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Abstract

Let n > 3 and J,, := circ(J1, Jo, ..., Jn) and J,, := circ(Jo, j1, .- -y Jn—1)
be the n x n circulant matrices, associated with the nth Jacobsthal num-
ber J, and the nth Jacobsthal-Lucas number j,, respectively. The de-
terminants of J, and J, are obtained in terms of the Jacobsthal and
Jacobsthal-Lucas numbers. These imply that J,, and J, are invertible.

We also derive the inverses of J,, and J,.

1 Introduction

The n x n circulant matrix C, := circ(cg, ¢1, .
numbers cg, ..., Cy_1, is defined as
Co CtT ... Cp—2
Ch—1 Co ... Cp_3
Cp:=
C2 c3 ... Co
C1 Coy ... Cp-1

..yCn—1), assoicated with the

Cn—1
Cn—2
(1)
C1
co

Circulant matrices have a wide range of applications, for examples in signal pro-
cessing, coding theory, image processing, digital image disposal, self-regress de-
sign and so on. Numerical solutions of the certain types of elliptic and parabolic
partial differential equations with periodic boundary conditions often involve
linear systems associated with circulant matrices [9-11].
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The eigenvalues and eigenvectors of C,, are well-known [14]:

where w:= cxp(%) and i := v/—1 and the corresponding eigenvectors

Vi = (17@']7‘-"-}2]7' "7w(7171)j)T7 ] - 07' sy — L.

Thus we have the determinants and inverses of nonsingular circulant matrices
[1,3,4,14]:

n—1 n—1
det(Cy) = H(Z cpw®),
7=0 k=0
and
O;l = CiI‘C(CLo, ALy eny anfl),

where a;:=1 ZZ;& Mew F and r =0,1,...,n—1 [4]. When n is getting large,
the above formulas are not very handy to use. If there is some structure among
co,---,Cn_1, we may be able to get more explicit forms of the eigenvalues, deter-
minants and inverses of C,,. Recently, studies on the circulant matrices involving
interesting number sequences appeared. In [1] the determinants and inverses of
the circulant matrices A,, = circ(Fy, Fo, ..., F,) and B,, = circ(L1, La, ..., Ly)
are derived, where F,, and L, are the nth Fibonacci and Lucas numbers, re-
spectively. In [2] the r-circulant matrix is defined and its norm is computed.
The norms of Toeplitz matrices [13] involving Fibonacci and Lucas numbers are
obtained [5]. Miladinovic and Stanimirovic [6] gave an explicit formula of the
Moore-Penrose inverse of singular generalized Fibonacci matrix. Lee and et al.
found the factorizations and eigenvalues of Fibonacci and symmetric Fibonacci
matrices [7].

When n > 2, the Jacobsthal and Jacobsthal-Lucas sequences {J,,} and {j,}
are defined by J, = J,—1+2J,—2 and j, = jn—1 + 27,2 with initial conditions
Jo=0,J1 =1, jo =2, and j; = 1, respectively. Let J, := cire(Jy, Ja, ..., Jn)
and J,, := circ(Jo,J1,---,Jn—1)- The aim of this paper is to establish some
useful formulas for the determinants and inverses of J,, and ], using the nice
properties of the Jacobsthal and Jacobsthal-Lucas numbers. Question: How
about eigenvalues? Matrix decompositions are derived for J,, and J,, in order
to obtain the results.

2 Determinants of J, and J,

Recall that J,, := cire(Jy, Ja, ..., Jp) and 3, := cire(jo, J1,- - -y jn—1), i-e., where
Jr and ji are the kth Jacobsthal and Jacobsthal-Lucas numbers, respectively,
with the recurrence relations Ji, = Jp—1 + 2Jix—2, jr = jr—1 + 2Jk—2, and the
initial conditions Jy =0, J; =1, jo =2, and j;1 =1 (k > 2). Let o and 8 be



the roots of 22 — 2 — 2 = 0. Using the Binet formulas [8, p.40] for the sequences
{J} and {j,}, one has

and
Jn=a" 4+ 8" =2"+ (-1)". (3)

Theorem 1 Let n > 3. Then

n—2

det(J,) = (1 = Jpy )" 2(1 = Jp) +2 Z [Je(1 = Jns)*H27,)" 1] (4)
k=1

Proof.  Obviously, det(Js3) = 20. It satisfies (ff). For n > 3, we select the
matrices P, and @, so that when we multiply J,, with P, on the left and @,, on
the right we obtain a special upper triangular matrix that have nonzero entries
only on the first two rows, main diagonal and super diagonal:

1 0 0 0 0 0
10 0 0 0 1
20 0 0 .. 1 -1
P,:= 0 0 0 o ... -1 =2 (5)
00 1 -1 0 0
0 1 -1 -2 0 0]
and ~ _
1 0 0 0 0
n—2
2Jn
0 () 0 0
n—3
2Jn
0 () 0 0 -1
n—4
= 2J5
Q=10 (=) 0 ~1 0
2J5
o (2—) -1 0
0 1 0 0 0]




Notice that we have the following equivalence:

Sh = }%JnQn
_1 fn _Jn —Jn—-1 —Jn-2 e _J4
dn Jn —1 —2,]",2 —2Jn,3 RPN —2J3
2 Jnsr — 1
2y Jnr —1

Jpy1 — 1
2Jy,
2J,
and S, is upper triangular, where
n—1 n—k—1
2Jy
n = J) )
f Z k+1<1_Jn+l)
k=1
n—2 k
2J,
n = 1—J,+2 Jn—p—1 | ——— | .
g - Z o (1 - Jn+1>

k=1
Then we have

det(S,) = det(P,) det(J,,) det(Q.,,) = (2Jn)n_29n.

Since
1 =1 2 d4
qor(pyy {1 m=1or2 (mody
-1, n=0 or 3 (mod4),
and )
(13,}]:+1) ) n =1 or 2 (mod4)
det(Q,) = o
- (1fj;+1) , n=0or3 (modd),
for all n > 3,

Jn n—2
det(F;,) det(Qn) = (1—27J+1>

and ([]) follows. H

Theorem 2 Let n > 3. Then

n—1

_J3
—2J

Jn+1 -1
2Jy

det(jn) = (2_.7.71)”_2(4_]'71*1)"'2 [(2jk - jkfl)(2 - jn)k_2(1 + 2jn71)n_k] .

k=2

(6)



Proof. Since det(J3) = 104, I satisfies ([]). For n > 3, we select the matrices
K,, and M, so that when we multiply J,, with K, on the left and M,, on the
right we obtain a special upper triangular matrix that have nonzero entries only
on the first two rows, main diagonal and super diagonal:

10 0 O 0 0
-2 0 0 0 0 1
-2 0 0 O 1 -1
K,=|0 0 0 0 -1 =2
0o 0 1 -1 0 0
|0 1 -1 =2 0 0]
and ~ .
1 0 0 0 o0
. n—2
14255 -
0 () 0 0 0
. n—3
1425,
0 () 0 0 -1
. n—4
- 1425,
My,:= | ( 2_ﬂjn1) 0 -1 0
1425,
0 ( =5, 1) 0 0
10 1 -1 0 ]
We have
U, = Kpl.M,
2y, —jn1 —Jn—2 —J3 —J2
Yn  Fdn-1—Jo Fin-2 —jn-1 3J3—Jja  3j2—1Js
142jp1 Jn —2
14 25,1
_ 0
Jn =2
14+2jp-1  jn—2
L 1+ 2jn—l_
and U, is upper triangular, where
n—1 . n—k
1 . 1+ 2]11—1
Yn = 5 |(d—Jn-1)+ D (2K — jr-1) . ,
2 2—17Jn
k=2
n—1 . n—k—
’ - . 1+ 2‘]71,1 et
k=1




Then we obtain

det(U,) = det(K,,) det(3,,) det(My,) = 2(1 + 25, 1)" *y,.

Since
1 =1 2 d4
det(K,) =14 " or 2 tmodd)
—1, n=0or 3 (mod4),
and 2
(122_1'@71) , n=1or2 (mod4)
det(Mn) = ]n n—2
_(H;ﬂ) , n=0or 3 (mod4),
In
for all n > 3,
1 9 ,ni n—2
det(K,) det(M,) = <%)

and we have ([}). W

3 Inverses of J, and J,

We will use the well-known fact that the inverse of a nonsingular circulant matrix
is also circulant [14, p.84] [12, p.33], [4, p.90-91].

Theorem 3 The matriz J,, = circ(Jy, Jo, ..., J,) is invertible when n > 3.

Proof. From Theorem [], det(J3) = 20 # 0 and det(Js) = —400 # 0. Then
J3 and J4 are invertible. Let n > 5. The Binet formula for Jacobsthal numbers
gives J, = £ 5’8 , where a + =1,a8 = —2 and a — § = 3. Then we have

g(wk) = ierkr—k _ i (ar ;5T> whr=k — %i (" — BT)wkr—k
r=1

[a(l —a") B —5n)} , (1—aw”, 1 - Bwk #£0)

1 — awk 1 — Bwk

1
3
1 ((a —B) = (@™ = 8™ + afut(a” ﬂ"))
3
1

1 — aw* — Bwk + aBw?k

— Jpi1 — 2T
= TG k=l2o.n-L

If there existed w® (k = 1,2,...,n — 1) such that g(w*) = 0, then we would
have 1 — J, 1 — 2J,w" = 0 for 1 — wF — 2w?* # 0. Hence w* = %j;“ It is well
known that

2kmi 2k 2k
Wk = exp < m> = cos <—7T> + isin (—ﬂ-) (8)
n n n




. . 1—J,
where i := v/—1. Since wk = % is a real number, sin (2’”) = 0 so that

wk = —1for 0 < %Tﬂ < 27. However u = —1 is not a root of the equation
1—Jpy1 —2J,u =0 (n > 5), a contradiction, i.e., g(w*) # 0 for any w*, where
k=1,2,...,n—1, n > 5. Thus the proof is completed by [1, Lemma 1.1]. H

Lemma 4 Let A = (ai;) be the (n — 2) x (n — 2) matriz defined by

2J,, =7
Qi = Jn+1—1, ]:Z+1
0, otherwise.

Then A=t = (a;-j) is given by

1—Jp1)? ¢ S
" 0, otherwise.

Proof. Let B = (b;) = AA™'. Clearly by; = S p—. azka,w When i = j, we
have

1
bii = 20— = 1.
2J,
If 7 >4, then
bij = Z aika;j = ai)H_la;-JrLj + aiia;—j
(1= o) ! (1= Jng1)’"
= (Jpyr1—1 — 2J, — =0;
(o1 =1) (2J,)i— + (2.1,,)7—i+1

similar for j < 4. Thus AA~™' =1, .. A

Theorem 5 Let the matriz J,, be J,, := circ(Jq, Ja2, . ..
inverse of the matriz Iy, is

,Jn) (n>3). Then the

It = cire(my,ma, ..., my)
where

J _ B _

mi _ n+1 + (1 2Jn l)gn 1
29nJ12z

gn — 1

m =
: Ingn

1 (1 — Jn-l—l) ns B n+1)n_k_2

m3 = g_n (1_Jn_gn) (2] +22Jnk nkfl



1 ([(1 = Jn = gn)(Jny2 = 1) = 4JnJno](1 = Jny1)"*
n

n—4
(1 B Jn-l—l)k_l
4 Jpy—
TR
1 (1= Jyyy)ni (lfJnf(g}i()Q;u,Al) —o(J, + %:Jnﬂ)) . nis odd
mi fr— . —

Gn  (2Jp)n—i L n is even

=2 (g + Lem2lun) )

k
forgnzl—Jn+2ZZ;fJn,k,l( 27, ) andi=5,6,...,n.

1_Jn+1
Proof. Let
i fn fn fn 7]
U —fo 2= +dn Jpo1 =205 Js — 2525
0 1 _Jn—l 2Jn—2 %
9n gn 9n
0 O 1 0 0
R,=10 0 0 1 0
0 O 0 0
10 0 0 0 1 ]

n—k—1
and G = diag(1, g,) where f,, = Z;ll Jra1 ( 2Tn ) and g, =1—J, +

1=Jn41

k
2 22;12 Jn—k-1 (1Ej:+1) . Then we can write

where G @ A is the direct sum of the matrices G and A. Let T}, = Q,R,,. Then

we have
I =T.(G e A YHP,.

Since the matrix J,, is circulant, its inverse is circulant from Lemma 1.1 [1,

p. 9791]. Let
I-1 = cire(my,ma, ..., my).

Since the last row of the matrix T, is

(O,l, L—Jn 1. 2Jn,2, 2Jp—3 ' 2J3 %) ,

In In g gn gn



the last row entries of the matrix J,, ! are

Mo _ In — 1
Jngn
1 (1 _Jn+1 B — n+1)n_k_2
m3 = g?((l_Jn_gn) (2J +22Jnk nkfl
me = 1 ([(1 —Jn = gn)(Jny2 —1) — 4‘]an*2](1 — Jn+1)n *
In (2Jp)" 2
_ 1 )it
+4Z Jk n+
1 _ (1 —Jn 1)"75
= —|Q=Jo—g)@"P =21+ (1)L
e [ R i TN e
- n+1 k=1 - n+1) k=1
+— ZJk+3 ZJ’H? 22‘]’““ Jn)F
1 n+1 n—1
my = g_ [(I_Jn_gn)(2 _2)(1+(_1) )
1 1— Joi 2
2Jp 0| —— —2————— 23| ——
w2 (g -2 ) rees (a7
Jn 1—-2J,-1)gn — 1
my = It ( - 1)g
2gnJ3
k
where g, =1 — J, + 22 Jn—k—1 (133]:+1) . If we rearrange ms, then
1 _ (1 —Jn 1)"75
= —|Q=Jyo—g)@"P =21+ (1)L
me = |0 g -2 B
2 (1= Jp) 4 1— Jpp) 4 1—Jpyp) 3 1— )t
L2 ( +12 g ( +12 B 2Jn—l( +12 B 2Jn—2( +12
gn  (2Jn)"73 (2Jp )3 (2Jp)" 2 (2Jp)" 3
n—4
(1 B Jn-l—l)k_l
+ > (Tors — Jhro — 2Jk+l)W
k=1 v
(1= Tyt [ G g (g, 4 22l hs)) s odd
gn  (2Jp)"73 -2 (Jn,1 + %:J"“)) , n is even.
Then
At [ SRR o (g i) s o
’ Gn (2,0t —2 (Jn,1 + %:J”“)) , n is even.



and i = 5,6,...,n. Since the matrix J, ! is a circulant matrix and its last row
is known, the proof is completed. H

A Hankel matrix A = (a;;) is an n x n matrix such that a; ; = aj—1 j41. It
is closely related to the Toeplitz matrix in the sense that a Hankel matrix is an
upside-down Toeplitz matrix.

Corollary 6 Let the matriz P, be as in (ﬂ) Then

-1 _ | Ha
T
where Hy:=[1,0,...,0] and Hy is an (n — 1) x n Hankel type in which the first
row 18 [Jp, Jn—1,--.,J1] and the last column is [1,0, ..., O]T.
Proof. The matrix P, ! is computed easily by applying elementary row

operations to the augmented matrix [P, : I,,]. W
Theorem 7 The matriz 1, = circ(jo, j1,-- -, jn—1) s tnvertible when n > 3.

Proof. We show that det(J3) = 104 # 0 and det(J4) = —675 # 0 by Theorem
E. Then J3 and ], are invertible. Let n > 5. The Binet formula for Jacobsthal-
Lucas numbers yields j, = o™ + 8", where o + 8 = 1 and a8 = —2. Then we
have

h(wk) (ar _’_ﬁr)wkrfk

n
- kr—k

E Jrw =

r=1 r=1

a(l—a™) B -p5")

n

_ k1 ok
= 1o + TG (1—aw”, 1—pw"” #£0)

_ <(a +B) — (" 4 ") + afut(an + ") — 2aﬁ°"k>
B 1 — awk — Bwk + afw?k

1 — fnt1 + 208 (2 — jn)
1 — whk — 202k ’

We are going to show that there is no w®, k = 1,2, ..., n—1 such that h(wk) =0.
If 1 — jpp1 + 205 (2 —4,) =0 for 1 — wF — 2w?* £ 0, then w* = ;zl;fl;l) would
be a real number. By (fJ) we would have sin (%T”) =0 so that w* = —1 for 0 <
2 < 2. However u = —1 is not a root of the equation 1—jn41+2(2—jn)u = 0
(n > 5), a contradiction. i.e., h(w”) # 0 for any w*, where k = 1,2,...,n — 1
and n > 5. Thus the proof is completed by [1, Lemma 1.1]. Bl

Lemma 8 If the matriz S = (sw)zj_jl is of the form
1421, 0=

Sij = §Jn — 2, J=i+l1
0, otherwise,

10



then S™1 = (s;;) 52

21 s given by

(2=jn)’ " P>
S/' — (1+247‘7171)j7i+1 ’ '] Z t
1, .
/ 0, otherwise.

Proof. Let B:=SS™! = (b;;) so that bj; = Sr_> siks;cj. Clearly

If j >, then

n—2

. 1
bii = (14 2jp-1) - m =1

’ ’ ’
E SikSkj = Si,i+1Si41,5 T SiiSi;

k=1

(jn = 2)

(2—jn) "
(1 +2jn—1)7~"

2—jn)""
(1 +2jn—1)7~iH!1

+(1+2jn71) :O;

similar for j <4. Thus SS™* =1I,_,. H

Theorem 9 Let n > 3. The inverse of the matriz 1, is

where

ho

ha

ho

h3

fory, =

_(2jn—1 - ]n—2)(1 + 2]11—1))

J;l = C’L"I”C(ho, hl, ey hnfl)

95, — 18+ (10 — 8jn2)yn>
(1 + 2jn—1)2

(2 — jn)n74

(14 2jn—1)"2

n—4 .
. o (2 _]n)k_l

L ((4 B jn—l - 2yn)(jn+l + 8]11 - 2jn—1 - 9((_2)71 + 1)
2Yn (1+2jn-1)?
. . 4jn71 - 2].7172 2 - ]n 2 - ]n n-il
—2Jn + Jn—1 — ( 142 i ) ( : ) n—it2
+ Jn—1 (1 + 2]11—1)

14— )+lzn—1(2. ) 1424, 4\ 7F di—d45 1
D) n—1 B) k=2 \4Jk — Jk—1 —a ana 1 S AN 1] .

2=jn

11



Proof. Let

i Yo
Ayn

2jo—Jn—1
2yn

1
0

oS o O =
O O N

s}
=
s}

Yo

dyn

and G = diag(2, y,) where y,,

r_ n—1 . 1425501
and Yn = Ek:l Jk (

2_jn

K, .M, Z,=G&S

(Jn—1—2j0) + 3n—1 =

5(4—jn-1)+3 ZZ;} (2jk — Jr—1) (%

ny:l (jn72 - 2jn71) + %jn72

2jn—1—Jn-—2
2Yn
0
1
0
0
(j2 — 2jj3) + 3J2
2j3—J2
2Yn
0
0
0
1 -

o

2—Jn

n—k—1
) . Then we obtain

where G @S is the direct sum of the matrices G and S. If T,, = M,,Z,,, then we

have

I1=T,(G 'S HK,

Since the matrix J,, is circulant, the inverse matrix 1! is circulant from

Lemma 1.1 [1, p. 9791]. Let
1.t = circ(ho, ha, . ..

Since the last row of the matrix T,, is

7hn—1)-

0.1 2j0 = Jn—1 1 2jn—1—Jn—2 2jn—2 — jn-3 2ja —J3 2j3—J2
T 2y 2y 2y T 2y 2y )
the last row elements of the matrix I, are

1 4y, —

hoo— L (y79>

2yn 1+ 2]11—1

1 : (2= jn)" "

he = =— (4= jn1 — 2yn) P

: 2yn |:( It Y ) (1 + 2]n—1)n_2

n—2 .
. . (2 _]n)k_2
+ Z(2jk+l — Jk) <— =)
h—o (1 + 2.7n—1)

12

)



1 . . . . .
b= o [((4 = e = 200) 1 = 1) = @it = o)1+ 2 1)
n—4 .
. . (2 _]n)k_l )
+2 Vjkg1 — Ji)
; (( Jh+1 ]k)(l 25, )
ho— L (<4 — Jne1 = 2yn) (ns1 + 8jn — 21 — 9(=2)" + 1)
’ 2yn (1 + 2-]'77«*1)2
. . 4 'nf -2 'nf 2— .n 2 - 'n noiel
_2jn+jn71_(1 1~ 2jn-2)( J)> (2 —jn) -
1+2jn—1 (1+2]n—1)n ¢
h _ L (an — 18+ (10 — 8.]n2)yn>
Oy, (1+2jn1)?

2=Jn

(2—gn)""

1 + 2jn—l)n_2

. n—k
where y,, = %(4—]'",1)—1-% ZZ;QI (2jk — Jk—1) (M) andi=4,5,...,n—

1. Since the matrix I ! is a circulant matrix and its last row is known, the proof

is completed. H

Corollary 10 Let the matriz K,, be as in (ﬁ) Then

o [1oo
K, ._{C D],

where
T

Jn—1 Jn—-2 Jn-3 71
C.= < . —>
2 2 2 2 ) oy

and D is the (n—1)x(n—1) Hankel matriz in which the first row is [Jp—1, Jn—2, ..., Ji]

and the last column is [J1,0,.. ., O]T

Proof. The matrix K, ! is obtained easily by applying elementary row oper-

ations to the augmented matrix [K,|I,]. B
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