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Abstract

We present a new algorithm for solving the real roots of arta polynomial syster = {f(X, y), g(x, y)} with a finite
number of solutions by using a zero-matching method. Théatks based on a lower bound for bivariate polynomial
system when the system is non-zero. Moreover, the multigicof the roots o& = 0 can be obtained by a given
neighborhood. From this approach, the parallelizatiorhefrhethod arises naturally. By using a multidimensional
matching method this principle can be generalized to theivaniate equation systems.

Keywords: Bivariate polynomial system; Zero-matching method; Reats; Symbolic-numerical computation;
Parallel computation

1. Introduction

Considering the following system:
Z={f(xy).9(xy)} (1)

we assume thatt(x, y), g(x, y) € Q[x,y], whereQ is the field of rational numbers. We call tker o-dimension if the
bivariate polynomial systerfi](1) has a finite number of sohsi

Real solving bivariate polynomial system in a real field isaative area of research. It is equivalent to finding
the intersections of (x,y) andg(x,y) in the real plane. The problem is closely related to conmguthe topology
of a plane real algebraic curve and other important operaiio non-linear computational geometry and Computer-
Aided Geometric Design[1, 15, /13,/10, 18]. Another field oplgation is the quantifier elimination[, 17]. There
are several algorithms that tackle this problem such as thieeB basis method[19, 23], the resultant method [26], the
characteristic set methaod [5], and the subdivision meika2il]. However, the procedure of these techniques is very
complicated. In this paper, we propose dicéent approach to remedy these drawbacks.

In this paper, we propose a zero-matching method to solvestil@oots of an equation system liké (1). The basic
idea of zero-matching method is as follows: First projegtime roots ok to the x-axis, gives the roots«, - - - , X},
and they-axis, gives the root$ys, - -- ,y}, respectively. Subsequently, for every roptand for everyy; is back-
substituted inf(x,y) andg(x, y). To that end, for some root there is the corresponding one or more rogts be
determined satisfying@. The main contribution of our method is that how to determireereal roots ok = 0 and
the multiplicities of the roots. Moreover, our approachtthas given solutions to this situation can be the design of
parallelized algorithms.
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In [9], Diochnoset al presented three algorithms to real solving bivariate systand analyzed their asymptotic
bit complexities. Among the three algorithms, th&elience is the way they match solutions. The method of special
ized Rational Univariate Representatiaor) based on fastco computations of polynomials with cfiicients in an
extension field to achieveteciency (hence the namierur) has the lowest complexity and performs best in numerous
experiments. Therur method projects the roots to the-axis andy—axis, for eachx-coordinaten computes the
aep h(e, y) of the square-free parts dfa, y) andg(a, y), and isolates the roots bfa, y) = 0 based on computations
of algebraic numbers and ther techniques. Our algorithm only uses resultant computatimh real solving for
univariate polynomial equations with rational ¢beents.

The hybrid method proposed by Hoatjal[16] that projects the roots @fto thex-axis andy-axis respectively and
uses the improved slope-based Hansen-Sengupta to deteniéther the boxes formed by the projection intervals
contain a root oE. The numerical method only works for simple root$ofWhen the system has multiple roots, the
RUR technique is used to isolate the roots. Compared with thibade our approach also computes two resultants of
the same total degrees. However, our method is a complet¢h@mienumerical iteration method needs to userilve
technigue to find multiple roots.

In[2], Bekkeret al presented a Combinatorial Optimization Root Selectionhatt(hence the namsrs) to
match the roots of a system of polynomial equations. Howeber method is only suitable for solving a small
system of polynomial equations, and does not work for theipialroots. Recently, Chengt all4] proposed a local
generic position method to solve the bivariate polynomigiagion system. The method can be used to represent the
roots of a bivariate equation system as the linear comlinaif the roots of two univariate equations. Moreover,
the multiplicities of the roots of the bivariate polynomijstem are also derived. However, the method is very
complicated to extend to solve the multivariate equaticgteayps. Our method can solve the larger systems and easily
generalize to the multivariate equation systems.

The rest of this paper is organized as follows. In Section@gie some notations, a lower bound for bivariate
polynomial equation if it is non-zero, and how to determihe toot multiplicity. In Section 3, we propose the
algorithm to real solving the bivariate polynomial systemd give a detailed example. In section 4, we present some
comparisons of our algorithm. The final section concludesghper.

2. Notationsand main results

2.1. Notations

In what followsD is a ring,F is a commutative field of characteristic zero dnils algebraic closure. Typically
D=2Z,F=QandF = Q.
In this paper, we consider the zero-dimensional bivariatgrpmial system as follows:

fy)= D, >, axy =0

0<i<n0<j<m

gxy) = Y > bixXy =0

0<i<pO<j<q

(@)

Throughout this paper, note thaeg. = max (, p), deg, = maxm,g), N = max (|fll1. llgll1), where the|f|l; and
llgll, are the one norm of the vectaagh, o1, -+, om, > @0, ** » @nm) @nd oo, Po1, - , Pog, - -+, Bpo, -+, Bpg), SO
(Ifll1 = ZiXjlajl, andllglly = XiX;|byjl, respectivelyM = max(|tll1, || Tll1), where the(x) andT (y) are the no extraneous
factors in resultant polynomial &. |X| denotes that the bivariate polynomial systErhas been assigned values to
two variables.

Let 7 be the projection map from theto the x-axis:

7n:R? > R, such thatr(xy) = x. (3)
For a zero-dimensional systefrdefined in[[2), let(x) € Q[X] be the resultant of (x, y) andg(x, y) with respect toy:

t(x) = Res(f(xy). 9(x.y))- 4)



SinceX is zero-dimensional, we haté&) = 0. Thenz(V (X)) € V(1(X)), whereV(fy,-- -, ) is the set of common
real zeros off; = 0. If t(X) is irreducible, then denote the highest degreeéy. Let the real roots df(x) = 0 be

a1 <ap<---<ay ()

By using the same method, [Efy) € Q[y] be the resultant of (x, y) andg(x, y) with respect tox:

T(y) = Res(f(x.y). 9(x.y)). (6)
If T(y) is irreducible, then denote the highest degrealby. Let the real roots of (y) be as follows:
Br<Bz<--- <Py (7)

We observe that the above projection map may generate ernarroots. Fortunately, we can easily discard these
extraneous factors by computing the determinant of thensatyix of the cofficient matrix. Moreover, if the resultant

is irreducible, then it is no extraneous factors. Howevdremwthe resultant is reducible, it mayffar from the
extraneous factors. The method of removing extraneousriactentioned can be adapted to the resultant for the
bivariate polynomial system [27]. It is the following theon to remove the extraneous roots.

Theorem 2.1. X is defined as in{2). If the resultants & for one variable is reducible, denoted by tem, then the
resultant of bivariate polynomial system is the only somesdincible factors in which the other variable appear.

Proof. The proof can be given similarly to that in Proposition 4.68Cbfapter 3 ofl[B]. O
2.2. Alower bound fopx|, if X # 0
The purpose of this subsection is to prove the following theo

Theorem 2.2. ¥ is defined as in[{2). Let,3 be two approximate real algebraic numbers. Denote by thegit
s=deg - degr, and N as above. IfZ| # 0, then

DY N Vi (8)
where c is the constant satisfying certain conditigBbis the following two cases:

(a) If f(a.p) = 0 or g(e. B) = 0, then|Z| = max(|f(a.B)l. I9(a. A)I};
(b) If f(e,B) # 0and g, B) # 0, then|Z| = min{|f(a, B)I, l9(e, B)I}.

Before giving the proof of theorem 2.2, we recall two lemmas:

Lemma 2.1. ([20], lemma 3) Letry, ..., oq be algebraic numbers of exact degree af.d., d, respectively. Define
D =[Q(ay,...,aq) : Q]. Let Pe Z[xy, ..., Xg] have degree at mostNh xy(1 < h < q). If P(ay,...,aq) # 0, then

q
IP(a1,...,aq) 2l P [I1™° l_[ M (an) PN/,
h=1

where the May) is the Mahler measure af,.
Proof. See the Lemma 4 of [20]. O

Lemma 2.2. Leta be an algebraic number. Denote by th€dyl of the Mahler measure af. If P is a polynomial
overZ, then
M(a) < [IPll.

Proof. For any polynomiaP = Y% pi € Z[X] of degreed with the all rootsc™, - - -, 0@, we define theneasure
M(P) by
M(P) = IpqlTTEL; max(L,o®).

The Mahler measure of an algebraic number is defined to be #igdvimeasure of its minimal polynomial ov@r
We know from Landau ([14], p. 154, Thm. 6. 31) that for eaclelblgic numbes

M(a) < [IPll2,
wherel|Pll; = (X%, Ipi?)Y2. Itis very easy to get thaP|| < ||Pll.. This completes the proof of the lemma. O
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Now we turn to give the proof of Theordm P.2.

Proof. From the assumption of the theorem, sifids defined as in{2). Let the pair(8) be corresponding value to
the variablex andy for T respectively. We have the following equations:

f@p) =) > ajp (9a)

0<i<nO0<j<m

ga.p)= >, D bijelpl. (9b)

0<i<p0<j<q

At first, we consider the lower bound for the equatiogd (9a)fisk = [Q(a, ) : Q]. Denote by f|=|f(a, )|, andr, t
by the exact degree of algebraic numheys respectively. From Lemma(2.1),if| # 0, then

11 > [|fI77*M(@) ™" M(Bg) ™,

We observe thatl(a) andM(B) derive fromt(x) andT (y) respectively. From Lemma{(2.2), we can get the following
inequality:

M(a) < [itllz, M(B) < IITlJa.

So we can obtain that
F1 = I e, (10)

By using the same technique as above, we can obtain the lawadifor the equation (9b). Denote fy=|g(«, B)|.
If |g| # O, then
ol > llgl™ el " I i<, (11)

Since we have the following two cases:

(a) If f(e,8) = 0 org(e. B) = 0, thenZ| = max|f(a. B, l9(a. A)I};

(b) If f(a,B) # 0andg(e,B) # 0, thenZ| = min{| f(a, B)I, |9(a, B)I}.

Hence we are able to obtain the lower bound for the bivarialgmmial system. From the above assumption, we can
get the following parameters:

k=[Q(e,8) : Q] < dedt(x)}-dedT(y)} = deg - degr, (12a)
N = max{]|flls, lIgll}, M = max{]itls, [ITll},r = deg, t = degr. (12b)

Combined with the equatiof{112a) and (L2b), it is obvious$ shak and the constart= d% + deTg + 1. Finally, note
that the constart satisfies both cases. This proves the theorem. O

As the corollary of Theorein 2.2, we have

Corollay 2.1. Under the same condition of Theorem]2.23if < N1"SM~¢$, then|Z| = 0. We say that is associated
with g for the real root of £ . Denote by the = N1~SM~¢S for the rest of this paper.

Proof. The proof is very easy by contradiction. O

2.3. Root multiplicity

The results of this subsection can be provided for the rodtiptigity of X. We follow the approach and terminol-
ogy of [8] and [11].

LetCy, Cg bef, g correspondingfiine algebraic plane curves, defined by the equafiohn®t| =< f,g > be the
ideal that they generate F{x,y], and so the associated quotient ringAs= F[x,y]/I. Let the distinct intersection
points, which are the distinct roots &) beCt N Cy C {Sij = (@i, Bj)}1<i<u1<j<v-

The multiplicity of a pointS;; is

mul(S;j : Ct N Cq) = dimgAs;, < oo,
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whereAs; is the local ring obtained by localizing at the maximal ideal =< X — @i,y - §j >.

If As, is a finite dimensional vector space, ti&n = (i, 8;) is an isolated zero dfand its multiplicity is called

the intersection number of the two curves. The fititean be decomposed as a direct s As,, P As,, P - -
P As,, and thudimeA = 31 mul(S;jj : Ct N Cy).

Pr

oposition 2.1. ([11], Proposition 1) Let f, g F[x, y] be two coprime curves, and Ietepf2 be a point. Then

mult(p : fg) > mult(p : f)mult(p : g),

where equality holds if and only s andCy have no common tangents at p.

Pr

oposition 2.2. Let us obtain the real roots of = 0in (§) and [I). If the two matching pair&y,S;) and

(@is1,Bj+1)(forl < i < u,1 < j <) are satisfyingE = 0, |ai — ai+1| < € and|Bj — Bj«1l < &, then the(ai, 8))

is

multiple root of X = 0.

Proof. From Theoreri 212 and Corolldry 2.1, it is obvious that 0 if and only if

5 < e.

Therefore, the error controlling is less thain numerical computation. Under the assumption of the psitjpm, we
getlai — aiv1| < g and|Bj — Bj+1l < €. So we are able to obtain thiat — @i.1] = 0 and|8j — Bj+1/ = 0 int the truncated
error. This proves the proposition. O

From Corollary 2.1, the two-tuplex() is the real root oE = 0. This method is called zer o-matching method.

The technique is a posteriori method to match the solutionsiie bivariate system. It can be generalized easily to
real solving the multivariate polynomial systems.

3.

Derivation of the Algorithm

The aim of this section is to describe an algorithm for reéliag bivariate polynomial equations by using zero-

matching method. We first find the parametdrs ands, then obtain the no extraneous factt{eg andT (y) with the
resultant elimination methods, and real solving two unatarpolynomials, and finally match the real roots for the
systems.

3.1. Description of algorithm

of

Algorithm 1 is to discard the extraneous factors from thelltast method, algorithm 2 is to obtain the solutions
bivariate polynomial systems.

Algorithm 1 NoExtr Res(Z, var)

Input: {f(xy),d(x ¥)}, varis one variable.
Output: No extraneous factors resultantf

NoaarwdNRE

: teme Resar{ f(X,Y), 9(X Y)};

if temis irreduciblethen
return tem;

else
tem« Res extraneousfacotrs
return Res

end if

co

Now we can give the algorithid 2 to compute the real root&fer0.
The parallelization of the algorithm that we have just diésat can be easily done because it performs the same
mputations on dlierent steps of data without the necessity of communicattwéen the processors. Observe that

the Step 1 and Step 2, Step 6 and Step 7 of the algorithm carsibhe garalleled, respectively.

Now we get a theorem about the computational complexity ®fthole algorithm.
5



Algorithm 2 zmm(X)

Input: X ={f(xY),q(x Yy)}is a zero-dimensional bivariate polynomial system.
Output A set for the real roots & = 0.

: Project on thex-axis such that(x) = Reg(f(x,y), 9(x,¥));

: Project on the/-axis such thaT (y) = Res(f(x,y), a(x. ¥));

. Discard the extraneous factors fra(w) andT (y) by using Algorithnil;

: Find the parametefd ands, and Compute according to the Theorem 2.2;

: Obtain the lower bound by Corollary[Z2.1;

: Solve the real roots of the resulta(x) for the setS; = {1, a2, - , ay};
: Solve the real roots of the resultaify) for the setS; = {81,062, -, Bv};

: Match the real root pair to get the solving et {(2i,8j).1<i<u,1<
: Check the root multiplicity of the s& by Propositiof 2.2.

j < v} by Corollary(Z1;

© 00N O U hAhWNRE

Theorem 3.1. Algorithm[2 works correctly as specified and its complexitfides as follows:

(a) O(dr + digd) for computation of real solving univariate polynomial, whel is the degree of corresponding
polynomial,r = 1 + maxqlg|a| and a is the cogicients.

(b) OX(uv) for matching the solutions of bivariate polynomial system.

Proof. Correctness of the algorithm follows from theorlen 2.2.

(a) The number of arithmetic operations required to isadditeeal roots is the number of real root isolation of uni-
variate polynomial by using subdivision-based Descamag’ of sign. Using exactly the same arguments we know
that they perform the same number of steps, thé@ + dlgd).

(b) As indicated before, the problem of matching the reatsad polynomial system mainly relies on the scale of
solutions of every variable, respectively. O

3.2. A small example in detalil
Example3.1. We propose a simple examplexfy) = x*~y>~3and x, y) = 3x°—2y°>—1to illustrate our algorithms.
Step 1: €X) = 4% X — 45 x* + 114+ x% — 109,
Step 2: Ty) = (-2 y® + 8+ 3xy?)?;
Step 3: Discard the extraneous factore/J= -3+ y> — 8 + 2 x y°;
Step 4: Obtain the parameters5,c= 2, s=4;
Step 5: Obtain the lower boung= .1280x 107%;
Step 6: Solve the real roots of the resultgx) tfor the setS, = {—2.8582885202.85828852Q,
Step 7: Solve the real roots of the resultarfy)lfor the setS, = {2.273722337,

Step 8: Combine the the pairs frdBpandS, respectively, Substitute the pairs iftdor variables x and y,
determine whether less than the lower bognfinally we find that the pairS = {{x = —2.858288520y =
2.273722337, {x = 2.858288520y = 2.273722337} are the solutions foE;

Step 9: The multiplicity of the root of the system is one.

3.3. Generalization and applications

As for the generalization of the algorithm to real solving thultivariate equation systems case, we have to say that
the situation is completely analogous to the bivariate .cdsavever, its key technique is to transform the multivariat
polynomial equations to the corresponding univariate poiyial equations. We can consider the Dixon Resultant
Method to break this problem|[6]. However, we observe that tkmimprove the projection algorithm in resultant
methods is the significant challenge.



Moreover, our algorithm is applicable for rapidly compugtithe minimum distance between two objects collision
detection|[25]. This also enables us to improve the comple{icomputing the topology of a real plane algebraic
curve [9].

4. Some comparisons

We have implemented the above algorithms as a software gaeka in Maple12. For problems of small size
like the example of Section 3, any method can obtain theisoisiin little time. But when the size of the problems is
not small the diferences appear clearly. Extensive experiments with thikggee show that this approach tE&ent
and stable, especially for larger and more complex bivapatynomial systems.

We compare our method witlsp [4], Isolate [23],piscoverer [24], andgrur [9]. Lep is a software package for
root isolation of bivariate polynomial systems with locangric position method. Isolate is a tool to solve general
equation systems based on the Realsolviridprary by Rouillier. piscoverer is a tool for solving semi-algebraic
systems.Grur is a tool to solve bivariate equation systems. The follonexgmples run in the same platform of
Maple 12 under Windows analvio Athlon(tm) 2.70cHz, 2.0068 of main memory. We did three sets of experiments.
The precision in these experiments is set to be high. In tatdes, where '?’ represents that the computation is not
finished.

In Table 1 the results are given bottandg are randomly generated dense polynomials with the sameeeagd
with integer coéficients betweer20 and 20. The command Mapleis as follows:
rand poly[x, Y], coef f s= rand(-20..20), densedegree= 10).

Table 1: timg for computing dense bivariate polynomialgwiv multiple roots

5 S
17 =) Average Time(sec
> deg | 3 ? (se¢)

flog zmv | wep | Isolate | pISCOVERER |  GRUR
S1 4 7|2 0.031 0.031 0.047 0.313 2.734
S2 6 8|6 0.415 1.328 0.500 1.828 247.203
S3 7 8 |6 1.204 2.734 1.500 7.047 382.640
S4 8 9|6 4211 8.906 4.672 20.437 2714.438
S5 9 |10 2 4.070 8.485 4.687 89.235 1645.312
S6 |10 7 | 6 1.805 3.860 2.109 22.250 978.421
S7 (10| 11| 4 21.078 | 43.734 | 22.828 ? ?
S8 (|12 11| 2 26.945 | 54.969 | 29.094 ? ?
S9 || 12| 13| 4 || 118.266| 241.734| 123.469 ? ?
S10( 13|11 1 15.446 | 31.485 | 17.796 ? ?
S114 14| 10| 8 63.914 | 200.828| 68.594 ? ?

In Table 2 the results are given bothandg are randomly generated sparse polynomials in the sameejegth
sparsityde fault and with integer ca@cients betweer 20 and 20. The command bfapleis as follows:
rand poly[x,y], coef f s= rand(—20..20), sparsedegree= 10).



Table 2: time for computing sparse bivariate polynomiafhwio multiple roots

AL
*i (_g Average Time(sec)
7 deg a

flog zmvm | 1Gp | Isolate | piscoverer | GRUR
S1 5 6 |1 0.015 | 0.032 | 0.015 0.141 1.032
S2 6 7 |3 0.040 | 0.062 | 0.047 0.188 5.375
S3 7 513 0.024 | 0.047 | 0.047 0.265 2.688
S4 8 6 | 5 0.031 | 0.031 | 0.047 0.094 1.031
S5 9 8 | 2 0.047 | 0.172 | 0.078 1.828 51.000
S6 || 10| 11| 3 0.063 | 0.297 | 0.125 0.656 11.110
S7 (11| 9| 2 0.164 | 0.609 | 0.375 3.938 877.875
S8 (12| 13| 2 1.141 | 2.593 | 1.453 6.703 1607.719
S9 |13 |11)| 4 2.508 | 5.344 | 2.969 ? ?
S10|| 15| 17| 1 0.532 | 1.234 | 1.266 ? ?
S114 20| 17| 4 || 18.180| 39.688| 20.235 ? ?

In Table 3 the results are given is done with polynomial systevith multiple roots. We randomly generate a
polynomialh(x, y, ) and takef(x,y) = Res(h, h,),g(x. y) = fy(x,y). Sincef(x,y) is the projection of a space curve
to the xy-plane, it most probably has singular points @né g = 0 is an equation system with multiple roots. The
command oMapleis as follows:

h :=randpol\([x,Y, 7], coef f s= rand(-5..5), degree= 5); f := resultanth, dif f(h, 2), 2); g := dif f(f,y).

Table 3: time for computing bivariate polynomials with nipik: roots

g S
*g (_g Average Time(sec)
o deg @

flog zmm | 1p | Isolate]| piscovERER | GRUR
S1 3 2 | 2| 0.016| 0.016 0.016 0.016 0.062
S2 4 | 3|2 0. 0.032 | 0.031 0.016 0.094
S3 4 6 | 7| 0.024| 0.016 0.047 0.109 1.109
S4 5|1 4|3 0. 0.016 0. 0.016 0.109
S5 6 51 2| 0.015 0. 0. 0.016 0.063
S6 9 8 | 2| 0.016| 0.046 | 0.032 0.015 0.063
S7 | 12| 11| 3 || 0.109| 0.234 0.187 0.063 0.094
S8 || 13| 12| 7 || 2.875| 137.641| 3.141 1.328 207.094
S9 || 14| 13| 4 || 0.860| 2.891 0.953 0.141 0.3110
S101 19|18 | 1 || 0.672| 1.547 0.797 22.156 1520.812
S11| 16| 15| 5 || 7.945| 27.047 | 9.000 ? ?

From the Table 1, 2 and 3, we have the following observations.

In the first two cases, the equations are randomly generatttience may have no multiple roots. For systems
without multiple rootszmum is the fastest method, which is significantly faster thanand Isolate. Botlamm andige
compute two resultants and isolate their real roaisis slow, because the polynomials obtained by the shear neap ar
usually dense and with large d&eients [4]. discoverer anckur generally work for equation systems with degrees
not higher than ten within reasonable time.

For systems with multiple roots, in the sparse and low degases, all methods are fast. Note that our method
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is quite stable for equation systems with and without mldtipots.Lcp and Isolate are also quite stable, but slower
thanzmwm for bivariate equation systems.

We also observe that all methods spend more time with spaidelense polynomials than polynomials with
multiple roots in the same high degree. This phenomenorsreetther exploration.

Remark 4.1. Of course, we should mention thakcoverer and Isolate can be used to solve general polynomial
equations and even inequalities. Here our comparison igdirto the bivariate case. In further work, we would like
to consider solving multivariate polynomial equations.

Remark 4.2. Asis well known, the parallel algorithm is well suited foetimplementation on parallel computers that
allows the increase of the calculation speed. If our aldorithave been fully parallelized by using a large enough
number of processors for each case, the real solutions dhallexamples will have been computed in a couple of
seconds.

5. Conclusion

In this paper, we propose a zero-matching method to reaingpbivariate polynomial equation systems. The
basic idea of this method is to find the lower bound for bivarigolynomial system when the system is non-zero.
Moreover, we provide an algorithm for discarding extraretactors with resultant and show how to construct a
parallelized algorithm for real solving the bivariate podynial system. An f&cient method for multiplicities of the
roots is also derived. The complexity of our method has imsee steadily with the growth of bivariate polynomial
system. Extensive experiments show that our approadhi¢geat and stable. The result of this paper can be extended
to real solving of bivariate polynomial equations with maéhan two polynomials by using the resultant method.
Furthermore, our method can be generalized easily to naultite polynomial systems.

6. Acknowledgement

We would like to thank Prof. Xiaoshan Gao and Dr. Jinsan CHengroviding the Maple code of their method,
available at: httg/www.mmrc.iss.ac.ghxgagsoftware.html.

The first author is also grateful to Dr. Shizhong Zhao for laikiable discussions about discarding the extraneous
factors in resultant.

References

[1] D.S.Arnon, G. Collins, S. McCallum, Cylindrical algetic decomposition, II: an adjacency algorithm for plané8lJ. on Comput., 13(4),
878-889, 1984.
[2] H. Bekker, E. P. Braad, B. Goldengorin, Using BipartitedaMultidimensional Matching to Select the Roots of a Syst#nfPolynomial
Equations, Computational Science and Its Application§€3@& 2005, 397-406, 2005.
[3] J.P.Boyd, Computing real roots of a polynomial in Chéisisseries form through subdivision with linear testing anlic solves, Applied
Mathematics and Computation, 174(2006) 1642-1648.
[4] J.S. Cheng, X. S. Gao, J. Li, Root Isolation for Bivari&elynomial Systems with Local Generic Position Method, MEsBarch Preprints,
27(2008) 122-136, Ins. of Systems Science, Academia Sinica
[5] J.S. Cheng, X.S. Gao, C.K. Yap, Complete numerical tsmiaof real zeros in zero-dimensional triangular systeims,Proc. Int. Symp.
Symbolic Algebraic Comput. ISSAC 2007, 92-99, ACM Pres€9720
[6] E.W. Chionh, M. Zhang, R. N. Goldman, Fast Computationhef Bezout and Dixon Resultant Matrices. J. Symb. Comp8¢1)3 13-29,
2002.
[7] G. Collins, Quantifier elimination for real closed fieldg cylindrical algebraic decompostion, Automata Theorgt Bormal Languages 2nd
Gl Conference Kaiserslautern, 134-183, 1975.
[8] D. A. Cox, J. Little, D. OShea, Using Algebraic GeometBgcond Edition, Springer-Verlag Berlin Heidelberg, 2005.
[9] D.I.Diochnos, I.Z. Emiris, and E. P. Tsigaridas, On tleenplexity of real solving bivariate systems, in: Proc. Bgmp. Symbolic Algebraic
Comput. ISSAC 2007, 127-134, ACM Press, 2007.
[10] A. Eigenwillig, M. Kerber, N. Wolpert, Fast and exactageetric analysis of real algebraic plane curves, in: Prot.$ymp. Symbolic
Algebraic Comput. ISSAC 2007, 151-158, ACM Press, 2007.
[11] I. Z. Emiris, and E. P. Tsigaridas, Real Solving of Biaée Polynomial Systems, Computer Algebra in Scientific @otimg, 150-161, 2005.
[12] I. Z. Emirisa, and E. P. Tsigaridasb, Real algebraic bers and polynomial systems of small degree, Theoreticaigliter Science, 409(2)
186-199, 2008.
[13] X.S. Gao, M. Li, Rational quadratic approximation talralgebraic curves, Computer Aided Geometric Design, @42 805-828.

9


http://www.mmrc.iss.ac.cn/~xgao/software.html

[14]
[15]

[16]

[17]
(18]

[19]
[20]
[21]
[22]
(23]

[24]
[25]

[26]

[27]

J. von zur Gathen and J. Gerhard, Modern Computer Algegbambridge University Press, Cambridge, 1999.

L. Gonzalez-Vega, |. Necula ficient topology determination of implicitly dened algelorplane curves, Computer Aided Geometric Design,
19(2002) 719-743.

H. Hong, M. Shan, Z. Zeng, Hybrid method for solving bieée polynomial system, SRATC 2008, Shanghai, 2008.
httpy/www.is.pku.edu.cf-xb¢/SRATC2008meijing.pdi.

M. Jirstrand, Nonlinear Control System Design by QuartElimination, J. Symb. Comput., 24(2) 137-152, 1997.

K. H. Ko, T. Sakkalis, N. M. Patrikalakis, A reliable agthm for computing the topological degree of a mappinginApplied Mathematics
and Computation, 196(2) 666-678, 2008.

D. Lazard, Thirty years of Polynomial System Solvingdanow? J. Symb. Comput., 44(3) 222-231, 2009.

M. Mignotte and M. Waldschmidt, Linear forms in two la@thms and schneider’s method. Math. Ann., 231(1978) 287.-2

B. Mourrain, J-P. Pavone, Subdivision methods for sgvwolynomial equations, Technical Report RR-5658, INF8Aphia -Antipolis,
httpy//www.inria.fr/rrrt/rr-5658.html.

V. Y. Pan, Approximate Polynomial Gcds, Reélpproximation, Polynomial Zeros, and Bipartite Graphs. Broc. 9th Ann. ACM-SIAM
Symp. on Discrete Algorithms, 68-77, ACM Press, New Yorld &AM Publications, Philadelphia, 1998.

F. Rouillier, Solving zero-dimensional systems ttgbuhe rational univariate representation. Journal of #sgple Algebra in Engineering,
Communication and Computing, 9(5) 433-461, 1999.

B. Xia, L. Yang, An algorithm for isolating the real sdilons of semi-algebraic systems, J. Symb. Comput., 34(2062-477.

L. Yang, Y. Feng, X. L. Qin, An flicient approach for computing distance between two quadsatfaces, in: Proc. 2009 of the International
Conference on Computer Science and Information Technpl@§ySIT 2009, (2) 244-248, 2009.

L. Yang, J. Z. Zhang, X. R. Hou, Nonlinear Algbraic EqoatSystem and Automated Theorem Proving, Shanghai Sidesutid Technolog-
ical Education Publishing House, Shanghai, 1996, 95-10Cliinese).

S. Z. Zhao and H. G. Fu, Three kinds of extraneous fadtoiBixon resultants. Science in China Series A: Mathemat&{1) 160-172,
2009.

10


http://www.is.pku.edu.cn/~xbc/SRATC2008/meijing.pdf
http://www.inria.fr/rrrt/rr-5658.html

	1 Introduction
	2 Notations and main results
	2.1 Notations
	2.2 A lower bound for ||, if  0
	2.3 Root multiplicity

	3 Derivation of the Algorithm
	3.1 Description of algorithm
	3.2 A small example in detail
	3.3 Generalization and applications

	4 Some comparisons
	5 Conclusion
	6 Acknowledgement

