≤ n}. (15)

For D = (di, j)n2×n2 ∈ S n2
, E = (ei, j)2n×n2 = (e1, . . . , en2 ), where ei ∈ R2n, a = (a1, . . . , an2 )T ∈ Rn2

, for any γ =
{i1 j1, . . . , ip jp} ∈ ΓA, 1 ≤ p ≤ n, let

[D]γ : = (di, j)p×p, where i, j ∈ {(ik − 1)n + jk, ik jk ∈ γ, k = 1, . . . , p}, (16)
Eγ : = (ek1 , . . . , ekp )2n×p, kr = (ir − 1)n + jr, ir jr ∈ γ, r = 1, . . . , p, (17)

[a]γ : = (ak1 , . . . , akp )T ∈ Rp, kr = (ir − 1)n + jr, ir jr ∈ γ, r = 1, . . . , p, (18)

eγ : = (e11, . . . , e1n, . . . , en1, . . . , enn)T ∈ Rn2
, ei j =

{
1, if i j ∈ γ
0, otherwise . (19)

By Theorem 3, we can obtain the following necessary and sufficient conditions for problem (QAP).

Theorem 5. (Necessary and Sufficient Condition for Assignment Problem (QAP)) Let x̄ ∈ UA and let X̄ = diag(x̄).
Then x̄ is a global minimizer of problem (QAP), if and only if

[NS CA]


for any γ ∈ ΓA such that Eγ[2x̄ − e]γ = 0,

[2x̄ − e]T
γ

[
diag
(
(2X̄ − I)(c + 2Dx̄)

)
− D
]
γ
[2x̄ − e]γ ≤ 0 ,

where e = (1, . . . , 1)T ∈ Rn2
.

Proof. It can be obtained easily from Theorem 3.

Proposition 4. Let x̄ ∈ UA. Then
(1) for any i = 1, . . . , n, there exists one and only one ji,x̄ ∈ {1, . . . , n} such that

x̄i ji,x̄ = 1
x̄i j = 0,∀ j ∈ {1, . . . , n}, j , ji,x̄
x̄r ji,x̄ = 0,∀r = 1, . . . , n, r , i;

(2) for any j = 1, . . . , n, there exists one and only one i j,x̄ ∈ {1, . . . , n} such that
x̄i j,x̄ j = 1
x̄i j = 0,∀i ∈ {1, . . . , n}, i , i j,x̄

x̄i j,x̄,r = 0,∀r ∈ {1, . . . , n}, r , j;

(3) ΓUA ⊃ Γx̄,UA and |Γx̄,UA | = n(n − 1), where

ΓUA : = {γ ∈ ΓA | Eγ[2x̄ − e]γ = 0}, (20)
Γx̄,UA : = {{i ji,x̄, i j, i j,x̄ ji,x̄, i j,x̄ j} | i, j ∈ {1, . . . , n}, i , i j,x̄, j , ji,x̄}. (21)

Proof. (1) For any i = 1, . . . , n, by
∑n

j=1 x̄i j = 1 and x̄i j ∈ {0, 1}, we know that there exists one and only one
ji,x̄ ∈ {1, . . . , n} such that x̄i ji,x̄ = 1 and for the other j ∈ {1, . . . , n}, j , ji,x̄, x̄i j = 0. By

∑n
r=1 x̄r ji,x̄ = 1, we know that

for any r = 1, . . . , n and r , i, x̄r ji,x̄ = 0.
Similarly, (2) can be also obtained.
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(3) For any γ ∈ {{i ji,x̄, i j, i j,x̄ ji,x̄, i j,x̄ j} | i, j ∈ {1, . . . , n}, i , i j,x̄, j , ji,x̄}, we can obtain that

Eγ[2x̄ − e]γ = 0

by [2x̄ − e]γ = (1,−1,−1, 1)T and Eγ = (e1, , e2, e3, e4)2n×4, where

e1 = (e1,1, . . . , e1,2n)T , e1,p =

{
1, p = i, n + ji,x̄
0, otherwise,

e2 = (e2,1, . . . , e2,2n)T , e2,p =

{
1, p = i, n + j
0, otherwise,

e3 = (e3,1, . . . , e3,2n)T , e3,p =

{
1, p = i j,x̄, n + ji,x̄
0, otherwise,

e4 = (e4,1, . . . , e4,2n)T , e4,p =

{
1, p = i j,x̄, n + j
0, otherwise .

Thus, {{i ji,x̄, i j, i j,x̄ ji,x̄, i j,x̄ j} | i, j ∈ {1, . . . , n}, i , i j,x̄, j , ji,x̄} ⊂ Γx̄,UA . Obviously |Γx̄,UA | = n(n − 1).
By Proposition 4 and Theorem 5, we can obtain the following necessary condition.

Theorem 6. (Necessary Condition for Assignment Problem (QAP)) Let x̄ ∈ UA. If x̄ is a global minimizer of
problem (QAP), then

[NCA] [2x̄ − e]T
γ [diag((2X̄ − I)(c + 2Dx̄)) − D]γ[2x̄ − e]γ ≤ 0,∀γ ∈ Γx̄,UA .

For a given x̄ ∈ UA, the following algorithm gives a method to obtain the set Γx̄,UA :

Algorithm 1. ( Algorithm for Set Γx̄,UA :)
Step 0. Set i := 1 and Γ = ∅, goto Step 1;
Step 1. If i > n, goto Step 4; otherwise, let pi := argmax{x̄i j, j = 1, . . . , n}, i.e., x̄ipi = 1, and let j := 1, goto Step

2;
Step 2. If j = pi, let j := j + 1, goto Step 3; otherwise let q j := argmax{x̄i j, i = 1, . . . , n}, i.e., x̄q j j = 1, and let

Γ := Γ ∪ {ipi, i j, q j pi, q j j}, j := j + 1, goto Step 3;
Step 3. If j > n, let i := i + 1, goto Step 1; otherwise, goto Step 2;
Step 4. Stop. Γ is the set of Γx̄,UA .

4. Optimization Methods for Quadratic Assignment Problems

In this section, we will first derive a new local optimization method for quadratic assignment problem (QAP), then
we will introduce an auxiliary function to derive a global optimization method for problem (QAP).

4.1. Local Optimization Method

Consider the following general problem (AGP).

(AGP) min f (x)
x ∈ UA,

where f is a general objective function,

UA =

x

∣∣∣∣∣∣∣∣
n∑

i=1

xi j = 1,
n∑

j=1

xi j = 1, xi j ∈ {0, 1}, i, j = 1, 2, . . . , n


= {x | Ex = 1, x ∈ {0, 1}n2 }.
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If f (x) = xT Dx + cT x, where D and c are given in problem (QAP), then (AGP) is the quadratic assignment problem
(QAP). Let x̄ ∈ UA and let

Dx̄ : = {dγ = (I − 2X̄)eγ | γ ∈ Γx̄,UA }, (22)
N(x̄) : = {x̄} ∪ {x̄ + d | d ∈ Dx̄}, (23)

where X̄ = diag(x̄) and eγ is defined by (19). N(x̄) is said to be the neighborhood of x̄. Obviously, we have that
N(x̄) ⊂ UA and |N(x̄)| = n(n − 1) + 1. Indeed, for any d ∈ D(x̄), there exists a γ = (i ji,x̄, i j, i j,x̄ ji,x̄, i j,x̄ j) ∈ Γx̄,UA such
that d = (I − 2X̄)eγ. Hence,

x = x̄ + d = x̄ + (I − 2X̄)eγ = (x11, . . . , x1n, . . . , xn1, . . . , xnn)T ,

where xkr =

{
1 − x̄kr kr ∈ γ

x̄kr kr < γ ∈ {0, 1} and

n∑
r=1

xkr =



∑n
r=1 x̄kr = 1, ∀k , i, i j,x̄

n∑
r = 1
r , j
r , ji,x̄

x̄ir + (1 − x̄i ji,x̄ ) + (1 − x̄i j) = (1 − x̄i j) = 1, if k = i

n∑
r = 1
r , j
r , ji,x̄

x̄i j,x̄r + (1 − x̄i j,x̄ ji,x̄ ) + (1 − x̄i j,x̄ j) = (1 − x̄i j,x̄ j) = 1, if k = i j,x̄

n∑
k=1

xkr =



∑n
k=1 x̄kr = 1, ∀r , j, ji,x̄

n∑
k = 1
k , i
k , i j,x̄

x̄k ji,x̄ + (1 − x̄i ji,x̄ ) + (1 − x̄i j,x̄ ji,x̄ ) = (1 − x̄i j,x̄ ji,x̄ ) = 1, if r = i j,x̄

n∑
k = 1
k , i
k , i j,x̄

x̄k j + (1 − x̄i j,x̄ j) + (1 − x̄i j) = (1 − x̄i j) = 1, if r = j

.

Thus, x = x̄ + d ∈ UA.
By |Γx̄,UA | = n(n − 1), we have that |N(x̄)| = n(n − 1) + 1.

Definition 1. Let x̄ ∈ UA. x̄ is said to be a local minimizer (maximizer) of problem (AGP) if for any x ∈ N(x̄), f (x) ≥
f (x̄)( f (x) ≤ f (x̄)). x̄ is said to be a strict local minimizer (maximizer) of problem (AGP) if for any x ∈ N(x̄) \ {x̄},
f (x) > f (x̄)( f (x) < f (x̄)).

Definition 2. Let x̄ ∈ UA. x̄ is said to be a global minimizer of problem (AGP) if for any x ∈ UA, f (x) ≥ f (x̄).

Definition 3. d ∈ Dx̄ is said to be a descent direction of problem (AGP) at point x̄ ∈ UA if f (x̄ + d) < f (x̄).

Algorithm 2. (Local Optimization Method for Problem (AGP):)
Step 1. Take an initial point x ∈ UA.
Step 2. If x is already a local minimizer of problem (AGP), i.e., f (x + d) ≥ f (x) for any d ∈ Dx, then stop;

otherwise, let dx be a descent direction of problem (AGP) at point x, i.e., f (x + dx) < f (x), go to Step 3.
Step 3. Set x := x + dx, and go to Step 2.
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Theorem 7. Let x̄ ∈ UA and let f (x) = xT Dx + cT x. Then x̄ is a local minimizer of problem (QAP) if and only if
[NCA] holds.

Proof. By the definition of local minimizer of problem (QAP) given by Definition 1, we know that x̄ is a local
minimizer of problem (QAP) if and only if for any γ ∈ Γx̄,UA , we have that

f (x̄ + dγ) − f (x̄) ≥ 0,

where dγ = (I − 2X̄)eγ, i.e.

(x̄ + dγ)T D(x̄ + dγ) + cT (x̄ + dγ) − x̄T Dx̄ − cT x̄ ≥ 0. (24)

We can easily to verify that (24) is equivalent to (NCA).
Note that here we design a local optimization method for problem (QAP) by using the necessary global optimality

condition (NCA). In the following, we will derive a global optimization method for problem (QAP) by using the
global optimality sufficient condition [S CA], the local optimization method given by Algorithm 5.1 and some auxiliary
functions.

4.2. Global Optimization Method for Quadratic Assignment Problem (QAP)
In order to derive the global minimization method, here we need to introduce the following auxiliary functions.

Let x∗ be a local minimizer of quadratic assignment problem (QAP) and let

φr(t) =


0 t ≤ −r

t
r + 1 −r < t ≤ 0

1 t > 0
, (25)

Φr,x∗(x) =
1

∥x − x∗∥ + 1
φr

(
f (x) − f (x∗)

)
, (26)

where f (x) = xT Dx + cT x, D, c are given in problem (QAP), and ∥x − x∗∥ = ∑n
i, j=1 |xi j − x∗i j|. Consider the following

problem:

(AQAP) min Φr,x∗(x)
x ∈ UA,

where r > 0 is a parameter.

Theorem 8. For any r > 0, x∗ is a strict local maximizer of problem (AQAP).

Proof. Since x∗ is a local minimizer of problem (QAP), for any d ∈ Dx∗ , we have that

f (x∗ + d) ≥ f (x∗).

Hence, for any r > 0 and for any d ∈ Dx∗ , we have that

Φr,x∗(x∗ + d) =
1

∥x∗ + d − x∗∥ + 1
= 1/5 < 1 = Φr,x∗(x∗),

where we can easily verify that ∥d∥ = 4 for any d ∈ Dx∗ . Thus, x∗ is a strict local maximizer of problem (AQAP).

Theorem 9. Let x̄ be a local minimizer of problem (AQAP) obtained by Algorithm 5.1 with x1 := x∗ + d0 being an
initial point, where d0 ∈ Dx∗ . Then, x̄ ∈ UA and one of the following conditions holds:

(1) f (x̄) < f (x∗)

or
(2) x̄T x∗ = 0.
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Proof. Let x̄ be a local minimizer of problem (AQAP). By Algorithm 5.1, we know that x̄ ∈ UA. Suppose that
f (x̄) ≥ f (x∗) and x̄T x∗ , 0, then there exists an index pair i j such that x̄i j = x∗i j = 1. Let γ ∈ Γx̄,UA such that i j ∈ γ.
Then there exist k, r ∈ {1, . . . , n} and k , i, r , j such that γ = {i j, ir, k j, kr} and x̄ir = x̄k j = 0, x̄kr = 1. Then γ ∈ Γx̄,UA .
Obviously, we also have that x∗ir = x∗k j = 0 by x∗i j = 1. Let d = (I − 2X̄)eγ, where X̄ = diag(x̄). Then d ∈ Dx̄ and

Φr,x∗ (x̄ + d) ≤ 1
∥x̄ + d − x∗∥ + 1

≤ 1∑
pq<γ |x̄pq − x∗pq| + 4

<
1∑

pq<γ |x̄pq − x∗pq| + 2
≤ Φr,x∗(x̄),

which contradicts that x̄ is a local minimizer of problem (AQAP).

Theorem 10. If x∗ is not a global minimizer of problem (QAP), then there exists a r0 > 0 such that when r ≤ r0, any
x ∈ UA with f (x) < f (x∗) is a local and also a global minimizer of problem (AQAP).

Proof. Let Lx∗ := {x ∈ UA | f (x) < f (x∗)} and r0 := min{ f (x∗) − f (x) | x ∈ Lx∗ }. Then r0 > 0 since Lx∗ is a finite set.
And for any r ≤ r0, for any x ∈ Lx∗ , we have that

f (x) − f (x∗) ≤ −r0 ≤ −r.

Hence, we have that
Φr,x∗(x) = 0 ≤ Φr,x∗ (y),∀y ∈ UA.

Thus, x ∈ Lx∗ is a local and also a global minimizer of problem (AQAP).

Theorem 11. Let x̄ ∈ UA. Then when r ≤ r0, x̄ satisfies that f (x̄) < f (x∗) if and only if Φr,x∗ (x̄) = 0, where r0 is
decided by Theorem 10.

Proof. If x̄ satisfies that f (x̄) < f (x∗), then r0 > 0 and f (x̄) − f (x∗) ≤ −r when r ≤ r0. Thus, Φr,x∗(x̄) = 0.
Obviously, for any r > 0, if Φr,x∗(x̄) = 0, then we must have that f (x̄) − f (x∗) ≤ −r.
In the following, we will give a global optimization method for problem (QAP) based on the given local optimiza-

tion method, the global optimality sufficient condition [S CA] and the filled function Φr,x∗ .

Algorithm 3. (Global Optimization Method for Quadratic Assignment Problem (QAP):)
Step 0. Take an initial point x1 ∈ UA (for example, in the following examples, we take x1 = (x1

i j), where x1
ii = 1, i =

1, . . . , n and x1
i j = 0, i, j ∈ {1, . . . , n}, i , j), a sufficiently small positive number µ, and an initial r1 > 0. Set k := 1

and r := r1.

Step 1. Use the local optimization method (Algorithm 2) to solve problem (QAP) starting from xk. Let x∗k be the
obtained local minimizer. If k ≥ 2 and f (x∗k) ≥ f (x∗k−1), go to Step 5; otherwise, go to Step 2.

Step 2. Verify whether x∗k satisfies the following global optimality sufficient condition: there exist q̄ ∈ R and λ ∈ Rm

such that
[S CA]x∗k D + qET E ≽ diag((2X∗k − I)(c + ETλ + 2Dx∗k),

where X∗k = diag(x∗k). If [S CA]x∗k holds, then go to Step 7; otherwise, go to Step 3.

Step 3. Let

Φr,x∗k (x) =
1

∥x − x∗k∥ + 1
φr( f (x) − f (x∗k)).

Consider the following problem:

min Φr,x∗k (x) (27)
s.t. x ∈ UA.
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Set Dx∗k = {I − 2X∗k eγ | γ ∈ Γx∗k ,UA } = {d1(x∗k), . . . , dn(n−1)(x∗k)}, set i := 1 and (xk)∗i := x∗k + di(x∗k), go to Step 4.

Step 4. Use the local optimization method (Algorithm 2) to solve problem (27) starting from (xk)∗i . If in the process
of minimization, at some point y∗k ∈ UA, the condition Φr,x∗k (y

∗
k) = 0 holds, then set xk+1 := y∗k, k := k+ 1, go to Step 1;

otherwise continue the procedure. Let ¯(xk)i
∗ be the local minimizer of problem (27) and let xk+1 := ¯(xk)i

∗
, k := k + 1,

go to Step 1.

Step 5. If i ≥ n(n − 1), go to Step 6; otherwise, set i := i + 1 and (xk)∗i := x∗k + di(x∗k), go to Step 4.

Step 6. If r ≥ µ, decrease r, such as, let r := r/10, and let i := 1, go to Step 3; otherwise, go to Step 7.

Step 7. Stop x∗k is the obtained global minimizer of problem (QAP).

4.3. Numerical Examples

In this subsection, we will give several numerical examples to illustrate the efficiency of the given optimization method
Algorithm 3 (note that Algorithm 2 is used here for local optimization) to obtain a global minimizer of problem
(QAP). In the following numerical examples, we use the following notations:

x1 is the initial point taken arbitrarily;

xk, k ≥ 2 is the point obtained by solving the auxiliary function problem (27) with local optimization method Algo-
rithm 2;

x∗k, k ≥ 1 is the local minimizer of problem (QAP) obtained by Algorithm 2 starting from xk.

Example 2. [30] Consider the following quadratic assignment problem:

[EX1] min f (x) :=
10∑
i=1

10∑
j=1

10∑
k=1

10∑
l=1

fi jdklxik x jl

s.t.
10∑
i=1

xi j = 1, j = 1, . . . , 10,

10∑
j=1

xi j = 1, i = 1, . . . , 10,

xi j ∈ {0, 1}, i, j = 1, . . . , 10,

where fi j and dkl are given by the following matrices, respectively:

F := ( fi j)10×10 =



0 5 3 7 9 3 9 2 9 0
5 0 7 8 3 2 3 3 5 7
3 7 0 9 3 5 3 3 9 3
7 8 9 0 8 4 1 8 0 4
9 2 2 8 0 8 8 7 5 9
3 2 4 4 9 0 4 8 0 3
8 4 1 1 8 4 0 7 9 5
3 2 2 8 6 8 6 0 5 5
9 6 9 0 7 0 9 5 0 5
0 7 2 4 9 1 4 7 4 0
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and

D := (dkl)10×10 =



0 7 4 6 8 8 8 6 6 5
7 0 8 2 6 5 6 8 3 6
4 8 0 10 4 4 7 2 6 7
6 2 10 0 6 6 9 3 2 6
8 6 4 6 0 6 4 8 8 6
8 5 4 6 6 0 3 8 3 2
8 6 7 9 4 3 0 6 7 8
6 8 2 3 8 8 6 0 8 8
6 3 6 2 8 3 7 8 0 9
5 6 7 6 6 2 8 8 9 0



.

The optimal permutation given by [30] is (9, 1, 8, 3, 6, 7, 2, 5, 4, 10) and the optimal objective value given by [30] is
f ∗ = 2227. Table 1 records the numerical results of solving Example [EX1] by Algorithm 3.

Table 1: Numerical results for Example [EX1]
k xk f (xk) local minimizer x∗k f (x∗k)

1



1
2
3
4
5
6
7
8
9
10



2879



10
2
9
4
5
1
3
8
6
7



2413

2



1
3
4
9
6
10
2
7
5
8



2701



1
9
4
2
6
10
3
5
8
7



2399

3



4
5
1
3
7
8
2
9
10
6



2653



9
1
8
3
6
7
2
5
4
10



2227

From Table 1, we see that the first local minimizer is not the global one, and then we use the filled function to obtain
the second and the third one. The third local minimizer is the global one.

Example 3. [30] Consider the following quadratic assignment problem:
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[EX2] min f (x) :=
10∑
i=1

10∑
j=1

10∑
k=1

10∑
l=1

fi jdklxik x jl

s.t.
10∑
i=1

xi j = 1, j = 1, . . . , 10,

10∑
j=1

xi j = 1, i = 1, . . . , 10,

xi j ∈ {0, 1}, i, j = 1, . . . , 10,

where fi j and dkl are given by the following matrices, respectively:

F := ( fi j)10×10 =



0 9 4 2 2 9 7 4 4 3
8 0 6 9 0 9 7 2 5 8
1 7 0 1 9 9 7 9 5 3
0 0 9 0 4 8 8 8 8 2
5 4 6 2 0 8 8 7 2 7
7 8 0 4 4 0 9 3 4 3
8 5 5 9 8 3 0 9 5 2
7 1 5 0 3 5 4 0 9 9
7 5 3 2 6 3 3 4 0 0
3 7 1 3 3 3 5 8 9 0


and

D := (dkl)10×10 =



0 8 7 6 8 8 6 106 5 9
7 0 8 2 10 2 8 8 4 7
1 7 0 10 7 7 8 1 5 10
7 1 9 0 6 6 10 3 3 2
8 2 1 5 0 5 1 7 10 10
7 8 1 7 6 0 4 9 3 1
9 4 6 8 6 2 0 4 6 9
2 8 3 4 9 6 8 0 8 8
7 2 7 2 7 4 9 8 0 9
2 4 3 10 1 3 7 9 10 0



.

The optimal permutation given by [30] is x∗ = (9, 4, 5, 10, 7, 2, 6, 3, 1, 8) and the optimal objective value given by [30]
is f ∗ = 2025. Note that the optimal objective value given by [30] is not right, the correct optimal objective value is
f ∗ = 2027. Table 2 records the numerical results of solving Example [EX2] by Algorithm 3.
From Table 2, we see that the obtained third local minimizer of problem [EX2] is the global one.

Example 4. [30] Consider the following quadratic assignment problem:

[EX3] min f (x) :=
15∑
i=1

15∑
j=1

15∑
k=1

15∑
l=1

fi jdklxik x jl

s.t.
15∑
i=1

xi j = 1, j = 1, . . . , 15,

15∑
j=1

xi j = 1, i = 1, . . . , 15,

xi j ∈ {0, 1}, i, j = 1, . . . , 15,
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Table 2: Numerical results for Example [EX2]
k xk f (xk) local minimizer x∗k f (x∗k)

1



1
2
3
4
5
6
7
8
9
10



2777



7
6
10
4
5
2
9
8
1
3



2434

2



1
2
4
7
9
6
5
8
10
3



2676



6
9
3
5
8
1
7
9
2
4



2388

3



3
1
6
2
4
10
9
7
5
8



2672



9
4
5
10
7
2
6
3
1
8



2027

where fi j and dkl are given by the following matrices, respectively:

F := ( fi j)15×15 =



0 1 2 3 4 1 2 3 4 5 2 3 4 5 6
1 0 1 2 3 2 1 2 3 4 3 2 3 4 5
2 1 0 1 2 3 2 1 2 3 4 3 2 3 4
3 2 1 0 1 4 3 2 1 2 5 4 3 2 3
4 3 2 1 0 5 4 3 2 1 6 5 4 3 2
1 2 3 4 5 0 1 2 3 4 1 2 3 4 5
2 1 2 3 4 1 0 1 2 3 2 1 2 3 4
3 2 1 2 3 2 1 0 1 2 3 2 1 2 3
4 3 2 1 2 3 2 1 0 1 4 3 2 1 2
5 4 3 2 1 4 3 2 1 0 5 4 3 2 1
2 3 4 5 6 1 2 3 4 5 0 1 2 3 4
3 2 3 4 5 2 1 2 3 4 1 0 1 2 3
4 3 2 3 4 3 2 1 2 3 2 1 0 1 2
5 4 3 2 3 4 3 2 1 2 3 2 2 0 1
6 5 4 3 2 5 4 3 2 1 4 3 2 1 0
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and

D := (dkl)15×15 =



0 10 0 5 1 0 1 2 2 2 2 0 4 0 0
10 0 1 3 2 2 2 3 2 0 2 0 10 5 0
0 1 0 10 2 0 2 5 4 5 2 2 5 5 5
5 3 10 0 1 1 5 0 0 2 1 0 2 5 0
1 2 2 1 0 3 5 5 5 1 0 3 0 5 5
0 2 0 1 3 0 2 2 1 5 0 0 2 5 10
1 2 2 5 5 2 0 6 0 1 5 5 5 1 0
2 3 5 0 5 2 6 0 5 2 10 0 5 0 0
2 2 4 0 5 1 0 5 0 0 10 5 10 0 2
2 0 5 2 1 5 1 2 0 0 0 4 0 0 5
2 2 2 1 0 0 5 10 10 0 0 5 0 5 0
0 0 2 0 3 0 5 0 5 4 5 0 3 3 0
4 10 5 2 0 2 5 5 10 0 0 3 0 10 2
0 5 5 5 5 5 1 0 0 0 5 3 10 0 4
0 0 5 0 5 10 0 0 2 5 0 0 2 4 0



.

The optimal permutation given by [30] is x∗ = (1, 2, 13, 8, 9, 4, 3, 14, 7, 11, 10, 15, 6, 5, 12) and the optimal objective
value given by [30] is f ∗ = 1150. Table 3 records the numerical results of solving Example [EX3] by Algorithm 3.

Table 3: Numerical results for Example [EX3]

k xk f (xk) local minimizer x∗k f (x∗k)

1



1
2
12
4
5
6
7
8
15
14
13
3
11
10
9



1616



1
2
14
6
15
4
13
3
5
10
7
8
11
9
12



1200

18



2



12
1
3
4
5
6
7
14
15
8
13
10
9
11
2



1630



10
3
4
2
1
6
14
13
8
7
15
5
0
11
12



1186

3



12
2
5
3
10
7
8
9
14
6
11
4
13
15
1



1466



12
1
4
3
10
9
2
13
14
15
11
8
7
5
6



1174

4



15
2
3
4
6
7
1
8
11
5
14
13
9
12
10



1502



4
14
3
5
15
2
13
8
7
6
1
9
11
12
10



1160

19



5



12
2
5
3
8
14
6
15
9
13
4
7
10
1
11



1560



1
2
13
8
9
4
3
14
7
11
10
15
6
5
12



1150

From Table 3, we see that 5 local minimizers are obtained by Algorithm 3 and the 5th local minimizer is the global
one of problem [EX3].

5. Conclusion

The quadratic assignment problem (QAP) has a wide range of practical applications. For this problem, we provided
a new improvement method. We presented global optimality conditions for problem (QAP). Then we designed a
new local optimization method by using necessary global optimality condition. Furthermore we provided a new
global optimization method by combining sufficient global optimality condition, new local optimization method and
auxiliary functions.
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