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Abstract

Many nonlinear extensions of the Kalman filter, e.g., the extended and the unscented Kalman filter, reduce
the state densities to Gaussian densities. This approximation gives sufficient results in many cases. However,
this filters only estimate states that are correlated with the observation. Therefore, sequential estimation of
diffusion parameters, e.g., volatility, which are not correlated with the observations is not possible. While
other filters overcome this problem with simulations, we extend the measurement update of the Gaussian
two-moment filters by a higher order correlation measurement update. We explicitly state formulas for a
higher order unscented Kalman filter within a continuous-discrete state space. We demonstrate the filter in
the context of parameter estimation of an Ornstein-Uhlenbeck process.

Key words: Sequential Parameter Estimation, Nonlinear Systems, Unscented Kalman Filter,
Continuous-discrete State Space, Estimation of Uncorrelated States, Volatility Estimation

1. Introduction

Stochastic filters are powerful tools for simultaneous estimation of parameters and unoberserved states
from noisy data. In nonlinear filtering problems, however, in contrast to the classical linear Kalman filter set-
ting [1], nonlinear transformations of probability densities have to be evaluated. Since these transformations
cannot be tracked analytically, approximations have to be used to construct nonlinear filters. This paper
deals with a new approximation based on martingale estimation functions, which enables correlation-based
nonlinear filters to estimate states which are not directly correlated with observations like, for example,
stock price volatility.

A detailed survey of different nonlinear filters and their approximations is given in [2] (see also [3]).
Generally, one can distinguish between simulation-based approaches and analytical approximations. While
simulation-based approaches often lead to more accurate descriptions of the densities, analytical approx-
imations are superior with respect to computation costs. The most common analytical approximation is
capturing only the first two moments of the densities, i.e., assuming Gaussian densities. This strongly sim-
plifies all filter equations and leads to computationally very fast filters. The extended Kalman Filter (see,
e.g., [4]) and the unscented Kalman Filter (see, e.g., [5]) are well-known examples for such Gaussian filters.

Assuming Gaussian densities means assuming Gaussian dependence. For this reason, these filters are only
able to estimate states and latent states that are linearly correlated with the observations. However, the cases
where there is no linear correlation are common and important. In the context of econometric modelling, is
the estimation of stock price volatility a typical example. Since price observations are not linearly correlated
with the current volatility parameters, Gaussian filters are not able to sequentially estimate volatility given
a sequence of price observations. Therefore other filters like simulation-based filters or particle filters have
to be used (see, e.g., [6]). However, especially in the context of high frequency financial data, computation
time is a crucial point. Therefore, in many applications the use of simulation-based filters is not possible.
For these applications, fast stochastic filters are needed which are able to estimate diffusion parameters.
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In this paper, we extend the filter equations of Gaussian filters by a higher order measurement update.
This measurement update relies on the theory of martingale estimating functions and uses additional infor-
mation on the squared prediction error, i.e., the square of the difference between prediction of an observation
value and the actual observation value. The update of normal Gaussian filters uses only the correlation of
the prediction error with the states. The correlation of the squared prediction error relies on information
on higher moments of the densities, that have to be propagated in the time update steps of the filters. This
can be realized in different ways. We explicitly state an algorithm for a higher order correlation unscented
Kalman filter. We believe, that an algorithm in the sense of an higher order correlation extended Kalman fil-
ter is also possible to implement, but relies on quite complicated moment equations which are not necessary
for the unscented filter. For the unscented filter we use an extended version of the unscented transformation
to capture the information on higher moments. We demonstrate the applicability of the algorithm in a
simulation study estimating the parameters of an Ornstein-Uhlenbeck process.

The paper is organized as follows. In section 2, nonlinear state estimation in the framework of continuous-
discrete state space models is discussed deriving the general filter equations for Gaussian filters and introduc-
ing a higher order correlation update. In section 3, higher order filter equations for the unscented Kalman
filter are derived. Section 4 contains a simulation study analyzing bias and variance of the filter estimates
in the context of an Ornstein-Uhlenbeck model. Section 5 concludes.

2. Continuous discrete higher order correlation filters

2.1. State space models and parameter estimation

We concentrate on continuous discrete state space models (see [4]) as they are very useful in systems, in
which the underlying models are continuous in time and in which only discrete observations are available.
Since these models are more general than discrete state space models, the results in this paper also hold for
the discrete case.

The continuous discrete state space consists of a continuous state equation for the state y(t) (equation
(1)) and discrete measurements zi at times ti, i = 1 . . . n, which do not have to be evenly spaced in time
(equation (2)):

dy(t) = f(y(t), t,Ψ)dt+ g(y(t), t,Ψ)dW (t), (1)

zi = h(y(ti), ti) + ǫi. (2)

The first equation is a p-dimensional Itô differential equation with an r-dimensional Wiener process W (t).
The drift coefficient f : Rp × R × R

u −→ R
p and the diffusion coefficient g : Rp × R × R

u −→ R
p × R

r

are functions of the state, the time and a u-dimensional parameter vector Ψ. The measurement equation
projects the state vector y(t) onto the time discrete k-dimensional measurements zi. The measurement may
be noisy with the k-dimensional discrete white noise process ǫi ∼ N(0, R(ti,Ψ)), ǫi, identically distributed
and independent of W (t).

The state space notation has an inherent way of parameter estimation by considering the parameter
vector Ψ as a latent state variable. The state vector is augmented by the parameter vector (y → y =

[
y
Ψ

]
)

with trivial dynamics (dΨ = 0). This leads to the extended state space model:

dy(t) = f(y(t), t,Ψ)dt+ g(y(t), t,Ψ)dW (t)

dΨ = 0

zi = h(y(ti), ti) + ǫ̃i.

Filtering this state space model results in a sequential estimator of the unknown parameters: Ψ̂ = E[Ψ(t)|Zt].
Note, that this approach of parameter estimation leads to nonlinear problems, even if the original state
equations are linear. Therefore, linear filters like the Kalman filter are inapplicable for this approach.
Standard nonlinear filters as the extended Kalman filter or the unscented Kalman filter are applicable but
do not estimate parameters of the diffusion coefficient g(y(t), t,Ψ), e.g., volatility.
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2.2. Time and measurement update for Gaussian filters

Continuous discrete stochastic filters estimate the probability density of the state vector from noisy
observations. The algorithms consist of two steps. There is no measurement information for t ∈]ti, ti+1[. All
information is based on time ti and the density p(y, t|Zi) is obtained by propagating p(y, ti|Zi) according
to the dynamic given by the state equation (1). This results in integrating the Fokker-Planck equation (see,
e.g., [4]). This step is the time update. For t = ti+1, with current measurement information available, the
a-posteriori (after measurement) state density p(y, ti+1|Zi+1) is estimated via the Bayes’ theorem using the
a-priori density p(y|Zi) of the time update step and the measurement information p(zi+1) and likelihood
p(zi+1|y). This step is the measurement update. Time update and measurement update are recursively
repeated. Note that both steps can be solved explicitly only for linear systems and Gaussian densities and
some special cases. Therefore, various numerical and simulation-based methods exist to approximately solve
both steps (see for example [7] and the reviewing introduction therein).

A common simple and effective approximation is assuming Gaussian densities although the transforma-
tions are nonlinear. This simplifies the equations and is done, e.g., by the extended Kalman filter (EKF,
[4]) and the unscented Kalman filter (UKF, [8]). These Gaussian filters only estimate mean µ and variance
Σ of the state densities and are exact for linear problems, i.e., linear transformations of the densities. The
Fokker-Planck equation of the time update step then reduces to the moment equations

µ̇(t) = E[f(y(t), t)|Zi] (3)

Σ̇(t) = Cov[f, y|Zi] + Cov[y, f |Zi] + E[Ω|Zi], (4)

with Ω = gg′. A dot over the variables denotes differentiation with respect to time. Since these equations
depend on the conditional densities p(y, t|Zi), they have to be solved approximately. The extended Kalman
filter uses linear Taylor expansions to approximate the functions f and g, while the unscented Kalman filter
approximates the densities of f(y) and g(y). The measurement update is simplified using the theorem of
normal correlation for jointly distributed Gaussian random variables.1 Using subscripts i for at time ti and

i+1|i for at time ti+1 based on information of ti and taking the measurement equation (2) into account with
hi := h(y(ti)), the measurement update becomes

µi+1|i+1 = µi+1|i +Ki+1(zi+1 − E[hi+1|Zi]), (5)

Σi+1|i+1 = Σi+1|i −Ki+1Cov[hi+1, yi+1|Zi], (6)

where

Ki+1 = Cov[yi+1, hi+1|Zi](Var[hi+1|Zi] +Ri+1)
− (7)

is a regression matrix, called Kalman gain, and (·)− denotes the pseudoinverse. Expectations and covari-
ances have to be approximated. The extended Kalman Filter uses Taylor expansions of the respective
functions around µi+1|i and the unscented Kalman filter uses the unscented transformation to approximate
the transformed densities (see section 3).

Due to the role of the covariance matrices Cov[yi+1, hi+1|Zi] in equations (5) and (6), only the states
which are correlated with the measurement are updated. States (or parameters) that are connected to the
measurement through the diffusion coefficient g, e.g., volatility parameters, are generally not correlated with
the measurement, i.e., they are not updated/estimated by the filter. In the next section, we extend both
steps with a higher order correlation component to overcome this problem.

1Let X and Y be normally distributed random vectors with expectations µX , µY and covariances ΣXX ,ΣY Y ,ΣXY , respec-
tively. Then E[X|Y ] = µX +ΣXY Σ−

Y Y
(Y − µY ) and Var[X|Y ] = ΣXX −ΣXY Σ−

Y Y
ΣY X , where Σ−

Y Y
is the pseudoinverse of

ΣY Y .
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2.3. Higher order correlation measurement update

States which are not linearly correlated with the measurement are not updated via the theorem of
normal correlation and cannot be estimated by Gaussian filters. In these cases, the corresponding entries
in the covariance matrix Cov[yi+1, hi+1|Zi] are zero and the prediction error νi+1 = (zi+1 − E[hi+1|Zi]) in
equation (5) does not provide information for a linear update of these states. However, in most cases the
squared prediction error ν2i+1 = (zi+1 − hi+1|i)

2 provides additional information on these states. Therefore,
a measurement update is constructed in this section which also consists of a nonlinear part based on the
squared prediction error.

The measurement update in equation (5) is closely related to the theory of martingale estimating func-
tions and quasi-likelihood models for stochastic models. If θ is a real valued random variable on a probability
space (Ω = {ω},F ,P), an estimating function for θ is a function G = g(ω, θ) on Ω × R. It is unbiased if
EP [g(ω, θ(ω))] = 0, where EP is the expectation over P (see, e.g., [9] for a survey).

For example, let Xi, i = 1 . . . n be n independent random variables with finite mean mi(θ) and vari-
ance υi(θ). Then E[Xi − mi(θ)] = 0 since the sequence Xi − mi(θ) is a martingale difference. Since

E
[
(Xi −mi(θ))

2
]
= υi(θ),

E
[
(Xi −mi(θ))

2 − υi(θ)
]
= 0

holds in the same way, which yields the estimating functions for θ :

0
!
=

n∑

i=1

ω1,i (Xi −mi(θ)) , (8)

0
!
=

n∑

i=1

ω2,i

[
(Xi −mi(θ))

2 − υi(θ)
]
, (9)

where ω1/2,i are weights. Together with the observation equation (2), the linear estimating function (8)
directly leads to the linear filter equations (5) and (6). See, e.g., [10] or [11] for a derivation.

Similar to the problem considered in this paper, i.e., the failing of the linear measurement update, there
are problems, where linear estimating functions of the form (8) fail to estimate the value of θ. An early
reference with examples for this effect is [12]. A solution is to combine equations (8) and (9) to one single
estimating function

0
!
=

n∑

i=1

{
ω∗
1,i (Xi − µi(θ)) + ω2,i

[
(Xi − µi(θ))

2 − σ2
i (θ)

]}
, (10)

to overcome this problem. Much work has been done to find the new optimal weights ω∗
1,i and ω∗

2,i, see, e.g.,
[12, 13] or [14] for the restriction of orthogonality of equations (8) and (9) and [15] for the general case.

Wefelmeyer [16] showed that this estimator (10) may be replaced by the one-step estimator

θ̂n = θn + I−1
n n−1

n∑

i=1

C−1
i−1

(
Aθn,i−1

(Xi −mθn(Xi−1))

+Bθn,i−1

(
(Xi −mθn(Xi−1))

2 − υθn,i−1
(Xi)

))
,

where θn is an initial estimator for θ. The weights A, B, C, and I are

Aθ,i = m′
θ(Xi)(µ4,i − µ2

2,i)− υ′θ(xi)µ3,i,

Bθ,i = υ′(Xi)µ2,i −m′
θ(Xi)µ3,i,

Ci = (µ4,i − µ2
2,i)µ2,i − µ3,i,

In = n−1
n∑

i=1

C−1
i−1

(
Aθ,i−1m

′
θn(Xi−1) +Bθ,iυ

′
θn(Xi−1)

)
,
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see, e.g., [15]. The µ1, µ2, µ3 are centered moments, mθn(Xi−1) is a predictor of Xi based on θn and Xi−1,
and υθn(Xi−1) is a predictor of the variance of Xi. The primes ′ denote derivatives with respect to θ. For
n = 1, i.e., one observation time and assuming µ3 = 0 for simplicity, i.e., orthogonality of equations (8) and
(9), the weights reduce to:

I−1C−1A =
(
m′(µ4 − µ2)

2m′ + υ′µ2υ
′
)−1

m′(µ4 − µ2
2) ≈ m′−1 =

∂θ

∂m
, (11)

I−1C−1B =
(
m′(µ4 − µ2)

2m′ + υ′µ2υ
′
)−1

υ′µ2 ≈ υ′−1 =
∂θ

∂υ
, (12)

where we make the further assumption that the terms
(
m′(µ4 − µ2)

2
)−1

υ′µ2υ
′ respectively (υ′µ2)m

′(µ4 −
µ2)

2m′ are negligible. In both assumptions we assume that either the linear information or the quadratic
information on θ dominates and not both terms provide the same level of information.

With the estimator µi+1|i for µi+1|i+1 (notation as is section 2.2) this yields a new measurement update
equation for the mean:

µi+1|i+1 = µi+1|i +K
(1)
i+1 × νi+1 +K

(2)
i+1 × (ν2i+1 − E[ν2i+1|Zi]), (13)

where νi+1 = (zi+1 −E[hi+1|Zi]) is the observation error and K1 and K2 are linear regressor matrices, with

K
(1)
i+1 = Cov[yi+1, hi+1|Zi]

(
Var[hi+1|Zi] +Ri+1

)−
,

K
(2)
i+1 = Cov[yi+1, ν

2
i+1|Zi]

(
Var

[
ν2i+1|Zi

])−
,

where the derivatives in equations (11) and (12) are replaced by the respective regressors, i.e., covariances
divided by variances. K1 and K2 may be referred to as first and second order Kalman Gain, respectively,
where K1 coincides with the classical Kalman Gain given in equation (7).

The equation for the variance after measurement (6) is extended analogously leading to

Σi+1|i+1 = Σi+1|i −K
(1)
i+1Cov[hi+1, yi+1|Zi]−K

(2)
i+1Cov[ν

2
i+1, yi+1|Zi]. (14)

Note that this approach for the variance is fairly rough. It follows from the assumption of a joint normal
distribution of squared prediction errors and states. This implies independence of the results of the mea-
surement and its information content, i.e., only the fact that there is new information and not the value of
the measurement contributes to the variance update. In the case of diffusion parameters, however, small
prediction errors are likely for all values of the diffusion parameters, whereas large errors clearly indicate
large parameters. Therefore, large prediction errors contain more information on the diffusion coefficient
than small errors. In a more accurate approximation, the value of ν would therefore be part of the variance
update (14).

The higher order measurement update equations (13) and (14) contain higher moments of the state
vector y, i.e., a forth centered moment and the covariance matrix Cov[yi+1, ν

2
i+1|Zi] which contains mixed

third order moments of the state vector y. Thus, the time update steps of the filter algorithms have to be
extended by a propagation of the respective information. In the next section, we will discuss how the update
can be applied within the unscented Kalman filter framework.

3. Higher order correlation unscented Kalman filter

The unscented Kalman filter as introduced by Julier and Uhlmann [5] is based on the unscented trans-
formation which is briefly reviewed in subsection 3.1. The unscented transformation captures the first two
moments of densities undergoing nonlinear transformations. Since information on higher moments is needed,
the unscented transformation has to be extended to capture these moments which is done in subsection 3.2.
In subsection 3.3, a higher order unscented Kalman filter is presented.
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3.1. Unscented transformation

The unscented transformation is a method for calculating the transformation of the density of a random
variable which undergoes a nonlinear transformation (see [5]). In the original framework of [5], the density
p(y) of the random variable y ∈ R

p is approximated by the sum

pUT (y) =

p∑

j=−p

ω(j)δ(y − y(j)),

with the Dirac delta function δ, the n = 2p + 1 sigma points y(j), and the weights ω(j). Furthermore the
sigma points and weights are chosen such that the first two moments of the density of y are replicated:

E[y] =

∫
yp(y)dy

!
=

∫
ypUT (y)dy =

n∑

j=1

ω(j)y(j),

Var[y]
!
=

n∑

j=1

ω(j)(y(j) − E[y])(y(j) − E[y])T .

In contrast to Monte Carlo approaches, this choice is deterministic. Julier and Uhlmann [5] establish the
following choice:

y(i) = E[y] +
(√

(p+ κ)Var[y]
)
i
, ω(i) =

1

2(p+ κ)
, i = 1 · · · p,

y(i+p) = E[y]−
(√

(p+ κ)Var[y]
)
i
, ω(i+p) =

1

2(p+ κ)
, i = 1 · · · p,

y(2p+1) = E[y], ω(2p+1) =
κ

(p+ κ)
,

where (
√
... )i is the i-th row or column of the matrix root. The real parameter κ gives an extra degree

of freedom which is discussed in detail in [5]. For Gaussian densities of y, they recommend p + κ = 3. In
many cases, however, κ = 0 works well (see, e.g., [8]) which reduces the number of sigma points by one.
After undergoing a nonlinear transformation y → f̃(y), the expectation, the covariance of f̃(y) and the cross
covariance of f̃(y) and y can be computed by:

E[f̃(y)] =

n∑

j=1

ω(j)f̃(y(j)),

Var[f̃(y)] =

n∑

j=1

ω(j)
(
f̃(y(j))− E[f̃(y)]

)(
f̃(y(j))− E[f̃(y)]

)′
,

Cov[f̃(y), y] =
n∑

j=1

ω(j)
(
f̃(y(j))− E[f̃(y)]

)(
y(j) − E[y]

)′
, (15)

where (...)(...)′ denotes the outer product.

3.2. Higher order unscented transformation

To capture the state densities with higher accuracy, the set of sigma points of the unscented transforma-
tion may be extended (see, e.g., [8]). In the following, we present an approach based on numerical integration
rules for exact monomials given by [17] and [18] to derive an extended set of sigma points and weights.

Definition 1 (Generator, [18]). A point u = (u1, ..., um, 0, ..., 0) ∈ R
p where 0 < ui ≤ ui+1 is called

generator and denoted as [±u] or [±u1, ...,±um]. It represents the set of points that can be obtained from u

by permutations and changing the sign of some coordinates.
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For example, the generator [0] contains only the point 0 ∈ R
p, while the generator [±1,±1] in R

3 is the
set of points

{ (1, 1, 0), (−1,−1, 0), 1,−1, 0), (−1, 1, 0)(1, 0, 1), (−1, 0,−1),

(1, 0,−1), (−1, 0, 1), (0, 1, 1), (0,−1,−1), (0, 1,−1), (0,−1, 1) }.

In the sense of [18], we write f [±u1, . . . ,±ur] for the sum
∑

x∈[±u1,...,±ur ]
f(x).

In generator notation, the unscented transformation of Julies and Uhlmann [5] with n = 2p + 1 sigma
points and initial N(0, I) Gaussian densities corresponds to an integration of the form

E[f(x)] =

∫ ∞

−∞

N(x; 0, I)f(x)dx ≈ ω0f [0] + ω1f [±u],

with the weights ωk and the generators [0] and [±
√
3].

This integration rule is of precision 3, i.e., it is exact for all monomials of degree 3 or less without any
odd power. To derive higher accuracy in the filtering algorithm, we use a rule of the form:

∫ ∞

−∞

N(x; 0, I)f(x)dx ≈ ω0f [0] + ω1f [±u] + ω2f [±u,±u].

This rule leads to n = 2p2 + 1 sigma points as we get 1 point from the generator [0], 2p points from [±u]
and 2p(p− 1) points from [±u,±u]. For u =

√
3, ω0 = 1 + p2−7p

18 , ω1 = 4−p
18 and ω2 = 1

36 the rule is exact
for monomials of degree 5 or less without any odd power (see, e.g., [18] and [17]).

These sigma points capture integration with respect to standard normal Gaussian densities N(0, I).
General Gaussian densities N(µ,Σ) are captured by multiplying each sigma point with a square root of the
covariance matrix Σ and adding the mean µ. Finally we get the following 2p2+1 sigma points and weights:

y(i) = E[y], ω(i) = 1 +
p2 − 7p

18
, i corresp. [0],

y(i) = E[y] +
√
Σ · [±

√
3](i), ω(i) =

4− p

18
, i corresp. [±

√
3],

y(i) = E[y] +
√
Σ · [±

√
3,±

√
3](i), ω(i) =

1

36
, i corresp. [±

√
3,±

√
3].

The computation of moments and higher moments of transformed densities is performed analogously to
equations (15).

3.3. Filter algorithm

The higher order unscented transformation can be used to evaluate the expectation, variance and co-
variance terms of the filter equations leading to a higher order unscented filter. The time update is done by
numerically solving the moment equations (3) and (4) by Euler integration of the sigma point sets. With
regard to the time continuous nature of the state equations of the system, the Euler scheme may use a finer
discretization interval δt→ 0 than the measurement intervals ti+1− ti dividing them into Li = (ti+1− ti)/δt
parts. For notational convenience, we use the function f̃ in the algorithm as an abbreviation of the Euler
steps. The noise term is discretized on the Euler grid, i.e., dW → ∆W ∼ N (0, Q) with Q ∈ R

r×r. The
p-dimensional state vector is then augmented by the r-dimensional noise terms ∆W (p̃ = p+ r) to

ỹ =

[
y

∆W

]
.

This leads to n = 2(p+ r)2 + 1 = 2p̃2 + 1 σ-points based on

E[ỹ] =

[
E[y]

0

]
und Σỹ =

(
Σy Cov(y,∆W ) := 0

Cov(∆W, y) := 0 Q

)
.
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The noise terms are uncorrelated with the states (Cov[y,∆W ] := 0).
After the time update, expectations, variances and covariances are evaluated according to equations (15).

The measurement update is done by straight forward implementation of the equations (13) and (14). The
following algorithm summarizes the resulting filter:

Algorithm 1 (Higher order correlation unscented Kalman filter (HUKF)).

Initialization: t = t0

µ0|0 = µ+Cov[y0, h0]×
× (Var[h0] +R0)

−Cov[h0, y0]

Σ0|0 = Σ− Cov[y0|h0]×
× (Var[h0] +R0)

−Cov[h0, y0]

L0 = φ(z0;E[h0],Var[h0] +R0)

Sigma points : y(j) = y(j)(µ,Σ), j = 1 . . . n;µ = E[y0],Σ = Var[y0].

Recursion: i = 0, ..., T − 1

Time update: t ∈ [ti, ti+1]

yi+1|i =

n∑

j=1

ω(j)f̃(y(j), ti,∆ti,∆W
(j)
i+1)

Σi+1|i =

n∑

j=1

ω(j)
(
f̃(y(j), ti,∆ti,∆W

(j)
i+1)− yi+1|i

)
×

×
(
f̃(y(j), ti,∆ti,∆W

(j)
i+1)− yi+1|i

)′

E[hi+1|Zi] =
n∑

j=1

ω(j)h(f̃(y(j), ti,∆ti,∆W
(j)
i+1)) =: hi+1|i

Var[hi+1|Zi] =

n∑

j=1

ω(j)
(
h(f̃(y(j), ti,∆ti,∆W

(j)
i+1))− hi+1|i

)2

E[ν2i+1|Zi] = Var[hi+1|Zi] +Ri+1 =: ν2i+1|i

Var[ν2i+1|Zi] =

n∑

j=1

ω(j)
[ (
h(f̃(y(j), ti,∆ti,∆W

(j)
i+1))− hi+1|i

)2
− ν2i+1|i +Ri+1

]2

Cov[yi+1, hi+1|Zi] =

n∑

j=1

ω(j)
(
f̃(y(j), ti,∆ti,∆W

(j)
i+1)− yi+1|i

)
×

×
(
h(f̃(y(j), ti,∆ti,∆W

(j)
i+1))− hi+1|i

)

Cov[yi+1, ν
2
i+1|Zi] =

n∑

j=1

ω(j)
(
f̃(y(j), ti,∆ti,∆W

(j)
i+1)− yi+1|i

)
×

×
[(
h(f̃(y(j), ti,∆ti,∆W

(j)
i+1))− hi+1|i

)2
− ν2i+1|i

]′

Sigma points : y(j) = y(j)(µi|i,Σi|i), j = 1 . . . n

8



Measurement Update

K
(1)
i+1 = Cov[yi+1, hi+1|Zi](Var[hi+1|Zi] +Ri+1)

−

K
(2)
i+1 = Cov[yi+1, ν

2
i+1|Zi](Var[ν2i+1|Zi])−

νi+1 = (zi+1 − hi+1|i)

µi+1|i+1 = µi+1|i +K
(1)
i+1ν +K

(2)
i+1(ν

2
i+1 − E[ν2i+1|Zi])

Σi+1|i+1 = Σi+1|i −K
(1)
i+1Cov[hi+1, yi+1|Zi]−K

(2)
i+1Cov[ν

2
i+1, yi+1|Zi]

with the notations

f̃(yi|i, ti,∆ti,∆Wi) = yi|i + f(yi|i, ti)∆ti + g(yi|i, ti)∆Wi

√
∆ti

or on finer grid

{ω(j), y
(j)
i|i ,∆W

(j)
i } see text

(· · · )2 for vectors is element wise

h is a short form for the measurement equation h(y). The subscript i|i denotes at time ti based on

information at time ti, whereas the subscript i+1|i denotes at time ti+1 based on information at time ti.

4. Simulation study

In this section, we compare the presented higher order unscented Kalman filter to the unscented Kalman
filter in a simulation study. The aim of the study is to show that the higher order terms in the filter equation
lead to adequate estimates of states, which are correlated as well as uncorrelated to the observations.

We apply the filter algorithms to the estimation of parameters of an Ornstein-Uhlenbeck process.
Ornstein-Uhlenbeck processes are regularly used to model commodity prices (see, e.g., [19]), electricity
prices (see, e.g., [20]) or interest rates (see, e.g., [21]). A continuous discrete state space representation is:

dy(t) = Ψ1 [Ψ2 − y(t)] dt+Ψ3dW (t)

zi = y(ti)

with the parameter set Ψ = [Ψ1,Ψ2,Ψ3]. As before, the model consists of a time continuous state equation
and a discrete measurement equation, where the observations zi are the prices or interest rates at certain
points ti in time and y corresponds to a latent underlying process. The parameter Ψ1 is the mean reversion
rate, Ψ2 is the long run mean of y, and Ψ3 corresponds to the volatility of the process. For simplicity, we
suppress all units. Observation intervals ti+1 − ti as well as the intervals of the euler grids are set to 1.
To sequentially estimate the parameter vector as discussed in section 2, we augment the state vector y(t)
according to ỹ(t) = [y(t)′,Ψ]′ and get an extended state space model

dỹ1 = dy = ỹ2 [ỹ3 − ỹ1(t)] dt+ ỹ4dW (t) (16)

dỹ2 = dΨ1 = 0

dỹ3 = dΨ2 = 0

dỹ4 = dΨ3 = 0

zi = ỹ1(ti).

Figures 1 and 2 show sequential estimates of these four state variables, where the true parameter values
are Ψ = [Ψ1,Ψ2,Ψ3] = [0.5, 3, 2]. The filters are initialized with the initial parameters Ψ0 = [0.5, 3, 2.5] and a
diagonal initial covariance matrix with standard deviations of 0.1, 0.1, 0.1 for the parameters, respectively. As
expected, the UKF does not estimate the volatility parameter due to missing correlation between parameter
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Figure 1: Estimation of the parameter set [Ψ1,Ψ2,Ψ3] using the higher order cor-
relation UKF initialized with [0.5, 3, 2.5]. The true parameter values are [0.5, 3, 2]
and denoted by the dashed line. Confidence intervals are

√
3 times estimated stan-

dard deviations to each side. y denotes the realization of the Ornstein-Uhlenbeck
process.
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Figure 2: Estimation of the parameter set [ỹ2, ỹ3, ỹ4] using the the UKF initialized
with [0.5, 3, 2.5]. The true parameter values are [0.5, 3, 2] and denoted by the
dashed lines. Confidence intervals are

√
3 times estimated standard deviations to

each side. The volatility parameter is not estimated. y denotes the realization of
the Ornstein-Uhlenbeck process.
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and observations. As expected, the higher order UKF estimates the volatility parameter since volatility and
squared prediction error are correlated. The estimation of the other parameters seems unaffected by the
additional terms in the measurement update. A more detailed analysis of the filters is provided in table
1. Again, we sequentially estimate the model, but this time the true parameter values Ψ = [Ψ1,Ψ2,Ψ3] are
drawn from a multivariate normal distribution,

[Ψ1,Ψ2,Ψ3] ∼ N ([0.5, 3, 2], diag(0.1, 0.1, 0.1)) ,

i.e., the parameters are random but fixed. We simulate observations zi, i = 1, ..., T with T ∈ {10, . . . , 1000}
for N = 100000 times, where each of the repetitions has a different parameter set. The observations are
filtered with initial parameters (mean and covariance)

Ψ0 ∼ N ([0.5, 3, 2], diag(0.1, 0.1, 0.1)) ,

i.e., the true distribution of the parameters. After T observations we get estimates (mean and variance) of
each each parameter.

Table 1 shows the filtering results obtained from HUKF and UKF. Four columns of results are shown
for each filter. In the first column, the means of the deviations of the N = 100000 estimates from the
original parameter m(νΨj

) = mean[Ψ̂j − Ψj ], j = 1, 2, 3 are shown. For unbiased estimates, this number
should fluctuate around zero which is fulfilled in all cases. In the second column, the mean squared errors
m(ν2Ψj

) = mean[(Ψ̂j − Ψj)
2], j = 1, 2, 3 are shown. The values should be small. The values of the third

column are the means of the estimated variances of the filters m(σ̂2
Ψj

) over the N=100000 simulations.
Matching of the second and third column indicates that the estimates of the variances in the filter equations
are unbiased.

The fourth column (m0.95) presents the proportion of the cases where the absolute deviation of mean

estimate Ψ̂j from the true value Ψj is larger than 1.96σ̂Ψj
. For normally distributed estimators, these

numbers should vary around 0.05. Since the distribution of in particular the volatility parameter Ψ3 is not
normal we expect deviations. However, in all cases the deviations are small.

Both filters show similar results for the parameters Ψ1 and Ψ2. However, the results for the volatility
parameter Ψ3 deviate since the UKF does not update Ψ3 and its variance after observations. Therefore,
the third column (UKF) shows the initial value of the parameter variance (0.1) in all cases. The second
column matches this value since the estimated values correspond to (always the same) initial parameter value
Ψ0;3 = 2 while the true parameter values Ψ3 are drawn from a distribution with variance 0.1 and mean
Ψ0;3 = 2. The first column shows values around zero since the initial parameter Ψ0;3 = 2 is an unbiased
estimator of the true parameters (which are drawn from a normal distribution around Ψ0;3 = 2). However,
the UKF does not estimate this parameter. Contrary, the HUKF estimates this parameters very accurately
and shows only a small bias for very small sample sizes which vanishes for sample sizes larger than T = 100.
The estimated variances match the mean squared error and decrease rapidly with growing value of T .

5. Conclusion

This paper addresses sequential estimation of parameters and states in nonlinear state-space models in
which the parameters are not correlated with the observations, as, for example, volatility. It is focused on
nonlinear, Gaussian stochastic filters, i.e., filters that reduce all densities to their first two moments. These
filters, like the extended Kalman filter or the unscented Kalman filter, are fast filters and give good results
in many cases. However, when there is no correlation between states and observations, they fail to estimate
the respective states and parameters. In this paper, higher order correlation filter equations are introduced,
that are also based on Gaussian densities but do not rely on linear correlations. The approach shows large
advantages over simulation-based filtering methods with respect to computing costs. Filter algorithms for a
higher order unscented Kalman filter are explicitly stated. The filter is validated in a simulation study.
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HUKF UKF

ψ1 = .5 T m(νψ1
) m(ν2ψ1

) m(σ̂2
ψ1
) m0.95 m(νψ1

) m(ν2ψ1
) m(σ̂2

ψ1
) m0.95

10 -.003 .051 .053 .043 -.003 .051 .053 .044
50 .002 .014 .014 .052 .001 .014 .014 .055
100 .001 .007 .007 .051 -.000 .007 .007 .055
250 .000 .003 .003 .050 -.001 .003 .003 .055
500 .000 .001 .001 .051 -.001 .001 .001 .055
1000 .000 .001 .001 .050 -.001 .001 .001 .055

ψ2 = 3 T m(νψ2
) m(ν2ψ2

) m(σ̂2
ψ2
) m0.95 m(νψ2

) m(ν2ψ2
) m(σ̂2

ψ2
) m0.95

10 -.001 .096 .094 .052 -.001 .096 .094 .052
50 -.000 .079 .074 .056 -.000 .079 .075 .056
100 -.001 .066 .061 .058 -.001 .067 .062 .059
250 -.001 .048 .043 .060 -.001 .048 .044 .059
500 .000 .036 .032 .060 .000 .036 .033 .061
1000 .000 .026 .023 .057 .000 .026 .023 .060

ψ3 = 2 T m(νψ3
) m(ν2ψ3

) m(σ̂2
ψ3
) m0.95 m(νψ3

) m(ν2ψ3
) m(σ̂2

ψ3
) m0.95

10 -.034 .073 .071 .055 -.000 .099 .100 .049
50 -.016 .030 .031 .048 -.001 .100 .100 .050
100 -.009 .017 .018 .048 .001 .099 .100 .049
250 -.004 .008 .008 .048 .001 .099 .100 .048
500 -.002 .004 .004 .047 -.000 .100 .100 .050
1000 -.001 .002 .002 .049 -.001 .100 .100 .050

Table 1: Sequential estimation of the three parameters Ψj , j = 1, 2, 3 of model (16) with the higher order filter (HUKF) and
the unscented Kalman filter (UKF) for different length T of time series. The estimates are repeated N = 100000 times with
true parameter values drawn from a multivariate normal distribution. Shown are the mean errors of estimation (m(νΨj

)),

mean squared errors of the estimates (m(ν2
Ψj

)), the mean of the estimated parameter variances (m(σ̂2
Ψj

)) and the empirical

exceedance ratios (m0.95) of the estimated confidence intervals of the parameters (1.96 standard deviations to both sides).
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