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Abstract

There exists a huge number of numerical methods that iteratively con-
struct approximations to the solutiony(x) of an ordinary differential equation
(ODE) y′(x) = f(x, y) starting from an initial valuey0 = y(x0) and using
a finite approximation steph that influences the accuracy of the obtained ap-
proximation. In this paper, a new framework for solving ODEsis presented
for a new kind of a computer – the Infinity Computer (it has beenpatented
and its working prototype exists). The new computer is able to work numer-
ically with finite, infinite, and infinitesimal numbers giving so the possibility
to use different infinitesimals numerically and, in particular, to take advan-
tage of infinitesimal values ofh. To show the potential of the new framework
a number of results is established. It is proved that the Infinity Computer is
able to calculate derivatives of the solutiony(x) and to reconstruct its Tay-
lor expansion of a desired order numerically without findingthe respective
derivatives analytically (or symbolically) by the successive derivation of the
ODE as it is usually done when the Taylor method is applied. Methods using
approximations of derivatives obtained thanks to infinitesimals are discussed
and a technique for an automatic control of rounding errors is introduced.
Numerical examples are given.
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1 Introduction

The number of applications in physics, mechanics, and engineering where it is
necessary to solve numerically ordinary differential equations (ODEs) with a given
initial value is really enormous. Since many ordinary differential equations cannot
be solved analytically, people use numerical algorithms1 for finding approximate
solutions (see [3, 4, 14, 27]). In this paper, we want to approximate the solution
y(x), x ∈ [a, b], of the initial value problem (also called the Cauchy problem) for
a differential equation

y′(x) = f(x, y), y(x0) = y0, x0 = a, (1)

wherea andb are finite numbers andy(x0) = y0 is called the initial condition.
We suppose thatf(x, y) is given by a computer procedure. Since very often in
scientific and technical applications it can happen that theperson who wants to
solve (1) is not the person who has written the code forf(x, y), we suppose that
the person solving (1) does not know the structure off(x, y), i.e., it is a black box
for him/her.

In the literature, there exist numerous numerical algorithms constructing a se-
quencey1, y2, y3, . . . approximating the exact valuesy(x1), y(x2), y(x3), . . . that
the solutiony(x) assumes at pointsx1, x2, x3, . . . (see [4,13,17]). The explicit Eu-
ler algorithm is the simplest among explicit methods for thenumerical integration
of ODEs. It uses the first two terms of the Taylor expansion ofy(x) constructing
so the linear approximation around the point(x0, y(x0)). The(n+1)th step of the
Euler algorithm describes how to move from the pointxn toxn+1 = xn+h, n > 0,
and is executed as follows

yn+1 = yn + hf(xn, yn). (2)

Traditional computers work with finite values ofh introducing so errors at
each step of the algorithm. In order to obtain more accurate approximations it is
necessary to decrease the steph increasing so the number of steps of the method
(the computations become more expensive). In any case,h always remains finite
and its minimal acceptable value is determined by technicalcharacteristics of each
concrete computer the method is implemented on. Obviously,the same effects hold
for more sophisticated methods, as well (see [4, 13, 14, 17]). Another approach
to solve (1) on a traditional computer is the use of an automatic differentiation
software executing pre-processing of (1) (see [12] and references given therein).

In this paper, we introduce a new numerical framework for solving ODEs re-
lated to the usage of a new kind of computer – the Infinity Computer (see [31, 33,
37]). It is able to worknumericallywith finite, infinite, and infinitesimal quanti-
ties. The Infinity Computer is based on an applied point of view (see [30, 33, 39])

1 There exist also symbolic techniques but they are not considered in this paper dedicated to
numerical computations.
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on infinite and infinitesimal numbers. In order to see the place of the new ap-
proach in the historical panorama of ideas dealing with infinite and infinitesimal,
see [21, 22, 36, 38, 43]. The new methodology has been successfully applied for
studying numerical differentiation and optimization (see[8, 35, 40, 48]), fractals
(see [32, 34, 42, 45]), percolation (see [16, 45]), Euclidean and hyperbolic geome-
try (see [23, 29]), the first Hilbert problem and Turing machines (see [38, 43, 44]),
cellular automata (see [9]), infinite series (see [36, 41, 47]), functions and their
derivatives that can assume infinite and infinitesimal values (see [36]), etc.

With respect to the initial value problem (1), the possibility to work numerically
with infinitesimals allows us to usenumerical infinitesimal values ofh. It is proved
that under reasonable conditions the Infinity Computer is able to calculateexact
values of the derivatives ofy(x) and to reconstruct its Taylor expansion with a
desired accuracy by using infinitesimal values ofh without finding the respective
derivatives analytically (or symbolically) by the successive derivation of (1) as it is
usually done when the Taylor method is applied.

The rest of the paper is organized as follows. Section 2 briefly presents the
new computational methodology. Section 3 introduces the main theoretical results
and describes how derivatives ofy(x) can be calculated numerically on the Infinity
Computer. Section 4 introduces a variety of examples of the usage of infinitesimals
for ODEs numerical solving. First, it presents two simple iterative methods. Then,
it describes a technique that can be used to obtain approximations of derivatives
of the solutiony(x) at the pointxn+1 using infinitesimals and the information
obtained at the pointxn. Finally, a technique for an automatic control of rounding
errors that can occur during evaluation off(x, y) is introduced. Through the paper,
theoretical results are illustrated by numerical examples.

2 A fast tour to the new computational methodology

Numerous trials have been done during the centuries in orderto evolve existing
numeral systems2 in such a way that infinite and infinitesimal numbers could be
included in them (see [2,5,7,19,20,25,28,46]). Particularly, in the early history of
the calculus, arguments involving infinitesimals played a pivotal role in the deriva-
tion developed by Leibniz and Newton (see [19, 25]). The notion of an infinites-
imal, however, lacked a precise mathematical definition andin order to provide a
more rigorous foundation for the calculus, infinitesimals were gradually replaced
by the d’Alembert-Cauchy concept of a limit.

Since new numeral systems appear very rarely, in each concrete historical pe-
riod their importance for Mathematics is very often underestimated (especially by

2 We are reminded that anumeralis a symbol or group of symbols that represents anumber. The
difference between numerals and numbers is the same as the difference between words and the things
they refer to. Anumberis a concept that anumeralexpresses. The same number can be represented
by different numerals. For example, the symbols ‘7’, ‘seven’, and ‘VII’ are different numerals, but
they all represent the same number.
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pure mathematicians). In order to illustrate their importance, let us remind the
Roman numeral system that does not allow one to express zero and negative num-
bers. In this system, the expression III-X is an indeterminate form. As a result,
before appearing the positional numeral system and inventing zero (by the way, the
second event was several hundred years later with respect tothe first one) math-
ematicians were not able to create theorems involving zero and negative numbers
and to execute computations with them.

There exist numeral systems that are even weaker than the Roman one. They
seriously limit their users in executing computations. Letus recall a study pub-
lished recently inScience(see [11]) that describes a primitive tribe – Pirahã –
living in Amazonia. These people use a very simple numeral system for counting:
one, two, many. For Pirahã, all quantities larger than two are just ‘many’ and such
operations as 2+2 and 2+1 give the same result, i.e., ‘many’.Using their weak
numeral system Pirahã are not able to see, for instance, numbers 3, 4, 5, and 6, to
execute arithmetical operations with them, and, in general, to say anything about
these numbers because in their language there are neither words nor concepts for
that.

In the context of the present paper, it is very important thatthe weakness of
Pirahã’s numeral system leads them to such results as

‘many’ + 1 = ‘many’, ‘many’ + 2 = ‘many’, (3)

which are very familiar to us in the context of views on infinity used in the tradi-
tional calculus

∞+ 1 = ∞, ∞+ 2 = ∞. (4)

The arithmetic of Pirahã involving the numeral ‘many’ has also a clear similarity
with the arithmetic proposed by Cantor for his Alephs3:

ℵ0 + 1 = ℵ0, ℵ0 + 2 = ℵ0, ℵ1 + 1 = ℵ1, ℵ1 + 2 = ℵ1. (5)

Thus, the modern mathematical numeral systems allow us to distinguish a
larger quantity of finite numbers with respect to Pirahã butgive results that are
similar to those of Pirahã when we speak about infinite numbers. This observation
leads us to the following idea:Probably our difficulties in working with infinity is
not connected to the nature of infinity itself but is a result of inadequate numeral
systems that we use to work with infinity, more precisely, to express infinite num-
bers.

Let us compare the usage of numeral systems in Mathematics emphasizing dif-
ferences that hold when one works, on the one hand, with finitequantities and, on

3This similarity becomes even more pronounced if one considers another Amazonian tribe –
Mundurukú (see [26]) – who fail in exact arithmetic with numbers larger than 5 but are able to
compare and add large approximate numbers that are far beyond their naming range. Particularly,
they use the words ‘some, not many’ and ‘many, really many’ todistinguish two types of large
numbers using the rules that are very similar to ones used by Cantor to operate withℵ0 andℵ1,
respectively.
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the other hand, with infinities and infinitesimals. In our every day activities with
finite numbers thesamefinite numerals are used fordifferent purposes (e.g., the
same numeral 4 can be used to express the number of elements ofa set and to in-
dicate the position of an element in a finite sequence). When we face the necessity
to work with infinities or infinitesimals, the situation changes drastically. In fact,
in this casedifferentsymbols are used to work with infinities and infinitesimals in
differentsituations:

• ∞ in standard Analysis;

• ω for working with ordinals;

• ℵ0,ℵ1, ... for dealing with cardinalities;

• non-standard numbers using a generic infinitesimalh in non-standard Anal-
ysis, etc.

In particular, since the mainstream of the traditional Mathematics very often
does not pay any attention to the distinction between numbers and numerals (in
this occasion it is necessary to recall constructivists whostudied this issue), many
theories dealing with infinite and infinitesimal quantitieshave a symbolic (not nu-
merical) character. For instance, many versions of the non-standard Analysis are
symbolic, since they have no numeral systems to express their numbers by a finite
number of symbols (the finiteness of the number of symbols is necessary for orga-
nizing numerical computations). Namely, if we consider a finite n than it can be
takenn = 5, orn = 103 or any other numeral used to express finite quantities and
consisting of a finite number of symbols. In contrast, if we consider a non-standard
infinitem then it is not clear which numerals can be used to assign a concrete value
tom.

Analogously, in non-standard Analysis, if we consider an infinitesimalh then it
is not clear which numerals consisting of a finite number of symbols can be used to
assign a value toh and to writeh = ... In fact, very often in non-standard Analysis
texts, agenericinfinitesimalh is used and it is considered as a symbol, i.e., only
symbolic computations can be done with it. Approaches of this kind leave unclear
such issues, e.g., whether the infinite1/h is integer or not or whether1/h is the
number of elements of an infinite set. Another problem is related to comparison
of values. When we work with finite quantities then we can comparex andy if
they assume numerical values, e.g.,x = 4 andy = 6 then, by using rules of the
numeral system the symbols 4 and 6 belong to, we can compute thaty > x. If one
wishes to consider two infinitesimalsh1 andh2 then it is not clear how to compare
them because numeral systems that can express infinitesimals are not provided by
non-standard Analysis techniques.

The approach developed in [30, 33, 39] proposes a numeral system that uses
the same numeralsfor several different purposes for dealing with infinities and
infinitesimals: in Analysis for working with functions thatcan assume different in-
finite, finite, and infinitesimal values (functions can also have derivatives assuming
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different infinite or infinitesimal values); for measuring infinite sets; for indicating
positions of elements in ordered infinite sequences; in probability theory, etc. It is
important to emphasize that the new numeral system avoids situations of the type
(3)–(5) providing results ensuring that ifa is a numeral written in this system then
for anya (i.e.,a can be finite, infinite, or infinitesimal) it followsa+ 1 > a.

The new numeral system works as follows. A new infinite unit ofmeasure ex-
pressed by the numeral① calledgrossoneis introduced as the number of elements
of the set,N, of natural numbers. Concurrently with the introduction ofgrossone
in the mathematical language all other symbols (like∞, Cantor’sω, ℵ0,ℵ1, ...,
etc.) traditionally used to deal with infinities and infinitesimals are excluded from
the language because grossone and other numbers constructed with its help not
only can be used instead of all of them but can be used with a higher accuracy.
Grossone is introduced by describing its properties postulated by the Infinite Unit
Axiom (see [33, 39]) added to axioms for real numbers (similarly, in order to pass
from the set,N, of natural numbers to the set,Z, of integers a new element – zero
expressed by the numeral 0 – is introduced by describing its properties).

The new numeral① allows us to construct different numerals expressing differ-
ent infinite and infinitesimal numbers and to execute computations with them. As
a result, in Analysis, instead of the usual symbol∞ used in series and integration
different infinite and/or infinitesimal numerals can be used(see [36,41,47]). Inde-
terminate forms are not present and, for example, the following relations hold for
① and①−1 (that is infinitesimal), as for any other (finite, infinite, orinfinitesimal)
number expressible in the new numeral system

0 · ① = ① · 0 = 0, ① − ① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0, (6)

0 · ①−1 = ①−1 · 0 = 0, ①−1 > 0, ①−2 > 0, ①−1 − ①−1 = 0,

①−1

①−1 = 1,
①−2

①−2 = 1, (①−1)0 = 1, ① · ①−1 = 1, ① · ①−2 = ①−1.

The new approach gives the possibility to develop a new Analysis (see [36])
where functions assuming not only finite values but also infinite and infinitesimal
ones can be studied. For all of them it becomes possible to introduce a new notion
of continuity that is closer to our modern physical knowledge. Functions assuming
finite and infinite values can be differentiated and integrated.

Example 1. The functionf(x) = x2 has the first derivativef ′(x) = 2x and
both f(x) and f ′(x) can be evaluated at infinite and infinitesimalx. Thus, for
infinite x = ① we obtain infinite values

f(①) = ①2, f ′(①) = 2①

and for infinitesimalx = ①−1 we have infinitesimal values

f(①−1) = ①−2, f ′(①−1) = 2①−1.
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If x = 5① − 10①−1 then we have

f(①−1) = (5① − 10①−1)2 = 25①2 − 100 + 100①−2,

f ′(①−1) = 10① − 20①−1.

We can also work with functions defined by formulae includinginfinite and in-
finitesimal numbers. For example, the functionf(x) = 1

①
x2+①x has a quadratic

term infinitesimal and the linear one infinite. It has the firstderivativef ′(x) =
2
①
x+ ①. For infinitex = 3① we obtain infinite values

f(①) = 3①2 + 9①, f ′(①) = ① + 6

and for infinitesimalx = ①−1 we have

f(①−1) = 1 + ①−3, f ′(①−1) = ① + 2①−2. ✷

By using the new numeral system it becomes possible to measure certain infi-
nite sets and to see, e.g., that the sets of even and odd numbers have①/2 elements
each. The set,Z, of integers has2①+1 elements (① positive elements,① negative
elements, and zero). Within the countable sets and sets having cardinality of the
continuum (see [21, 38, 39]) it becomes possible to distinguish infinite sets having
different number of elements expressible in the numeral system using grossone and
to see that, for instance,

①

2
< ① − 1 < ① < ① + 1 < 2① + 1 < 2①2 − 1 < 2①2 < 2①2 + 1 <

2①2 + 2 < 2① − 1 < 2① < 2① + 1 < 10① < ①① − 1 < ①① < ①① + 1.

The Infinity Computer used in this paper for solving the problem (1) works
with numbers having finite, infinite, and infinitesimal parts. To represent them
in the computer memory records similar to traditional positional numeral systems
can be used (see [33,37]). To construct a numberC in the new numeral positional
system4 with base①, we subdivideC into groups corresponding to powers of①:

C = cpm①pm + . . .+ cp1①p1 + cp0①p0 + cp−1①p−1 + . . .+ cp−k
①p−k . (7)

4 At the first glance the numerals (7) can remind numbers from the Levi-Civita field (see [20])
that is a very interesting and important precedent of algebraic manipulations with infinities and in-
finitesimals. However, the two mathematical objects have several crucial differences. They have
been introduced for different purposes by using two mathematical languages having different accu-
racies and on the basis of different methodological foundations. In fact, Levi-Civita does not discuss
the distinction between numbers and numerals. His numbers have neither cardinal nor ordinal prop-
erties; they are build using a generic infinitesimal and onlyits rational powers are allowed; he uses
symbol∞ in his construction; there is no any numeral system that would allow one to assign numer-
ical values to these numbers; it is not explained how it wouldbe possible to pass from d a generic
infinitesimalh to a concrete one (see also the discussion above on the distinction between numbers
and numerals). In no way the said above should be considered as a criticism with respect to results
of Levi-Civita. The above discussion has been introduced inthis text just to underline that we are in
front of two different mathematical tools that should be used in different mathematical contexts.
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Then, the record

C = cpm①pm . . . cp1①p1cp0①p0cp−1①p−1 . . . cp−k
①p−k (8)

represents the numberC, where all numeralsci 6= 0, they belong to a traditional
numeral system and are calledgrossdigits. They express finite positive or negative
numbers and show how many corresponding units①pi should be added or sub-
tracted in order to form the numberC. Note that in order to have a possibility to
storeC in the computer memory, valuesk andm should be finite.

Numberspi in (8) are sorted in the decreasing order withp0 = 0

pm > pm−1 > . . . > p1 > p0 > p−1 > . . . p−(k−1) > p−k.

They are calledgrosspowersand they themselves can be written in the form (8).
In the record (8), we write①pi explicitly because in the new numeral positional
system the numberi in general is not equal to the grosspowerpi. This gives the
possibility to write down numerals without indicating grossdigits equal to zero.

The term havingp0 = 0 represents the finite part ofC because, due to (6),
we havec0①0 = c0. The terms having finite positive grosspowers represent the
simplest infinite parts ofC. Analogously, terms having negative finite grosspowers
represent the simplest infinitesimal parts ofC. For instance, the number①−1 = 1

①
mentioned above is infinitesimal. Note that all infinitesimals are not equal to zero.
Particularly, 1

①
> 0 because it is a result of division of two positive numbers.

A number represented by a numeral in the form (8) is calledpurely finite if
it has neither infinite not infinitesimals parts. For instance, 2 is purely finite and
2 + 3①−1 is not. All grossdigitsci are supposed to be purely finite. Purely finite
numbers are used on traditional computers and for obvious reasons have a special
importance for applications.

All of the numbers introduced above can be grosspowers, as well, giving thus a
possibility to have various combinations of quantities andto construct terms having
a more complex structure. However, in this paper we consideronly purely finite
grosspowers. Let us give an example of multiplication of twoinfinite numbersA
andB of this kind (for a comprehensive description see [33,37]).

Example 2.Let us consider numbersA andB, where

A = 14.3①56.25.4①0, B = 6.23①31.5①−4.1.

The numberA has an infinite part and a finite one. The numberB has an infinite
part and an infinitesimal one. Their productC is equal to

C = B · A = 89.089①59.221.45①52.133.642①38.1①−4.1. ✷

We conclude this section by emphasizing that there exist different mathemati-
cal languages and numeral systems and, if they have different accuracies, it is not
possible to use them together. For instance, the usage of‘many’ from the language
of Pirahã in the record4 + ‘many’ has no any sense because for Pirahã it is not
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clear what is 4 and for people knowing what is 4 the accuracy ofthe answer ‘many’
is too low. Analogously, the records of the type① + ω, ① − ℵ0, ①/∞, etc. have
no sense because they belong to languages developed for different purposes and
having different accuracies.

3 Numerical reconstruction of the Taylor expansion of the
solution on the Infinity Computer

Let us return to the problem (1). We suppose that a set of elementary functions
(ax, sin(x), cos(x), etc.) is represented at the Infinity Computer by one of the
usual ways used in traditional computers (see, e.g. [24]) involving the argument
x, finite constants, and four arithmetical operations. Then the following theorem
holds (the worldexactin it means: with the accuracy of the computer programme
implementingf(x, y) from (1)).

Theorem 1 Let us suppose that for the solutiony(x), x ∈ [a, b], of (1) there exists
the Taylor expansion (unknown for us) and at purely finite points s ∈ [a, b], the
functiony(s) and all its derivatives assume purely finite values or are equal to zero.
Then the Infinity Computer allows one to reconstruct the Taylor expansion fory(x)
up to thek-th derivative with exact values ofy′(x), y′′(x), y(3)(x), . . . y(k)(x) after
k steps of the Euler method with the steph = ①−1.

Proof. Let us start to execute on the Infinite Computer steps of the Euler
method following the rule (2) and using the infinitesimal step h = ①−1. Since the
problem (1) has been stated using the traditional finite mathematics,x0 is purely
finite. Without loss of generality let us consider the firstk = 4 steps of the Euler
method (the valuek = 4 is sufficient to show the way of reasoning; we shall use
the formulae involved in this case later in a numerical illustration). We obtain

y1 = y0 + ①−1f(x0, y0), y2 = y1 + ①−1f(x1, y1), (9)

y3 = y2 + ①−1f(x2, y2), y4 = y3 + ①−1f(x3, y3). (10)

The derivatives of the solutiony(x) can be approximated in different ways and
with different orders of accuracy. Let us consider approximations (see, e.g., [10])
executed by forward differences△j

h, 1 ≤ j ≤ k, with the first order of accuracy
and takeh = ①−1 as follows

△k
①−1 =

k∑

i=0

(−1)i
(
k
i

)
yx0+(k−i)①−1 . (11)

Then we have

y′(x0) ≈
△1

①−1

①−1 +O
(
①−1

)
=

y1 − y0

①−1 +O
(
①−1

)
, (12)
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y′′(x0) ≈
△2

①−1

①−2 +O
(
①−1

)
=

y0 − 2y1 + y2

①−2 +O
(
①−1

)
, (13)

y(3)(x0) ≈
△3

①−1

①−3 +O
(
①−1

)
=

−y0 + 3y1 − 3y2 + y3

①−3 +O
(
①−1

)
, (14)

y(4)(x0) ≈
△4

①−1

①−4 +O
(
①−1

)
=

y0 − 4y1 + 6y2 − 4y3 + y4

①−4 +O
(
①−1

)
. (15)

Since due to (1) we can evaluate directlyy′(x0) = f(x0, y0), let us start by
considering the formula (13) (the cases with values ofk > 2 are studied by a com-
plete analogy). Sincex0 is purely finite, then due to our assumptionsy′′(x0) is also
purely finite. This means thaty′′(x0) does not contain infinitesimal parts. Formula
(13) states that the error we have when instead ofy′′(x0) use its approximation

ỹ′′(x0) =
△2

①−1

①−2 (16)

is of the order①−1. The Infinity Computer works in such a way that it collects
different orders of① in separate groups. Thus,△2

①−1 will be represented in the
format (8)

△2
①−1 = c0①0 + c−1①−1 + c−2①−2 + . . .+ c−m2①−m2 , (17)

wherem2 is a finite integer, its value depends on each concretef(x, y) from (1).
Note that (17) cannot contain fractional grosspowers because the steph = ①−1

having the integer grosspower−1 has been chosen in (9), (10).

It follows from (13) and the fact thaty′′(x0) is purely finite thatỹ′′(x0) contains
a purely finite part and can contain infinitesimal parts of theorder①−1 or higher.
This means that grossdigitsc0 = c−1 = 0, otherwise after division on①−2 the

estimateỹ′′(x0) would have infinite parts and this is impossible. Thus̃y′′(x0) has
the following structure

ỹ′′(x0) = c−2①0 + c−3①−1 + c−4①
−2 + . . . + c−m①−m+2. (18)

It follows from (13) thatỹ′′(x0) can contain an error of the order①−1 or higher.
Since all the derivatives ofy(x) are purely finite atx0 and, in particular,y′′(x0) is
purely finite, the fact that the finite part and infinitesimal parts in (18) are separated
gives us thatc−2 = y′′(x0). Thus, in order to have the exact value ofy′′(x0) it
is sufficient to calculate△2

①−1 from (18) and to take its grossdigitc−2 that will be
equal toy′′(x0).

By a complete analogy the exact values of higher derivativescan be obtained
from (12) – (15) and analogous formulae using forward differences (11) to approx-
imate thek-th derivativey(k)(x0). It suffices just to calculate△k

①−1 and to take the
grossdigitc−k that will be equal to the exact value of the derivativey(k)(x0). ✷

10



Let us consider an illustrative numerical example. We emphasize that the In-
finity Computer solves it numerically, not symbolically, i.e., it is not necessary to
translate the procedure implementingf(x, y) in a symbolic form.

Example 3.Let us consider the problem

y′(x) = x− y, y(0) = 1, (19)

taken from [1]. Its exact solution is

y(x) = x− 1 + 2e−x. (20)

We start by applying formulae (9) to calculatey1 andy2:

y1 = 1 + ①−1 · (0− 1) = 1− ①−1,

y2 = 1− ①−1 + ①−1(①−1 − 1 + ①−1) = 1− 2①−1 + 2①−2.

We have now the valuesy0, y1, and y2. Thus, we can apply formula (13) and
calculate△2

①−1 as follows

△2
①−1 = y0 − 2y1 + y2 = 1− 2 + 2①−1 + 1− 2①−1 + 2①−2 = 2①−2.

Thus, c−2 = 2. Let us now verify the obtained result and calculate the exact
derivativey′′(0) using (20). Then we havey′′(x) = 2e−x, andy′′(0) = 2, i.e.,
c−2 = y′′(0). Note that in this simple illustrative examplec−m = 0, m > 2,
wherem is from (13). In general, this is not the case andc−m 6= 0 can occur.

Let us proceed and calculatey3 following (10). We have

y3 = 1−2①−1+2①−2+①−1(2①−1−1+2①−1−2①−2) = 1−3①−1+6①−2−2①−3.

It then follows from (14) that

△3
①−1 = −y0 + 3y1 − 3y2 + y3 =

−1+3(1−①−1)−3(1−2①−1+2①−2)+1−3①−1+6①−2−2①−3 = −2①−3.

We can see thatc−3 = −2. The exact derivative obtained from (20) isy(3)(x) =
−2e−x. As a consequence, we havey(3)(0) = −2, i.e.,c−3 = y(3)(0).

To calculatey(4)(0) we use (10) and have

y4 = 1− 3①−1 + 6①−2 − 2①−3 + ①−1(3①−1 − 1 + 3①−1 − 6①−2 + 2①−3) =

1− 4①−1 + 12①−2 − 8①−3 + 2①−4.

From (15) we obtain

△4
①−1 = y0 − 4y1 + 6y2 − 4y3 + y4 = 1− 4(1− ①−1) + 6(1− 2①−1 +2①−2)−

−4(1− 3①−1 + 6①−2 − 2①−3) + 1− 4①−1 + 12①−2 − 8①−3 + 2①−4 =

11



Table 1: Comparison of methods solving the problem (19) wherenf is the number
of evaluation off(x, y) executed by a method to obtain an approximated solution
yn at the pointx = 1

Method nf yn ε

Heun,h = 0.2 10 0.741480 -0.005721
Runge–Kutta (4th order),h = 0.2 20 0.735770 -0.0000116

y(x, 0) = 1− x+ x2 2 1 -0.264241118

y(x, 0) = 1− x+ x2 − x3

3
3 0.6666666667 0.069092216

y(x, 0) = 1− x+ x2 − x3

3
+ x4

12
4 0.75 -0.014241118

y(x, 0) = 1− x+ x2 − x3

3
+ x4

12
− x5

60
5 0.7333333333 0.002425549

y(x, 0) = 1− x+ x2 − x3

3
+ x4

12
− x5

60
+ x6

360
6 0.7361111111 -0.000352229

y(x, 0) = 1− x+ x2 − x3

3
+ x4

12
− x5

60
+ x6

360
− x7

2520
7 0.7357142857 0.000044597

y(x, 0) = 1− x+ x2 − x3

3
+ x4

12
− x5

60
+ x6

360
− x7

2520
+ x8

20160
8 0.7357638889 -0.000005007

−4(1− 3①−1 +6①−2 − 2①−3)+ 1− 4①−1 +12①−2 − 8①−3 +2①−4 = 2①−4.

Again we obtain thatc−4 = y(4)(0) = 2.
Thus, four steps of the explicit Euler method with the infinitesimal steph =

①−1 have been executed on the Infinity Computer. As a result, the first five exact
items of the Taylor expansion ofy(x) in the neighborhood ofx0 = 0 can be
written:

y(x) = x− 1 + 2e−x ≈ 1− x+ x2 −
x3

3
+

x4

12
. (21)

By a complete analogy it is possible to obtain additional terms in the expansion
that correspond to higher derivatives ofy(x).

In Table 1, we present results of experiments executed (see [1]) with the meth-
ods of Heun (2d order) and Runge–Kutta (4th order) solving the problem (19).
Both methods useh = 0.2. Then we present results of the new methods that ex-
ecute firstk infinitesimal steps withk going from 2 to 8 and then executing one
finite step from the pointx0 = 0 to the pointx = 1. The valuenf is the num-
ber of evaluation off(x, y) executed by each method. The columnyn shows the
obtained approximation at the pointx = 1 and the columnε shows the respective
errorε = y(1) − yn wheren = 5 for the methods of Heun and Runge–Kutta and
n = 1 for the new methods. ✷

In cases, where it is not possible to evaluatef(x, y) at the pointsxn + ①−1,
xn+2①−1, xn +3①−1, . . . (for instance, when we should solve the problem over
an interval[a, b] andxn = b) the following corollary can be useful.

Corollary 1 Under conditions of Theorem 1 the backward differences calculated
at the pointsxn − ①−1, xn − 2①−1, xn − 3①−1, . . . , xn − k①−1 can be used to
calculate the derivatives ofy(x) at the pointxn.
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Proof. The backward difference (see e.g., [10]) of the orderk with h = ①−1

is calculated as follows

∇k
①−1 =

k∑

i=0

(−1)i
(
k
i

)
yx0−i①−1 .

The rest of the proof is completely analogous to the proof of the theorem and is so
omitted. ✷

Thus, if the region of interest[a, b] from (1) belongs to the region of conver-
gence of the Taylor expansion for the solutiony(x) around the pointx0 then it
is not necessary to construct iterative procedures involving several steps with fi-
nite values ofh and it becomes possible to calculate approximations of the desired
order by executing only one finite step.

4 Examples of the usage of infinitesimals in the new
computational framework

The approach introduced in the previous section gives the possibility to construct
a variety of new numerical methods for the Infinity Computer by using both in-
finitesimal and finite values ofh. The general stepn of a method of this kind for
solving (1) can be described as follows:

(i) take the point(xn, yn), choose a valuekn, and executekn steps of the Euler
method starting fromxn by usingh = ①−1;

(ii) calculate exact values ofy′(x), y′′(x), y(3)(x), . . . , y(kn)(x) at the point
(xn, yn) following the rules described in Theorem 1;

(iii) construct the truncated Taylor expansion of the orderkn;

(iv) execute a single step from the pointxn to xn+1 = xn + hi using the con-
structed Taylor expansion and a finite value ofhn (steps of the kindhn−①−1

or hn + ①−1 can be also used).

The general step described above allows one to construct numerical algorithms
for solving (1) by executing several iterations of this kind. Many numerical meth-
ods (see [4,14,27]) can be used as a basis for such developments. Due to the easy
way allowing us to calculate exact higher derivatives at thepoints(xn, yn), meth-
ods that use higher derivatives are of the main interest. Thefact that to increase
the accuracy it is necessary just to execute one additional infinitesimal step without
performing additional finite steps (i.e., the whole work executed at a lower level of
accuracy is used entirely at a higher level of accuracy) is anadditional advantage
and suggests to construct adaptive methods (for instance, if one wishes to change
the finite step fromh1 to h2 > h1 or h3 < h1 then the same Taylor expansion can
be used in all the cases). A study of such methods will be done in a separate paper.
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Hereinafter, since the usage of numerical infinitesimals isa new topic, we give a
number of examples showing how the new computational framework can be used
in the context of numerical solving ODEs.

The rest of this section is organized as follows. In the first subsection, we
present two simple iterative methods using low derivatives(a lower order of deriva-
tives is used for expository reasons). In the second subsection, we present a tech-
nique that can be used to obtain an additional information with respect to approx-
imations of derivatives of the solution. In the last subsection, we discuss how
an automatic control of rounding errors can be executed during the evaluation of
f(x, y) at the points(xn, yn).

4.1 A simple method and possibilities of its improvements

We start by introducing theMethod 1that uses only the first and the second deriva-
tives at each iteration to construct the Taylor expansion byapplying formulae (9),
(12), and (13). Thus, this method at the current pointxn executes twice the Euler
step withh = ①−1 and then makes the step with a finite value ofh by using the
obtained Taylor expansion. Therefore, during these three steps (two infinitesimal
steps and one finite step) the functionf(x, y) is evaluated twice and only during the
infinitesimals steps. Let us use the number stepn to count the executed finite steps
and denote byy(x, z) the Taylor expansion of the solutiony(x) calculated by the
method during the infinitesimal steps at the neighborhood ofthe pointz = xn−1.
Then, we can calculateyn asyn = y(h, xn−1) with a finite value ofh.

Example 4. We test this method on the problem (19) with the finite steph =
0.2 (see Table 2). By applying the procedure described above with six digits after
the dot we have that

y(x, 0) = 1− x+ x2, y1 = y(0.2, 0) = 0.84, (22)

y(x, 0.2) = 0.84 − 0.64x + 0.82x2, y2 = y(0.2, 0.2) = 0.7448,

y(x, 0.4) = 0.7448 − 0.3448x + 0.6724x2, y3 = y(0.2, 0.4) = 0.702736,

y(x, 0.6) = 0.702736−0.102736x+0.551368x2 , y4 = y(0.2, 0.6) = 0.704244,

y(x, 0.8) = 0.704244+0.095756x+0.452122x2 , y5 = y(0.2, 0.8) = 0.741480.

It can be seen from Table 2 that the results obtained by the newmethod (see
column Method 1.0) for the valuesyn coincide (see [1]) with the results obtained by
applying the modified Euler’s method (called also Heun’s method) that evaluates
f(x, y) twice at each iteration as the new method does.

As it can be seen from the formulae above, the Method 1 at each point xn pro-
vides us not only with the valueyn but also with the first and the second derivatives
of y(x) at the point(xn, yn). We shall denote them asy′n(xn) andy′′n(xn) where

y′n(xn) = y′(0, xn), y′′n(xn) = y′′(0, xn).
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Table 2:Two versions of Method 1 constructing the Taylor expansion using the values of
the first and second derivatives calculated during two infinitesimal Euler steps at the points
(xn, yn)

Method1.0 Method1.1
n xn yn εn ycn cn εn
0 0.0 1.000000 0.000000 1.000000 0.000000 0.000000
1 0.2 0.840000 -0.002538 0.839200 0.000800 -0.001738
2 0.4 0.744800 -0.004160 0.743344 0.001456 -0.002704
3 0.6 0.702736 -0.005113 0.700742 0.001994 -0.003119
4 0.8 0.704244 -0.005586 0.701808 0.002436 -0.003150
5 1.0 0.741480 -0.005721 0.738682 0.002798 -0.002923

For instance, we have

y′(x, 0.4) = −0.3448 + 1.3448x, y′2(0.4) = −0.3448,

y′′(x, 0.4) = 1.3448, y′′2 (0.4) = 1.3448. ✷

Note that the values of derivatives calculated at the points(xn, yn) are exact in the
sense that they provide values of the derivatives for the solution with the initial
condition (xn, yn). They can be used to estimate derivatives ofy(x) at the point
(xn, y(xn)).

The possibility to improve the accuracy of a solution going forward and back-
ward has been the main idea of many numerical methods for ODEs(see, e.g.,
[6, 15]). Results for the Method 1.0 presented in Table 2 can be improved using
similar ideas in the new framework using the values of derivatives that the method
provides during its functioning. Let us consider the exact solution y(x) from (20)
and its approximationy(x, 0) from (22) on the interval[0, 0.5] (we choose this in-
terval that is larger then the steph = 0.2 used in Table 2 in order to be able to show
the idea more clearly graphically). In Fig. 1, the graph ofy(x, 0) is represented by
the top (black) solid line and the graph ofy(x) is represented by the lower (grey)
solid line. Naturally, both of them start at the point(0, 1) and we then have that

y(0.5) = 0.713061319, y(0.5, 0) = 0.75.

Thus, the errorε1 at the pointx1 = 0.5 is

ε1 = y(0.5) − y(0.5, 0) = −0.036938681. (23)

By using our equation (19) and executing two infinitesimal steps from the point
x1 = 0.5 to the points0.5 + ①−1 and0.5 + 2①−1 we obtain

y(x, 0.5) = 0.75 − 0.25x+ 0.625x2. (24)

In the Method 1.0, this formula would be used to go forward from the pointx1 =
0.5 by executing a new finite step. Instead of this, let us use thisformula to go
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Figure 1: The graph ofy(x, 0) is represented by the top (black) solid line and the
graph ofy(x) is represented by the lower (grey) solid line (bothy(x, 0) andy(x)
start at the point(0, 1)); the graph of the function̄y(x) is shown by the top dashed
line; the graph of the functionr1(x) is shown by the lower dashed line.

backward from the pointx1 = 0.5 to the starting pointx0 = 0. Since in (24)x
is intended to be a removal from the pointx1 = 0.5, we need to take into account
this fact. The graph of the obtained function

ȳ(x) = 0.75 + 0.25(0.5 − x) + 0.625(0.5 − x)2 = 1.03125 − 0.875x + 0.625x2

is shown in Fig. 1 by the top dashed line.
It can be seen thaty(x, 0) from (22) does not coincide with the obtained func-

tion ȳ(x). Let us construct a new quadratic approximationr1(x) oriented on a
better result to be obtained at the pointx1 = 0.5. The functionr1(x) is built using
coefficients from bothy(x, 0) and ȳ(x) by taking their average with the weights
1
2 and 1

2 (the general way to mix them is, obviously,τ and1 − τ, 0 < τ < 1) as
follows:

r1(x) = y(0, 0)+
1

2
(y(0, 0)−ȳ(0))+

1

2
(y′(0, 0)+ȳ′(0))x+

1

4
(y′′(0, 0)+ȳ′′(0))x2 =

1 +
1

2
(1− 1.03125) +

1

2
(−1− 0.875)x +

1

2
(1 + 0.625)x2 =

0.984375 − 0.9375x + 0.8125x2. (25)

In Fig. 1, the graph of the functionr1(x) is shown by the lower dashed line. The
functionr1(x) provides us the valuer1(0.5) = 0.718750 and the respective error

ε1 = y(0.5) − r1(0.5) = −0.005688681. (26)
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that is better than the errorε1 = −0.036938681 from (23) that is obtained by
calculatingy(0.5, 0).

The possibility to calculate corrections to approximations opens the doors to
various modifications. For instance, it is possible to execute two additional in-
finitesimal steps at the pointx1 = 0.5 using the valuer1(0.5) instead ofy(0.5, 0).
In general, this means that instead of settingyn = y(xn, xn−1) as it is done by
the Method 1.0 we putyn = rn(xn). Obviously, this means that it is necessary to
evaluatef(x, y) two times more with respect to the Method 1.0. Otherwise it is
also possible to use the corrected valuern(xn) with the derivatives that have been
calculated fory(xn, xn−1).

Another possibility would be the use of the functionsy(x, xn) at each pointxn,
i.e., to putyn = y(xn, xn−1), and to calculate the global correction following the
rule

cn = c(xn) = c(xn−1) + rn(xn)− y(xn, xn−1), (27)

starting from the first correction (in our examplec(x1) = c(0.5) = 0.031250)

c(x1) = r1(x1)− y(x1, x0).

In this way we can approximate the exact solutiony(xn) by the corrected value

ycn = y(xn, xn−1) + c(xn).

In Table 2, results for this algorithm are presented in the columnMethod 1.1where
the errorεn is calculated as

εn = y(xn)− ycn.

Notice that the correction obtained at the final point has been calculated using
Corollary 1.

We conclude this subsection by a reminder that Theorem 1 gives us the possi-
bility to easily construct higher-order methods. Two methods described above just
show examples of the usage of infinitesimals for building algorithms for solving
ODEs.

4.2 Approximating derivatives of the solution

In this subsection, we show how approximations of derivatives at the pointxn can
be obtained using the information calculated at the pointxn−1. For this purpose,
instead of the usage of a finite steph, the stepsh− ①−1 or h+ ①−1 can be used.
To introduce this technique we need to recall the following theorem from [40].

Theorem 2 Suppose that: (i) for a functions(x) calculated by a procedure imple-
mented at the Infinity Computer there exists an unknown Taylor expansion in a fi-
nite neighborhoodδ(z) of a purely finite pointz; (ii) s(x), s′(x), s′′(x), . . . s(k)(x)
assume purely finite values or are equal to zero at purely finitex ∈ δ(z); (iii) s(x)
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has been evaluated at a pointz + ①−1 ∈ δ(z). Then the Infinity Computer re-
turns the result of this evaluation in the positional numeral system with the infinite
radix ① in the following form

s(z + ①−1) = c0①0c−1①−1c−2①−2 . . . c−(k−1)①
−(k−1)c−k①−k, (28)

where

s(z) = c0, s′(z) = c−1, s′′(z) = 2!c−2, . . . s(k)(z) = k!c−k. (29)

The theorem tells us that if we take a purely finite pointz and evaluate on the
Infinity Computers(x) at the pointz+①−1 then from the computeds(z+①−1) we
can easily extracts(z), s′(z), s′′(z), etc. To apply this theorem to our situation we
can take ass(x) the Taylor expansion fory(x) constructed up to thekth derivative
using infinitesimal steps①−1, 2①−1, . . . , k①−1. Then, if we take asz a purely
finite steph and evaluate on the Infinity Computers(x) at the pointh+ ①−1 then
we obtains(h), s′(h), s′′(h), etc.

For instance, let us takes(x) = s2(x) = y(x, 0), wherey(x, 0) is from (22)
ands2(x) indicates that we use two derivatives in the Taylor expansion. Then, we
have

s2(0.2 + ①−1) = 1− (0.2 + ①−1) + (0.2 + ①−1)2 = 0.84 − 0.6①−1 + ①−2.

We have the exact (where the word “exact” again means: with the accuracy of the
implementation ofs(x)) valuess(0.2) = 0.84, s′(0.2) = −0.6, s′′(0.2) = 1 for
the functions(x). These values can be used to approximate the respective values
y(0.2), y′(0.2), y′′(0.2) we are interested in. Moreover, we can adaptively obtain
an information on the accuracy of our approximations by consecutive improve-
ments. If we calculate nowy(3)(0) from (14) then we can improve our approxima-
tion by settings(x) = s3(x) where

s3(0.2 + ①−1) = s2(0.2 + ①−1)−
1

3
(0.2 + ①−1)3 =

s2(0.2 + ①−1)− 0.002667 − 0.04①−1 − 0.2①−2 −
1

3
①−3 =

0.837333 − 0.64①−1 + 0.8①−2 −
1

3
①−3. (30)

Note, that to obtain this information we have calculated only the additional part of
s3(0.2) taking the rest from the already calculated values2(0.2).

Analogously, if we calculate nowy(4)(0) from (15) then we can improve our
approximation again by settings(x) = s4(x) where

s4(0.2 + ①−1) = s3(0.2 + ①−1) +
1

12
(0.2 + ①−1)4 =

s3(0.2+①−1)+0.000133+0.002667①−1+0.02①−2+0.066667①−3+
1

12
①−4 =
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0.837466 − 0.637333①−1 + 0.82①−2 − 0.266667①−3 +
1

12
①−4.

Since we have used the convergent Taylor expansion of the fourth order, the errors
in calculatingy(0.2), y′(0.2), andy′′(0.2) are of the orders 5, 4, and 3, respectively.

4.3 An automatic control of rounding errors

In the previous sections, we have supposed that the evaluation of derivatives of
y(x) was done exactly, i.e., the procedure for evaluatingf(x, y) was sufficiently
precise and it was possible to neglect rounding errors. The executed numerical
examples presented above satisfied this assumption. Let us now study what the
Infinity Computer can give us whenf(x, y) is calculated with errors. Hereinafter
we suppose again that for the solutiony(x), x ∈ [a, b], of (1) there exists the Taylor
expansion (unknown for us) and at purely finite pointss ∈ [a, b], the functiony(s)
and all its derivatives assume purely finite values or are equal to zero. In addition,
we assume that the same conditions hold for all approximations ofy(x) the method
will deal with.

Let us consider formulae (9) for calculatingy1 andy2 together with formulae
(12) and (13) used for approximatingy′(x0) andy′′(x0). Suppose thatf(x0, y0) is
calculated with an unknown errorǫ1. Then we have that instead of the derivative
y′(x0) and the pointy1 we have

ỹ′(x0) = f(x0, y0)− ǫ1 = y′(x0)− ǫ1 (31)

ỹ1 = y0 + ①−1(f(x0, y0)− ǫ1) = y1 − ǫ1①−1,

Analogously, calculation of the pointy2 will give us ỹ2 and△2
①−1 will be calculated

with errors, as well, giving us̃△2
①−1 . Let us study the structure of this forward

difference

△̃2
①−1 = y0−2ỹ1+ ỹ2 = ỹ2− ỹ1−(ỹ1−y0) = ỹ2− ỹ1−(y1−y0)+ǫ1①−1. (32)

By applying the argumentation analogous to that used in Theorem 1 together with
our assumptions on purely finiteness of all derivatives of approximations ofy(x)
we have that

ỹ2 − ỹ1 − (y1 − y0) = c̃−2①
−2 + . . .+ c̃−m2①−m2 , (33)

where the coefficients̃c−2, . . . , c̃−m2 are affected by rounding errors and errors
incorporated iñy1 and ỹ2. Thus, instead of the exact second derivative that has
been obtained in Theorem 1 from the coefficientc−2 of ①−2, the coefficient̃c−2

gives us an approximatioñy′′(x0) of y′′(x0), namely,

c̃−2 = ỹ′′(x0) = y′′(x0)− ǫ2,

whereǫ2 is an error we have got during the calculation ofy′′(x0).

19



Let us rewrite now (32) in the decreasing orders of the powersof grossone
using the representation (33), i.e., as the Infinity Computer does it. We have

△̃2
①−1 = ǫ1①−1 + c̃−2①−2 + . . .+ c̃−m2①−m2 . (34)

This means that by calculating̃△2
①−1 we have obtained also the errorǫ1 that we

have got at the previous infinitesimal step (see (31)). We areable now to reestablish
the exact value of the first derivativey′(x0) using the approximative valuẽy′(x0)
calculated in (31) and the grossdigit corresponding to①−1 by taking it from△̃2

①−1

in (34), i.e., we have
y′(x0) = ỹ′(x0) + ǫ1.

By a complete analogy we can continue and calculate

△̃3
①−1 = −ǫ1①

−1 + ǫ2①
−2 + c̃−3①−3 + . . .+ c̃−m3①−m3 , (35)

y′′(x0) = ỹ′′(x0) + ǫ2.

Note that in (35)ǫ1 (that can be either positive or negative) appears with the alter-
nated sign following the formulae of forward differences. In fact, in△̃3

①−1 we have
y1 − y0 whereas in△̃2

①−1 we have−(y1 − y0). Analogously, the same alternation
happens for higher derivatives.

In general, in order to calculate the(k− 1)th derivativey(k−1)(x0) it is neces-
sary to calculate the approximatioñy(k−1)(x0) = c̃−(k−1) and then to extract the
errorǫk−1 (that can be negative or positive ) from

△̃k
①−1 = (−1)kǫ1①

−1 + . . . (−1)k−i−1ǫi①
−i + . . .

−ǫk−2①
−(k−2) + ǫk−1①

−(k−1) + c̃−k①−k + . . .+ c̃−mk
①−mk ,

y(k−1)(x0) = ỹ(k−1)(x0) + ǫk−1. (36)

If there exists an indexj, 1 ≤ j < k, such thatǫ1 = . . . ǫj = 0, theny(k−1)(x0) is
calculated again by the formula (36) but it follows

△̃k
①−1 = (−1)k−j−1ǫj+1①

−(j+1) + . . .

+ ǫk−1①
−(k−1) + c̃−k①−k + . . .+ c̃−mk

①−mk . (37)

Thus, eitherf(x, y) is evaluated exactly or rounding errors are present, the
Infinity Computer is able to calculate the derivatives of thesolution exactly. Let us
illustrate the theoretical results presented above by a numerical example.

Example 5. Let us consider the following test problem5 taken from [18]. The
ODE

y′(x) = −
x− c

s2
(y − 1) (38)

5The author thanks Prof. H. P. Langtangen for drawing the author’s attention to this nice example.
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Table 3: Calculating approximations for derivativesy(i)(0), 1 ≤ i ≤ 12, for the
problem (38) at the point(0, y(0)) by applying the automatic control of rounding
errorsεi and providing so the final accuracyδi

i ỹ(i)(0) εi y(i)(0) δi
1 0.182759757 · 10−6 0.0000000000 0.182759757 · 10−6 −0.60449198 · 10−28

2 0.207127725 · 10−5 0.609199190 · 10−7 0.213219716 · 10−5 −0.69190731 · 10−27

3 0.233932489 · 10−4 0.731039028 · 10−6 0.241242879 · 10−4 −0.78192941 · 10−26

4 0.254888941 · 10−3 0.901614801 · 10−5 0.263905089 · 10−3 −0.83928642 · 10−25

5 0.266975453 · 10−2 0.111117932 · 10−3 0.278087246 · 10−2 −0.85899500 · 10−24

6 0.267228880 · 10−1 0.136947978 · 10−2 0.280923676 · 10−1 −0.82216871 · 10−23

7 0.253489245 · 100 0.168782291 · 10−1 0.270367474 · 100 −0.71132365 · 10−22

8 0.224980672 · 101 0.208016667 · 100 0.245782339 · 101 −0.50790463 · 10−21

9 0.182784086 · 102 0.256371293 · 101 0.208421215 · 102 −0.19195037 · 10−20

10 0.13002719 · 103 0.315966218 · 102 0.161623816 · 103 0.25832403 · 10−19

11 0.71638662 · 103 0.389414314 · 103 0.110580093 · 104 0.86669850 · 10−18

12 0.13588050 · 104 0.479935826 · 104 0.615816329 · 104 0.16535675 · 10−16

has the exact solution that is the following Gaussian function

u(x) = 1 + e−
1
2(

x−c
s )

2

(39)

centered aroundt = c and with characteristic width (standard deviation)s. The
initial condition is taken as the exact valuey(0) = u(0) and the parameters are
taken asc = 3, s = 0.5.

In Table 3, we calculate derivativesy(i)(0), 1 ≤ i ≤ 12, using (36) with 30
digits in the mantissa, in order to be able to catch the final accuracyδk presented in
the last column. It shows the final error obtained by subtracting from the derivatives
calculated using the explicit solution (39) and the derivativesy(i)(0), 1 ≤ i ≤ 12,
i.e.,

δi = u(i)(0) − y(i)(0), 1 ≤ i ≤ 12.

Let us make a few remarks regarding Table 3. First, atx = 0 with c = 3 and
s = 0.5 it follows from (38) that−x−c

s2
= 12. In order to illustrate the situation

(37), we have calculatedy1 using (instead of the original expression12(y0 − 1)
from (38) leading toε1 6= 0) the expression12y0 − 12 that providesε1 = 0 when
it is used iny1 = y0 + ①−1(12y0 − 12).

Then, it is worthwhile to notice that almost through the whole Table 3 (and in
spite of large values of higher derivatives) the relative error has the constant order
equal to10−22 (it can be easily seen from Table 3 thatm− n = 22 wherem is the
exponent ofy(i) andn is the exponent ofδi). Notice also that at the last line of the
Table the errorε12 is even larger than the approximationỹ(12)(0). ✷

5 Conclusion

In this paper, a new framework for solving ODEs has been introduced. The new
approach allows us to work numerically not only with usual finite numbers but also

21



with different infinitesimal and infinite values on a new kindof a computational
device called the Infinity Computer (it has been patented andits working prototype
exists). The structure of numbers we work on the new computeris more complex
and, as a result, we face new computational possibilities. In particular, the presence
of different numerical infinitesimals makes it possible to use infinitesimal steps for
solving ODEs. The following results have been established in the new framework.

i. It has been shown that (under the assumption that the person solving the
ODE does not know the structure off(x, y), i.e., it is a “black box” for him/her)
the Infinity Computer is able to calculate numerical values of the derivatives of
y(x) of the desired order without the necessity of an analytical (or symbolical)
computation of the respective derivatives by the successive derivation of the ODE
as it is usually done when the Taylor method is applied.

ii. If the region of our interest[a, b] belongs to the region of convergence of the
Taylor expansion for the solutiony(x) in the neighborhood of the pointx0, then it
is not necessary to construct iterative procedures involving several steps with finite
values ofh. It becomes possible to calculate approximations of the desired orderk
by executingk infinitesimal steps and only one finite step.

iii. Approximations of derivatives ofy(x) at the pointxn can be obtained using
the information calculated at the pointxn−1. For this purpose, instead of the usage
of a finite steph, the stepsh−①−1 orh+①−1 can be used. Methods going forward
and backward and working with approximations of derivatives can be proposed in
the new framework.

iv. The last subsection of the manuscript shows that eitherf(x, y) is evaluated
exactly or rounding errors are present, the Infinity Computer is able to perform, by
means of a smart usage of infinitesimals, an automatic control of the accuracy of
computation of the derivatives of the solution.

v. Theoretical results have been illustrated by a number of numerical examples.
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