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Abstract

There exists a huge number of numerical methods that etatcon-
struct approximations to the solutig(x) of an ordinary differential equation
(ODE) ¢/ (z) = f(x,y) starting from an initial valug, = y(x() and using
a finite approximation step that influences the accuracy of the obtained ap-
proximation. In this paper, a new framework for solving OD&presented
for a new kind of a computer — the Infinity Computer (it has bpatented
and its working prototype exists). The new computer is abledrk numer-
ically with finite, infinite, and infinitesimal numbers gigrso the possibility
to use different infinitesimals numerically and, in partaruto take advan-
tage of infinitesimal values df. To show the potential of the new framework
a number of results is established. It is proved that theitgf®omputer is
able to calculate derivatives of the solutigf) and to reconstruct its Tay-
lor expansion of a desired order numerically without findihg respective
derivatives analytically (or symbolically) by the sucdesslerivation of the
ODE as it is usually done when the Taylor method is appliedthidlés using
approximations of derivatives obtained thanks to infiniteds are discussed
and a technique for an automatic control of rounding errsrsitroduced.
Numerical examples are given.

Key Words: Ordinary differential equations, numerical infinitesisjacombining
finite and infinitesimal approximation steps, Infinity Cortgu

*This study was supported by the Ministry of Education ance® of Russian Federation,
project 14.B37.21.0878. The author thanks anonymouswevgefor their useful suggestions.

TYaroslav D. Sergeyev, Ph.D., D.Sc., is Distinguished Rsie at the University of Calabria,
Rende, Italy. He is also Full Professor (part-time conjratthe N.l. Lobatchevsky State University,
Nizhni Novgorod, Russia and Affiliated Researcher at thétlrie of High Performance Computing
and Networking of the National Research Council of Italy.


http://arxiv.org/abs/1307.3529v1
http://wwwinfo.deis.unical.it/~yaro

1 Introduction

The number of applications in physics, mechanics, and eeging where it is
necessary to solve numerically ordinary differential émues (ODES) with a given
initial value is really enormous. Since many ordinary difaial equations cannot
be solved analytically, people use numerical algorithifos finding approximate
solutions (see 3,4, 14,27]). In this paper, we want to axiprate the solution
y(z), = € [a,b], of the initial value problem (also called the Cauchy probléon

a differential equation

y/(ﬁ) = f(xay)a y(x()) = Yo, T = a, (1)

wherea andb are finite numbers ang(x) = o is called the initial condition.
We suppose thaf(z,y) is given by a computer procedure. Since very often in
scientific and technical applications it can happen thatpdison who wants to
solve [1) is not the person who has written the codeffar, y), we suppose that
the person solvindg {1) does not know the structurg (@f, y), i.e., it is a black box
for him/her.

In the literature, there exist numerous numerical algortconstructing a se-
quenceys, y2, ys3, - . . approximating the exact valuegx1), y(z2), y(z3), ... that
the solutiony(z) assumes at points;, x5, x3, . . . (seel[4,18,17]). The explicit Eu-
ler algorithm is the simplest among explicit methods for laenerical integration
of ODEs. It uses the first two terms of the Taylor expansion(af) constructing
so the linear approximation around the pding, y(z¢)). The(n + 1)th step of the
Euler algorithm describes how to move from the paipto x,, 1 = z,+h,n > 0,
and is executed as follows

Ynd+1 = Yn + hf(xm yn) (2)

Traditional computers work with finite values éf introducing so errors at
each step of the algorithm. In order to obtain more accunapeoximations it is
necessary to decrease the steipcreasing so the number of steps of the method
(the computations become more expensive). In any ¢aadyays remains finite
and its minimal acceptable value is determined by techiitatacteristics of each
concrete computer the method is implemented on. Obviotl&ysame effects hold
for more sophisticated methods, as well (sgé [4, 13, 14, 1&hother approach
to solve [1) on a traditional computer is the use of an autmnuifferentiation
software executing pre-processing[df (1) (Seé [12] andeafes given therein).

In this paper, we introduce a new numerical framework foviegl ODES re-
lated to the usage of a new kind of computer — the Infinity Caiep(see([311, 33,
[37]). It is able to worknumericallywith finite, infinite, and infinitesimal quanti-
ties. The Infinity Computer is based on an applied point ofngee [30, 33, 39])

1 There exist also symbolic techniques but they are not censitlin this paper dedicated to
numerical computations.



on infinite and infinitesimal numbers. In order to see the g@latthe new ap-
proach in the historical panorama of ideas dealing with it&iand infinitesimal,
see [21/, 22, 36, 38, 43]. The new methodology has been staibespplied for
studying numerical differentiation and optimization (§8g35,40[48]), fractals
(seel[32, 34,42, 45]), percolation (seel[16, 45]), Euciidaad hyperbolic geome-
try (see[28,20]), the first Hilbert problem and Turing maets (seel[38, 43, 44]),
cellular automata (se€l[9]), infinite series (see [36| 41, 4dnctions and their
derivatives that can assume infinite and infinitesimal \algee([35]), etc.

With respect to the initial value problein (1), the possibito work numerically
with infinitesimals allows us to usaumerical infinitesimal values a&f It is proved
that under reasonable conditions the Infinity Computer le &b calculateexact
values of the derivatives af(z) and to reconstruct its Taylor expansion with a
desired accuracy by using infinitesimal valuesiafithout finding the respective
derivatives analytically (or symbolically) by the sucdesslerivation of[(1) as it is
usually done when the Taylor method is applied.

The rest of the paper is organized as follows. Section 2 prigisents the
new computational methodology. Section 3 introduces thia thaoretical results
and describes how derivativesyfr) can be calculated numerically on the Infinity
Computer. Section 4 introduces a variety of examples of sage of infinitesimals
for ODEs numerical solving. First, it presents two simpéative methods. Then,
it describes a technique that can be used to obtain appromimeaof derivatives
of the solutiony(z) at the pointz,,; using infinitesimals and the information
obtained at the point,,. Finally, a technique for an automatic control of rounding
errors that can occur during evaluationfdtc, y) is introduced. Through the paper,
theoretical results are illustrated by numerical examples

2 A fast tour to the new computational methodology

Numerous trials have been done during the centuries in dodevolve existing
numeral systerﬁsin such a way that infinite and infinitesimal numbers could be
included in them (se€[2,5,7.119]20125/28, 46]). Partitylan the early history of
the calculus, arguments involving infinitesimals playedvatal role in the deriva-
tion developed by Leibniz and Newton (seel[19, 25]). Theambdf an infinites-
imal, however, lacked a precise mathematical definitioniaratder to provide a
more rigorous foundation for the calculus, infinitesimalsrevgradually replaced
by the d’Alembert-Cauchy concept of a limit.

Since new numeral systems appear very rarely, in each derfustorical pe-
riod their importance for Mathematics is very often undenested (especially by

2 \We are reminded thatrrumeralis a symbol or group of symbols that representsimber The
difference between numerals and numbers is the same adfdremtie between words and the things
they refer to. Anumberis a concept that aumeralexpresses. The same number can be represented
by different numerals. For example, the symbols ‘7’, ‘sévand ‘VII' are different numerals, but
they all represent the same number.



pure mathematicians). In order to illustrate their impoct, let us remind the
Roman numeral system that does not allow one to express mdnoegative num-

bers. In this system, the expression IlI-X is an indetertairfarm. As a result,

before appearing the positional numeral system and im@azgro (by the way, the
second event was several hundred years later with respéue irst one) math-

ematicians were not able to create theorems involving zedonagative numbers
and to execute computations with them.

There exist numeral systems that are even weaker than thaiRone. They
seriously limit their users in executing computations. ustrecall a study pub-
lished recently inScience(see [11]) that describes a primitive tribe — Piraha —
living in Amazonia. These people use a very simple numerstesy for counting:
one, two, many. For Piraha, all quantities larger than tregast ‘many’ and such
operations as 2+2 and 2+1 give the same result, i.e., ‘madging their weak
numeral system Piraha are not able to see, for instancehemsn3, 4, 5, and 6, to
execute arithmetical operations with them, and, in genévaday anything about
these numbers because in their language there are neithds wor concepts for
that.

In the context of the present paper, it is very important thatweakness of
Piraha’s numeral system leads them to such results as

‘many’ + 1 = ‘many’, ‘many’ + 2 = ‘many’, (©)

which are very familiar to us in the context of views on infinitsed in the tradi-
tional calculus
0+ 1= 0, 0+ 2 = . (4)

The arithmetic of Piraha involving the numeral ‘many’ hdsoaa clear similarity
with the arithmetic proposed by Cantor for his Alelﬁths

No—l-l:N(), N0—|—2:N0, N1—|—1:N1, N1+2:N1. (5)

Thus, the modern mathematical numeral systems allow usstngliiish a
larger quantity of finite numbers with respect to Piraha d¢pue results that are
similar to those of Piraha when we speak about infinite nusmbEhis observation
leads us to the following ide@robably our difficulties in working with infinity is
not connected to the nature of infinity itself but is a restilinadequate numeral
systems that we use to work with infinity, more preciselyxpress infinite num-
bers.

Let us compare the usage of numeral systems in Mathematiolsasizing dif-
ferences that hold when one works, on the one hand, with fipigatities and, on

3This similarity becomes even more pronounced if one consideother Amazonian tribe —
Munduruk{ (seel[26]) — who fail in exact arithmetic with nbens larger than 5 but are able to
compare and add large approximate numbers that are far elieir naming range. Particularly,
they use the words ‘some, not many’ and ‘many, really manydigiinguish two types of large
numbers using the rules that are very similar to ones useddnyo€to operate withto and N,
respectively.



the other hand, with infinities and infinitesimals. In our mvday activities with
finite numbers thesamefinite numerals are used fdlifferent purposes (e.g., the
same numeral 4 can be used to express the number of elementebénd to in-
dicate the position of an element in a finite sequence). Whefaee the necessity
to work with infinities or infinitesimals, the situation clges drastically. In fact,
in this casdifferentsymbols are used to work with infinities and infinitesimals in
differentsituations:

e oo in standard Analysis;
e w for working with ordinals;
e Ny, Ny, ... for dealing with cardinalities;

e non-standard numbers using a generic infinitesimial non-standard Anal-
ysis, etc.

In particular, since the mainstream of the traditional Matlatics very often
does not pay any attention to the distinction between nusnbed numerals (in
this occasion it is necessary to recall constructivists atindied this issue), many
theories dealing with infinite and infinitesimal quantitiesve a symbolic (not nu-
merical) character. For instance, many versions of thestandard Analysis are
symbolic, since they have no numeral systems to expregsnineibers by a finite
number of symbols (the finiteness of the number of symbolsdessary for orga-
nizing numerical computations). Namely, if we consider &din than it can be
takenn = 5, orn = 103 or any other numeral used to express finite quantities and
consisting of a finite number of symbols. In contrast, if wagider a non-standard
infinite m then it is not clear which numerals can be used to assign aeenalue
tom.

Analogously, in non-standard Analysis, if we consider dimitesimalh then it
is not clear which numerals consisting of a finite number aofilsgls can be used to
assign a value tb and to writeh = ... In fact, very often in non-standard Analysis
texts, agenericinfinitesimal i is used and it is considered as a symbol, i.e., only
symbolic computations can be done with it. Approaches afkind leave unclear
such issues, e.g., whether the infinité: is integer or not or whether/h is the
number of elements of an infinite set. Another problem isteeldo comparison
of values. When we work with finite quantities then we can carap: andy if
they assume numerical values, exg+ 4 andy = 6 then, by using rules of the
numeral system the symbols 4 and 6 belong to, we can compattg thz. If one
wishes to consider two infinitesimalts andhs then it is not clear how to compare
them because numeral systems that can express infinitesameahot provided by
non-standard Analysis techniques.

The approach developed in |30, 33] 39] proposes a numeramythat uses
the same numeralfor several different purposes for dealing with infinitiesda
infinitesimals: in Analysis for working with functions the&an assume different in-
finite, finite, and infinitesimal values (functions can alswdderivatives assuming
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different infinite or infinitesimal values); for measuringinite sets; for indicating
positions of elements in ordered infinite sequences; inglitiby theory, etc. Itis
important to emphasize that the new numeral system avdigistisins of the type
(3)—(8) providing results ensuring thatdfis a numeral written in this system then
for anya (i.e.,a can be finite, infinite, or infinitesimal) it follows + 1 > a.

The new numeral system works as follows. A new infinite uninefasure ex-
pressed by the numeral calledgrossonds introduced as the number of elements
of the set,N, of natural numbers. Concurrently with the introductiongobssone
in the mathematical language all other symbols (like Cantor'sw, RNg, N4, ...,
etc.) traditionally used to deal with infinities and infirsiimals are excluded from
the language because grossone and other numbers corstwittieits help not
only can be used instead of all of them but can be used with fehigccuracy.
Grossone is introduced by describing its properties pat&dlby the Infinite Unit
Axiom (see [33,309]) added to axioms for real numbers (sirlyilan order to pass
from the setN, of natural numbers to the séi, of integers a new element — zero
expressed by the numeral 0 — is introduced by describingdsepties).

The new numerdll allows us to construct different numerals expressing diffe
ent infinite and infinitesimal numbers and to execute conjous with them. As
aresult, in Analysis, instead of the usual symbolused in series and integration
different infinite and/or infinitesimal numerals can be ugsak [36, 41, 47]). Inde-
terminate forms are not present and, for example, the faligwelations hold for
0 andO ™! (that is infinitesimal), as for any other (finite, infinite, iofinitesimal)
number expressible in the new numeral system

0-0=0-0=0, 0-0=0, 5=1, %=1, 1°=1, 0°=0, (6)

0-0°'=0"1.0=0 DO'>0 DO?2%>0 D0O'-0O'l=o,

Ot 02

— =1, —=1, (OYY=1 0.0'=1 0.0?=0"
O

The new approach gives the possibility to develop a new Asslfseel[36])
where functions assuming not only finite values but also iigfiand infinitesimal
ones can be studied. For all of them it becomes possiblerdinte a new notion
of continuity that is closer to our modern physical knowledgunctions assuming
finite and infinite values can be differentiated and integgtat

Example 1. The functionf(z) = z? has the first derivativg’(z) = 2z and
both f(x) and f'(z) can be evaluated at infinite and infinitesimal Thus, for
infinite z = O we obtain infinite values

f(0) =07 f(0) =20
and for infinitesimal: = 0~! we have infinitesimal values

fOH =072 FOoY=20"



If z =50 — 100! then we have
f(O7h = (50 — 100712 = 250% — 100 + 100072,
(O~ =100 — 2001,
We can also work with functions defined by formulae includinfinite and in-

finitesimal numbers. For example, the functipfx) = ﬁxQ + Oz has a quadratic

term infinitesimal and the linear one infinite. It has the fistivative f/(z) =
%x + 0. For infinitex = 30 we obtain infinite values

f(0) =30%+90, f(O0)y=0+6
and for infinitesimalk: = 0! we have
fOH =140, F(O0 Y =0+20"2 O

By using the new numeral system it becomes possible to measuain infi-
nite sets and to see, e.g., that the sets of even and odd raiheer/2 elements
each. The sef, of integers hag + 1 elements (] positive elementd,] negative
elements, and zero). Within the countable sets and setadhaardinality of the
continuum (se€ [21,38,89]) it becomes possible to distaiginfinite sets having
different number of elements expressible in the numeraéaysising grossone and
to see that, for instance,

O
5<D—1<D<D+1<2D+1<2DQ—1<252<2DQ+1<

o2 +2<28 1 <o ol i1 108 «ob —1 <ol < 0l 41,

The Infinity Computer used in this paper for solving the peobl(1) works
with numbers having finite, infinite, and infinitesimal part$o represent them
in the computer memory records similar to traditional poeél numeral systems
can be used (see [33,/37]). To construct a nundbéar the new numeral positional
systerﬂ with basel], we subdivide(' into groups corresponding to powerslof

C =cp, 0P 4 ...+ cp, O 4 ¢, 00 +- ¢, [ OP + .. 4 ¢, OPF. (7)

4 At the first glance the numerals](7) can remind numbers fraen_gvi-Civita field (see[[20])
that is a very interesting and important precedent of aljebmanipulations with infinities and in-
finitesimals. However, the two mathematical objects haversé crucial differences. They have
been introduced for different purposes by using two mathiealdanguages having different accu-
racies and on the basis of different methodological foundat In fact, Levi-Civita does not discuss
the distinction between numbers and numerals. His numiases ieither cardinal nor ordinal prop-
erties; they are build using a generic infinitesimal and dtslyational powers are allowed; he uses
symbolocc in his construction; there is no any numeral system that dvallbw one to assign numer-
ical values to these numbers; it is not explained how it wdaddpossible to pass from d a generic
infinitesimalh to a concrete one (see also the discussion above on thectmtiletween numbers
and numerals). In no way the said above should be considsrad@ticism with respect to results
of Levi-Civita. The above discussion has been introducedisitext just to underline that we are in
front of two different mathematical tools that should bedisedifferent mathematical contexts.



Then, the record
C =c¢p,, 0™ . ¢y OPe, OPc, OP1 .. .¢, DOP* (8)

represents the numbét, where all numeralg; # 0, they belong to a traditional
numeral system and are callgtbssdigits They express finite positive or negative
numbers and show how many corresponding units should be added or sub-
tracted in order to form the numbét. Note that in order to have a possibility to
storeC' in the computer memory, valuésandm should be finite.

Numbersp; in () are sorted in the decreasing order wigh= 0

Pm > Pm—1>...>P1>pPo>P-1>...D(k—1) > P—k-

They are calledyrosspowersand they themselves can be written in the folin (8).
In the record[(B), we writé]”: explicitly because in the new numeral positional
system the numberin general is not equal to the grosspower This gives the
possibility to write down numerals without indicating gsogyits equal to zero.

The term havingpy = 0 represents the finite part @f because, due t@](6),
we havecy0° = ¢j. The terms having finite positive grosspowers represent the
simplest infinite parts of’. Analogously, terms having negative finite grosspowers
represent the simplest infinitesimal partsofFor instance, the numbér—! = ﬁ
mentioned above is infinitesimal. Note that all infinitesisnare not equal to zero.
Particularly, 2 > 0 because it is a result of division of two positive numbers.

A number represented by a numeral in the folth (8) is catlectly finiteif
it has neither infinite not infinitesimals parts. For ins@&ng is purely finite and
2 + 30~ !is not. All grossdigitsc; are supposed to be purely finite. Purely finite
numbers are used on traditional computers and for obviasore have a special
importance for applications.

All of the numbers introduced above can be grosspowers, bhsgiving thus a
possibility to have various combinations of quantities emconstruct terms having
a more complex structure. However, in this paper we considgr purely finite
grosspowers. Let us give an example of multiplication of tafinite numbersA
and B of this kind (for a comprehensive description de€[[33, 37]).

Example 2. Let us consider number4 and B, where

A =14.30°025.40°, B = 6.23031.50"*1,

The numberA has an infinite part and a finite one. The numbBehas an infinite
part and an infinitesimal one. Their proddcis equal to

C = B A=89.0890°"%21.4500°*133.6420°8.10 *". O

We conclude this section by emphasizing that there exifrdifit mathemati-
cal languages and numeral systems and, if they have diffacairacies, it is not
possible to use them together. For instance, the usagemfy’ from the language
of Piraha in the record + ‘many’ has no any sense because for Piraha it is not
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clear what is 4 and for people knowing what is 4 the accuratefnswer ‘many’
is too low. Analogously, the records of the type+ w, 0 — Rg, [0 /oo, etc. have
no sense because they belong to languages developed fmedifipurposes and
having different accuracies.

3 Numerical reconstruction of the Taylor expansion of the
solution on the Infinity Computer

Let us return to the probleni](1). We suppose that a set of @lemefunctions
(a”,sin(z),cos(x), etc.) is represented at the Infinity Computer by one of the
usual ways used in traditional computers (see, €.g. [24plving the argument

x, finite constants, and four arithmetical operations. THenfollowing theorem
holds (the worldexactin it means: with the accuracy of the computer programme
implementingf (x, y) from (T)).

Theorem 1 Let us suppose that for the solutigt), = € [a, b], of (T) there exists
the Taylor expansion (unknown for us) and at purely finitenfms € [a, 0], the
functiony(s) and all its derivatives assume purely finite values or areabtpizero.
Then the Infinity Computer allows one to reconstruct thedragkpansion for ()
up to thek-th derivative with exact values gf(z), y" (), y® (x), ... y*) (z) after
k steps of the Euler method with the step- 0~ *.

Proof. Let us start to execute on the Infinite Computer steps of tHerEu
method following the rule({2) and using the infinitesimalpste= [0 ~!. Since the
problem [1) has been stated using the traditional finite ema#tics,z, is purely
finite. Without loss of generality let us consider the fitst 4 steps of the Euler
method (the valué = 4 is sufficient to show the way of reasoning; we shall use
the formulae involved in this case later in a numerical tHaton). We obtain

y1 = yo + 07 (20, v0), Yo = y1 + 07 f(21,1), 9

Y3 = yo + 07 f (22, 42), ya=y3 + 0 f(23,93). (10)

The derivatives of the solutiog(x) can be approximated in different ways and
with different orders of accuracy. Let us consider apprations (see, e.g/, [10])
executed by forward differences’, 1 < j < k, with the first order of accuracy
and takeh = 0! as follows

k
i [k
AIS-I N ZO(—l) < i > Yao+(k—i)o—1- (11)
Then we have
AL -
Y (z0) ~ D{f +0(0) = y1D71yo +0 (07, (12)



AL -2
Y (w0) ~ DD_; +o(@m Yy =H_NnTh Dy_12+y2 +0 (07, (13)
(3) A -1 —yo +3y1 — 3y2 + y3 1
Yy (xg) =~ i +O(D ) = S +O(D ), (14)
AL B — dyy + Gyo — dys + B
yW(wo) » L +0 (071 = o= S D‘Zﬁ BTV L o(@Y). (15)

Since due to[{1) we can evaluate direcityzo) = f(zo,yo), let us start by
considering the formuld(13) (the cases with valuek of 2 are studied by a com-
plete analogy). Since, is purely finite, then due to our assumptiaffgz) is also
purely finite. This means that'(x¢) does not contain infinitesimal parts. Formula
(13) states that the error we have when insteagl’ ¢f) use its approximation

2
n-1

Yy (wo) = (16)

D72
is of the orderd . The Infinity Computer works in such a way that it collects
different orders ofl in separate groups. Thué;é,1 will be represented in the
format [8)

A2 =00+ e 107 e o0 2 4 oo, 07™, (17)

wherems is a finite integer, its value depends on each concféiey) from ().
Note that [IV) cannot contain fractional grosspowers tezdue steph = 0!
having the integer grosspowerl has been chosen il (9], (10).

It follows from (I3) and the fact that’ (x() is purely finite thaM) contains
a purely finite part and can contain infinitesimal parts ofdhder 0~ or higher.
This means that grossdigits = ¢_; = 0, otherwise after division ofl~2 the

estimatey” (xo) would have infinite parts and this is impossible. Thtsz,) has
the following structure

P

Y (x0) = c_o0% + e300+ c_y072+ ... 4 c_,, 0 ™2 (18)

It follows from (I3) thaty”(z) can contain an error of the order ! or higher.
Since all the derivatives af(x) are purely finite atry and, in particulary” (z) is
purely finite, the fact that the finite part and infinitesimattg in [18) are separated
gives us that_, = y”(z0). Thus, in order to have the exact valueydfxy) it

is sufficient to calculatez‘kg,1 from (18) and to take its grossdigit 5 that will be
equal toy” (zo).

By a complete analogy the exact values of higher derivatragsbe obtained
from (I2) — [I%) and analogous formulae using forward diffees[(1l1) to approx-
imate thek-th derivativey*) (z). It suffices just to calculaté\* _, and to take the
grossdigitc_;, that will be equal to the exact value of the derivatif® (z,). O
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Let us consider an illustrative numerical example. We ersjzleathat the In-
finity Computer solves it numerically, not symbolicallye.i. it is not necessary to
translate the procedure implementifige, y) in a symbolic form.

Example 3. Let us consider the problem

y'(z) =z —y, y(0) =1, (19)
taken from[[1]. Its exact solution is
y(z) =x —1+2e " (20)
We start by applying formula&](9) to calculateandys:
yy=1+0" . (0-1)=1-0"

p=1-0't'+0 'Ot —14+0YH=1-20"1+20°%

We have now the valueg,, y1, andy,. Thus, we can apply formuléd_(113) and
calculateA?_, as follows

A2 =yo—2y1+yp=1-2+20"1+1-20"1+202 =202

Thus,c_o = 2. Let us now verify the obtained result and calculate the texac
derivativey”(0) using [20). Then we havg’(z) = 2¢~*, andy”(0) = 2, i.e.,
c_o = y"(0). Note that in this simple illustrative exampte,, = 0, m > 2,
wherem is from (13). In general, this is not the case ang, # 0 can occur.

Let us proceed and calculage following (I0). We have

y3 = 1-20" 14202401 (201142071 —2072) = 1-30 1 +60 2203,
It then follows from [14) that
AD = —yo+3y1 —3y2 + yz =

—14+31-0"YH)-301-20"1+20"3)+1-30"t+602—-203 = —2072,

We can see that_3 = —2. The exact derivative obtained frof {20)js" (z) =
—2¢~*. As a consequence, we hay€) (0) = —2,i.e.,c_3 = y©®)(0).
To calculatey™® (0) we use[(ID) and have

yr=1-30""+602-202 +0 B0 —1+30' —602 +2073) =

1-40"' 412072 803 4204
From [I5) we obtain

Alr =yo—4y1 +6yo —dyz +ya=1-4(1-0") +6(1-20"" +207%)—

—4(1-30"'+602-20"%) +1-40" '+ 12072 803 + 20 =
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Table 1: Comparison of methods solving the problem (19) wheris the number

of evaluation off (x, y) executed by a method to obtain an approximated solution

Yy at the pointr = 1

Method

nf Yn 3

Heun,h = 0.2 10 | 0741480 | -0.005721

Runge—Kutta4*" order),h = 0.2 20 0.735770 -0.0000116
y(x,0) =1 — x + 22 2 1 -0.264241118
Y@, 0) =1 -z +a% - 2 3 | 0.6666666667| 0.069092216
y(@,0) =1 —a+a% -2 4 & 4 0.75 -0.014241118
y(@,0) =1—z a2 - % 2 2 5 | 07333333333 0.002425549
y(@,0) = 1—z+a? - &+ & — 2 4 2 6 | 0.7361111111] -0.000352229
y(@.0)=1—ota? 5 4o 5 b —gfy | 7 | 0.7357142857 0000044597
y@,0)=1-oto? -2 28 a0y a0 xr 4 et | g | 0.7357638889] -0.000005007

—4(1-30" 4602 —20 %) 41 -40"1 41202 —80 3 420 =204

Again we obtain that_4 = y*(0) = 2.

Thus, four steps of the explicit Euler method with the inésitnal steph =
0~! have been executed on the Infinity Computer. As a result, thigfiiie exact
items of the Taylor expansion af(x) in the neighborhood ofy, = 0 can be

written:

3zt

— —T A 2
yx)y=z—1+4+2 " ~1l—zx+ux -5t
By a complete analogy it is possible to obtain additionaitin the expansion
that correspond to higher derivativesydf).

In Table[d, we present results of experiments executed [3ewith the meth-
ods of Heun 2¢ order) and Runge—Kuttat®" order) solving the probleni (19).
Both methods usé = 0.2. Then we present results of the new methods that ex-
ecute firstk infinitesimal steps withk going from 2 to 8 and then executing one
finite step from the poinkty = 0 to the pointz = 1. The valueny is the num-
ber of evaluation off (z, y) executed by each method. The columnshows the
obtained approximation at the point= 1 and the columm shows the respective
errore = y(1) — y, wheren = 5 for the methods of Heun and Runge—Kutta and
n = 1 for the new methods. O

In cases, where it is not possible to evalugfe, ) at the pointsz,, + 071,
z,+207Y z, +307L, ... (for instance, when we should solve the problem over
an intervalla, b] andz,, = b) the following corollary can be useful.

(21)

Corollary 1 Under conditions of Theorel 1 the backward differencesutated
at the pointsz,, — 0!, 2, — 207!, 2, —307!,..., 2, — kO~ ! can be used to
calculate the derivatives af(x) at the pointz,,.
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Proof. The backward difference (see e.@.,/[10]) of the ordevith h = O~ *
is calculated as follows

k : ik
VD_1:Z(—1) i | Yzo—in—1-

=0

The rest of the proof is completely analogous to the prooheftheorem and is so
omitted. O

Thus, if the region of interest;, b] from (1) belongs to the region of conver-
gence of the Taylor expansion for the solutigfx) around the point:, then it
is not necessary to construct iterative procedures invglgeveral steps with fi-
nite values of, and it becomes possible to calculate approximations of éseed
order by executing only one finite step.

4 Examples of the usage of infinitesimals in the new
computational framework

The approach introduced in the previous section gives tisilpitity to construct
a variety of new numerical methods for the Infinity Computgrusing both in-
finitesimal and finite values df. The general step of a method of this kind for
solving (1) can be described as follows:

(i) take the point(z,, y,), choose a valué,,, and executé:,, steps of the Euler
method starting from,, by usingh = 0~

(i) calculate exact values of (), v (x), y® (z),..., y*=)(z) at the point
(2, yn) following the rules described in Theorém 1;

(iii) construct the truncated Taylor expansion of the oridlgr

(iv) execute a single step from the point to z,+1 = x, + h; using the con-
structed Taylor expansion and a finite valuégf(steps of the kind,, — 0!
or h,, + 0! can be also used).

The general step described above allows one to construanahalgorithms
for solving [1) by executing several iterations of this kildany numerical meth-
ods (seel[4,14,27]) can be used as a basis for such develtpribere to the easy
way allowing us to calculate exact higher derivatives atgbits (z,,, y,,), meth-
ods that use higher derivatives are of the main interest. fattethat to increase
the accuracy it is necessary just to execute one additiofiaitesimal step without
performing additional finite steps (i.e., the whole work@xted at a lower level of
accuracy is used entirely at a higher level of accuracy) iaditional advantage
and suggests to construct adaptive methods (for instaihoee iwishes to change
the finite step fronh; to hy > hy Or hy < hy then the same Taylor expansion can
be used in all the cases). A study of such methods will be doaeseparate paper.

13



Hereinafter, since the usage of numerical infinitesimals iew topic, we give a
number of examples showing how the new computational frasrlkewan be used
in the context of numerical solving ODEs.

The rest of this section is organized as follows. In the fitgisection, we
present two simple iterative methods using low derivatiedswer order of deriva-
tives is used for expository reasons). In the second suibsegte present a tech-
nique that can be used to obtain an additional informaticth vaspect to approx-
imations of derivatives of the solution. In the last subsectwe discuss how
an automatic control of rounding errors can be executechduhie evaluation of

f(wv y) at the pOintquw yn)

4.1 A simple method and possibilities of its improvements

We start by introducing thilethod 1that uses only the first and the second deriva-
tives at each iteration to construct the Taylor expansioagplying formulae[(9),
(@2), and[(IB). Thus, this method at the current peinexecutes twice the Euler
step withh = O~! and then makes the step with a finite valuehdfy using the
obtained Taylor expansion. Therefore, during these thieqesgtwo infinitesimal
steps and one finite step) the functipfx, y) is evaluated twice and only during the
infinitesimals steps. Let us use the number stép count the executed finite steps
and denote by(z, z) the Taylor expansion of the solutigi{x) calculated by the
method during the infinitesimal steps at the neighborhoadtth®pointz = x,,_.
Then, we can calculatg, asy,, = y(h, z,—1) with a finite value ofh.

Example 4. We test this method on the problem19) with the finite step
0.2 (see Tabl€]2). By applying the procedure described abovesiitdigits after
the dot we have that

y(x,0) =1—xz+ 22, y1 = 4(0.2,0) = 0.84, (22)
y(x,0.2) = 0.84 — 0.64z + 0.8227, y2 = y(0.2,0.2) = 0.7448,
y(x,0.4) = 0.7448 — 0.3448z + 0.672422, y3 = y(0.2,0.4) = 0.702736,

y(z,0.6) = 0.702736—0.1027362+0.55136822, y4 = y(0.2,0.6) = 0.704244,
y(x,0.8) = 0.704244+0.0957562+0.45212222,  y5 = y(0.2,0.8) = 0.741480.

It can be seen from Tablé 2 that the results obtained by themethiod (see
column Method 1.0) for the valueg coincide (se€ [1]) with the results obtained by
applying the modified Euler's method (called also Heun'shrodj that evaluates
f(x,y) twice at each iteration as the new method does.

As it can be seen from the formulae above, the Method 1 at ezioh:p, pro-
vides us not only with the valug, but also with the first and the second derivatives
of y(x) at the point(x,,, y,). We shall denote them a4 (z,,) andy/!(x,,) where

Yn(zn) =9/ (0, 2y), yn(an) = y" (0, 2y).

14



Table 2:Two versions of Method 1 constructing the Taylor expansisingithe values of
the first and second derivatives calculated during two itg@sinal Euler steps at the points

($n, yn)

Method1.0 Method1.1

Tn Yn En ys Cn En

0.0 | 1.000000( 0.000000| 1.000000| 0.000000( 0.000000
0.2 | 0.840000| -0.002538| 0.839200| 0.000800| -0.001738
0.4 | 0.744800| -0.004160| 0.743344| 0.001456| -0.002704
0.6 | 0.702736| -0.005113| 0.700742| 0.001994 | -0.003119
0.8 | 0.704244 | -0.005586| 0.701808| 0.002436| -0.003150
1.0 | 0.741480| -0.005721| 0.738682| 0.002798| -0.002923

g MwNEF o3

For instance, we have
Y (x,0.4) = —0.3448 + 1.3448z, y5(0.4) = —0.3448,

y"(2,0.4) = 1.3448, y4(0.4) = 1.3448. O

Note that the values of derivatives calculated at the pdirtsy,,) are exact in the
sense that they provide values of the derivatives for thaetisol with the initial
condition (x,,, y,). They can be used to estimate derivativeg @f) at the point
The possibility to improve the accuracy of a solution goiagMard and back-
ward has been the main idea of many numerical methods for QBdss e.g.,
[6,[15]). Results for the Method 1.0 presented in Table 2 camiproved using
similar ideas in the new framework using the values of déxiga that the method
provides during its functioning. Let us consider the exatwtson y (=) from (20)
and its approximatiog(x,0) from (22) on the interval0, 0.5] (we choose this in-
terval that is larger then the stép= 0.2 used in Tabl€]2 in order to be able to show
the idea more clearly graphically). In Fid. 1, the graphy@f, 0) is represented by
the top (black) solid line and the graph ©fz) is represented by the lower (grey)
solid line. Naturally, both of them start at the poift 1) and we then have that

y(0.5) = 0.713061319, y(0.5,0) = 0.75.
Thus, the erroe; at the pointr; = 0.5 is
e1 = y(0.5) — y(0.5,0) = —0.036938681. (23)

By using our equatior (19) and executing two infinitesimapstfrom the point
z1 = 0.5 to the point€.5 + 0! and0.5 + 20! we obtain

y(x,0.5) = 0.75 — 0.25x + 0.62522. (24)

In the Method 1.0, this formula would be used to go forwardrfithe pointz; =
0.5 by executing a new finite step. Instead of this, let us useftiiiaula to go
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Figure 1: The graph of(x,0) is represented by the top (black) solid line and the
graph ofy(x) is represented by the lower (grey) solid line (bgth, 0) andy(x)
start at the poinf0, 1)); the graph of the functiog(x) is shown by the top dashed
line; the graph of the function, (x) is shown by the lower dashed line.

backward from the point; = 0.5 to the starting point:y = 0. Since in [Z#)x
is intended to be a removal from the point = 0.5, we need to take into account
this fact. The graph of the obtained function

7(x) = 0.75 + 0.25(0.5 — ) + 0.625(0.5 — z)? = 1.03125 — 0.875z + 0.6252>

is shown in FigllL by the top dashed line.

It can be seen that(z, 0) from (22) does not coincide with the obtained func-
tion y(z). Let us construct a new quadratic approximatiqiiz) oriented on a
better result to be obtained at the paint= 0.5. The functionr (x) is built using
coefficients from bothy(z,0) andy(z) by taking their average with the weights
3 andi (the general way to mix them is, obvioustyandl — 7, 0 < 7 < 1) as
follows:

1 1

() = y(0,0) 45 (50, 0)~5(0))+ 5 (4 (0, 0)+5'(0)) -+ (4 (0, 0)+5(0))2? =

[\)

1 1 1 )
1+ 5(1 = 1.03125) + (=1 — 0.875)z + (1 +0.625)2” =

0.984375 — 0.9375z + 0.81252°. (25)

In Fig.[d, the graph of the functiom () is shown by the lower dashed line. The
functionr (x) provides us the value; (0.5) = 0.718750 and the respective error

g1 = y(0.5) — r1(0.5) = —0.005688681. (26)
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that is better than the erran, = —0.036938681 from (23) that is obtained by
calculatingy (0.5, 0).

The possibility to calculate corrections to approximasiapens the doors to
various modifications. For instance, it is possible to ei@dtwo additional in-
finitesimal steps at the point = 0.5 using the valuer; (0.5) instead ofy(0.5, 0).

In general, this means that instead of setting= y(x,,z,—1) as it is done by
the Method 1.0 we puy,, = r,(z,,). Obviously, this means that it is necessary to
evaluatef(x,y) two times more with respect to the Method 1.0. Otherwise it is
also possible to use the corrected vatyér,,) with the derivatives that have been
calculated fowy(z,, zp—1).

Another possibility would be the use of the functiay(s;, z,,) at each point,,,
i.e., to puty, = y(z,,x,—1), and to calculate the global correction following the
rule

cn = c(xn) = c(xp_1) + ron(zn) — y(Tn, Tn_1), (27)
starting from the first correction (in our exampier;) = ¢(0.5) = 0.031250)

c(xy) = ri(z1) — y(x1, x0).
In this way we can approximate the exact solutidm,,) by the corrected value

Yn = Y(Tn, Tn_1) + c(z4).
In Table[2, results for this algorithm are presented in tHerna Method 1.1where
the errore,, is calculated as

en = Y(n) = Yp-

Notice that the correction obtained at the final point hasmbesculated using
Corollary 1.

We conclude this subsection by a reminder that Theddem & gisehe possi-
bility to easily construct higher-order methods. Two methdescribed above just
show examples of the usage of infinitesimals for buildingpatgms for solving
ODEs.

4.2 Approximating derivatives of the solution

In this subsection, we show how approximations of derieatiat the point,, can
be obtained using the information calculated at the pejnt;. For this purpose,
instead of the usage of a finite stepthe stepsh — 0! or h + 0! can be used.
To introduce this technique we need to recall the followimgarem from([40].

Theorem 2 Suppose that: (i) for a functios(z) calculated by a procedure imple-
mented at the Infinity Computer there exists an unknown Taylpansion in a fi-
nite neighborhood (=) of a purely finite point; (ii) s(z), s'(z), s"(x), ... s®) (z)
assume purely finite values or are equal to zero at purelyefinit 6(z); (iii) s(x)
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has been evaluated at a poiat+- [~ € §(z). Then the Infinity Computer re-
turns the result of this evaluation in the positional nuniesgstem with the infinite
radix O in the following form

S(Z + Dfl) = CODOC,1D71672D72 L C,(kfl)Di(kil)C—k;Dik, (28)
where
s(z) =co, §'(2) = co1, §"(2) = 2le_a, ... sW(2) =Klep.  (29)

The theorem tells us that if we take a purely finite pairgnd evaluate on the
Infinity Computers(z) at the pointz:+ 0~ then from the computes(z+0~!) we
can easily extract(z), s'(z), s”(z), etc. To apply this theorem to our situation we
can take as(x) the Taylor expansion fay(z) constructed up to thkth derivative
using infinitesimal step&~!, 207!, ..., k0. Then, if we take as a purely
finite steph and evaluate on the Infinity Computefz) at the pointh + 0! then
we obtains(h), s'(h), s”(h), etc.

For instance, let us takgx) = so(z) = y(z,0), wherey(z,0) is from (22)
andsy(z) indicates that we use two derivatives in the Taylor expamsithen, we
have

52(02+0° Y =1-(02+0N+024+0H=084—-060"+0"2

We have the exact (where the word “exact” again means: wélatturacy of the
implementation ofs(x)) valuess(0.2) = 0.84, s/(0.2) = —0.6, s”(0.2) = 1 for

the functions(z). These values can be used to approximate the respectivesvalu
y(0.2), ¥'(0.2), ¥”(0.2) we are interested in. Moreover, we can adaptively obtain
an information on the accuracy of our approximations by eoansve improve-
ments. If we calculate now(®) (0) from (I4) then we can improve our approxima-
tion by settings(x) = s3(x) where

1

53(0.2 4+ 071 = s9(0.2+ 071 3(0.2 + 0713 =

1
59(0.2 4+ 071 = 0.002667 — 0.040 1 —0.2072 — 55—3 =

1
0.837333 — 0.640 1 +0.8072 — 55*3. (30)

Note, that to obtain this information we have calculated/dhé additional part of
s3(0.2) taking the rest from the already calculated vaué).2).

Analogously, if we calculate now® (0) from (I8) then we can improve our
approximation again by settingx) = s4(x) where

1
5402+ 07" =s302+07 ")+ 502+ O-Ht =
1
$3(0.24+071)40.00013340.0026670 ~' +0.020 2 +0.0666670 > + - 04—
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1
0.837466 — 0.6373330 ! + 0.820 72 — 0.2666670 > + ED*4.

Since we have used the convergent Taylor expansion of thighforder, the errors
in calculatingy(0.2), v/(0.2), andy” (0.2) are of the orders 5, 4, and 3, respectively.

4.3 An automatic control of rounding errors

In the previous sections, we have supposed that the evaiuafiderivatives of
y(z) was done exactly, i.e., the procedure for evaluafiig, y) was sufficiently
precise and it was possible to neglect rounding errors. Keeuted numerical
examples presented above satisfied this assumption. Letwstady what the
Infinity Computer can give us whef(z, y) is calculated with errors. Hereinafter
we suppose again that for the solutig), = € [a, b], of (@) there exists the Taylor
expansion (unknown for us) and at purely finite points [a, b], the functiony(s)
and all its derivatives assume purely finite values or aralkguzero. In addition,
we assume that the same conditions hold for all approximsiidy («) the method
will deal with.

Let us consider formula¢](9) for calculating andys together with formulae
(I2) and[(IB) used for approximating(z,) andy” (xq). Suppose thaf (zo, yo) is
calculated with an unknown erref. Then we have that instead of the derivative
y'(zo) and the poiny; we have

¥ (xo) = f(xo,y0) — €1 =y (20) — &1 (31)

g1 =yo+ 0 (f(zo,90) —€1) =1 —en 071,

Analogously, calculation of the poingt will give us - andAg,1 will be calculated

with errors, as well, giving usﬁg,l. Let us study the structure of this forward
difference

AP =yo—201+02 = Jo— i — (1 —y0) = Jo— 91— (y1 —yo) +e1 0. (32)

By applying the argumentation analogous to that used in fEémald together with
our assumptions on purely finiteness of all derivatives graximations ofy(x)
we have that

Go— 91 — (Y1 —yo) =20 2 4 ...+ ¢, 072, (33)

where the coefficients_,,...,c_,,, are affected by rounding errors and errors
incorporated inj; andg,. Thus, instead of the exact second derivative that has
been obtained in Theorelm 1 from the coefficiens of 02, the coefficient_
gives us an approximatiog’ (x¢) of y”(xq), namely,

g =7"(x0) = " (20) — €2,

wheree, is an error we have got during the calculationy6fz).

19



Let us rewrite now[(32) in the decreasing orders of the powérgrossone
using the representation {33), i.e., as the Infinity Compdibes it. We have

Al =07 42,072 4.+, 0™ (34)

This means that by (:alculatin@g_1 we have obtained also the errar that we
have got at the previous infinitesimal step ($eé (31)). Walaleenow to reestablish
the exact value of the first derivativg(z,) using the approximative valug(z)
calculated in[(31) and the grossdigit corresponding td by taking it fromA%,1
in (34), i.e., we have

y' (o) = §'(x0) + e1.

By a complete analogy we can continue and calculate
A3 -1 -2 | ~ -3 ~ —m3
A =—aq07 +ed " +c 3077+ +cp, 07", (35)

y'(xo) = 7" (w0) + €2.

Note that in[(3b); (that can be either positive or negative) appears with tteg-al
nated sign following the formulae of forward differences fdct, in Ag,l we have
y1 — yo Whereas in&%_1 we have—(y; — yo). Analogously, the same alternation
happens for higher derivatives.

In general, in order to calculate tiik — 1)tk derivativey 1 (z) it is neces-
sary to calculate the approximatigi®—") (zg) = C_(x—1) and then to extract the
errore;_1 (that can be negative or positive ) from

Ag—l = (—1)k61[|_1 + ... (—l)k_i_leiD_i 4+ ...

—Gk,QD_(k_Q) + ek,lﬂ_(k_l) + E,kD_k +...+ E_mkD_mk,
y* ) (z0) = ¥V (20) + €41 (36)

If there exists an indey, 1 < j < k, such thak; = ...¢; = 0, theny* =1 () is
calculated again by the formula{36) but it follows

Ag_l = (—1)k_j_1€j+1|:|7(j+1) + ...

+ep OV 4 0k 4, 0™, (37)

Thus, eitherf(x,y) is evaluated exactly or rounding errors are present, the
Infinity Computer is able to calculate the derivatives of$btution exactly. Let us
illustrate the theoretical results presented above by aenigal example.

Example 5. Let us consider the following test problmaken from[18]. The
ODE

L Sy-1) (38)

y'(@) = ——

®The author thanks Prof. H. P. Langtangen for drawing theatisthttention to this nice example.
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Table 3: Calculating approximations for derivativg® (0),1 < i < 12, for the
problem [(38) at the poinf0, y(0)) by applying the automatic control of rounding
errorse; and providing so the final accuragy

i §9(0) € vy (0) 5

1 | 0.182759757 - 10~ | 0.0000000000 0.182759757 - 10~ 5 | —0.60449198 - 10— 28
2 | 0.207127725-10~° | 0.609199190 -10~7 | 0.213219716 - 10~° | —0.69190731 - 1027
3 | 0.233932489 -10~% | 0.731039028 - 10~ 6 | 0.241242879 -10~* | —0.78192941 - 1026
4 | 0.254888941 - 103 | 0.901614801 - 10~5 | 0.263905089 - 10—3 | —0.83928642 - 1025
5 | 0.266975453 - 10—2 | 0.111117932-1073 | 0.278087246 - 10~2 | —0.85899500 - 1024
6 | 0.267228880-10~1 | 0.136947978 - 10~2 | 0.280923676 - 10~ | —0.82216871 - 10~23
7 | 0.253489245 - 10° 0.168782291 - 10~ | 0.270367474 - 10° —0.71132365 - 10—22
8 | 0.224980672 - 10! 0.208016667 - 10° 0.245782339 - 10! —0.50790463 - 10—21
9 | 0.182784086 - 102 0.256371293 - 101 0.208421215 - 102 —0.19195037 - 10—20
10 | 0.13002719 - 103 0.315966218 - 102 0.161623816 - 103 0.25832403 - 10— 19
11 | 0.71638662 - 102 0.389414314 - 10 0.110580093 - 10* 0.86669850 - 10~ 18
12 | 0.13588050 - 10* 0.479935826 - 10% 0.615816329 - 10% 0.16535675 - 10~ 16

has the exact solution that is the following Gaussian famcti
1({z—c)2
u(z) =1+ 6_5( =) (39)

centered around = ¢ and with characteristic width (standard deviatian)The
initial condition is taken as the exact valyé)) = «(0) and the parameters are
taken as: = 3,5 = 0.5.

In Table[3, we calculate derivativeg” (0),1 < i < 12, using [36) with 30
digits in the mantissa, in order to be able to catch the finali@xcyd, presented in
the last column. It shows the final error obtained by subittgdtom the derivatives
calculated using the explicit solutiof {39) and the deineaty ) (0),1 < i < 12,
ie.,

0 = u(0) = y(0),
Let us make a few remarks regarding Table 3. Firsty at 0 with ¢ = 3 and
s = 0.5 it follows from (38) that— 3¢ = 12. In order to illustrate the situation
(37), we have calculategh using (instead of the original expressio2(yy — 1)
from (38) leading tas; # 0) the expression2y, — 12 that providess; = 0 when
itis used iny; = yo + 071 (12y — 12).

Then, it is worthwhile to notice that almost through the vehdable B (and in
spite of large values of higher derivatives) the relativ@iehas the constant order
equal tol0~22 (it can be easily seen from Taljle 3 that— n = 22 wherem is the
exponent ofy(!) andn is the exponent of;). Notice also that at the last line of the
Table the erroe, is even larger than the approximatigft?) (0). O

1<e <12,

5 Conclusion

In this paper, a new framework for solving ODEs has been duited. The new
approach allows us to work numerically not only with usuatémumbers but also
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with different infinitesimal and infinite values on a new kiofla computational
device called the Infinity Computer (it has been patentedtandorking prototype
exists). The structure of numbers we work on the new compsit@ore complex
and, as a result, we face new computational possibilitirepatticular, the presence
of different numerical infinitesimals makes it possible s& unfinitesimal steps for
solving ODEs. The following results have been establishettié new framework.

i. It has been shown that (under the assumption that the paaioing the
ODE does not know the structure ¢z, y), i.e., itis a “black box” for him/her)
the Infinity Computer is able to calculate numerical valuéshe derivatives of
y(x) of the desired order without the necessity of an analytioalsymbolical)
computation of the respective derivatives by the succestévivation of the ODE
as it is usually done when the Taylor method is applied.

ii. If the region of our interesfa, b] belongs to the region of convergence of the
Taylor expansion for the solutiof(z) in the neighborhood of the poiny), then it
is not necessary to construct iterative procedures invglgeveral steps with finite
values ofh. It becomes possible to calculate approximations of theetkbsrderk
by executingk infinitesimal steps and only one finite step.

iii. Approximations of derivatives of(x) at the point,, can be obtained using
the information calculated at the poing_. For this purpose, instead of the usage
of a finite steph, the steps— 0! or h4+-0 ! can be used. Methods going forward
and backward and working with approximations of derivatican be proposed in
the new framework.

iv. The last subsection of the manuscript shows that eiftery) is evaluated
exactly or rounding errors are present, the Infinity Comipistable to perform, by
means of a smart usage of infinitesimals, an automatic dawftthe accuracy of
computation of the derivatives of the solution.

v. Theoretical results have been illustrated by a numbeuoferical examples.
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