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Abstract

In this paper, we study numerically quantized vortex dynamics and their interaction in the two-dimensional
complex Ginzburg-Landau equation (CGLE) with a dimensionless parameter ε > 0 on bounded domains
under either Dirichlet or homogeneous Neumann boundary condition. We begin with a review of the
reduced dynamical laws (RDLs) for time evolution of quantized vortex centers in CGLE and show how to
solve these nonlinear ordinary differential equations numerically. Then we present efficient and accurate
numerical methods for solving the CGLE on either a rectangular or a disk domain under either Dirichlet or
homogeneous Neumann boundary condition. Based on these efficient and accurate numerical methods for
CGLE and the RDLs, we explore rich and complicated quantized vortex dynamics and interaction of CGLE
with different ε and under different initial physical setups, including single vortex, vortex pair, vortex dipole
and vortex lattice, compare them with those obtained from the corresponding RDLs, and identify the cases
where the RDLs agree qualitatively and/or quantitatively as well as fail to agree with those from CGLE on
vortex interaction. Finally, we also obtain numerically different patterns of the steady states for quantized
vortex lattices in the CGLE dynamics on bounded domains.

Keywords: Complex Ginzburg-Landau equation, Quantized vortex dynamics, Bounded domain, Reduced
dynamical laws.

1. Introduction

Vortices are those waves that possess phase singularities (topological defect) and rotational flows around
the singular points. They arise in many physical areas of different scale and nature ranging from liquid
crystals and superfluidity to non-equilibrium patterns and cosmic strings [17, 42]. Quantized vortices in the
two dimension are those particle-like vortices, whose centers are the zero of the order parameter, possessing
localized phase singularity with the topological charge (also called as winding number or index) being
quantized. They have been widely observed in many different physical systems, such as the liquid helium,
type-II superconductors, atomic gases and nonlinear optics [2, 5, 18, 34, 40]. Quantized vortices are key
signatures of the superconductivity and superfluidity and their study is always one of the most important
and fundamental problems since they were predicted by Lars Onsager in 1947 in connection with superfluid
Helium.

In this paper, we consider the vortex dynamics and interactions in two dimensional complex Ginzburg–
Landau equation (CGLE), which is one of the most studied nonlinear equations in physics community [3]. It
has attracted ever more attention, because it can describe various phenomena ranging from nonlinear waves
to second-order phase transitions, from superconductivity, superfluidity and Bose-Einstein condensation to
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liquid crystals and strings in field theory [3, 22, 23, 43]. The specific form of CGLE we study here reads as:

(λε + iβ)∂tψ
ε(x, t) = ∆ψε +

1

ε2
(1− |ψε|2)ψε, x ∈ D, t > 0, (1.1)

with initial condition
ψε(x, 0) = ψε0(x), x ∈ D, (1.2)

and under either Dirichlet boundary condition (BC)

ψε(x, t) = g(x) = eiω(x), x ∈ ∂D, t ≥ 0, (1.3)

or homogeneous Neumann BC
∂ψε(x, t)

∂ν
= 0, x ∈ ∂D, t ≥ 0. (1.4)

where D ⊂ R
2 is a bounded and simple connected domain in the paper, t is time, x = (x, y) ∈ R

2 is the
Cartesian coordinate vector, ψε := ψε(x, t) is a complex-valued wave function (order parameter), ω is a given
real-valued function, ψε0 and g are given smooth and complex-valued functions satisfying the compatibility
condition ψε0(x) = g(x) for x ∈ ∂D, ν = (ν1, ν2) and ν⊥ = (−ν2, ν1) ∈ R

2 satisfying |ν| =
√

ν21 + ν22 = 1
are the outward normal and tangent vectors along ∂D, respectively, i =

√
−1 is the unit imaginary number,

0 < ε < 1 is a given dimensionless constant, and λε, β are two positive constants. Actually, the CGLE
covers many different equations arise in various different physical fields. For example, when λε 6= 0, β = 0, it
reduces to the Ginzburg-Landau equation (GLE) for modelling superconductivity. When λε = 0, β = 1, the
CGLE collapses to the nonlinear Schrödinger equation (NLSE) for modelling Bose-Einstein Condensation
or superfluidity.

Denote the Ginzburg-Landau (GL) functional (‘energy’) as [15, 26, 37]

Eε(t) :=
∫

D

[

1

2
|∇ψε|2 + 1

4ε2
(

1− |ψε|2
)2
]

dx = Eεkin(t) + Eεint(t), t ≥ 0, (1.5)

where the kinetic and interaction energies are defined as

Eεkin(t) :=
1

2

∫

D
|∇ψε|2dx, Eεint(t) :=

1

4ε2

∫

D

(

1− |ψε|2
)2
dx, t ≥ 0,

respectively. Then, it is easy to verify that the CGLE and GLE dissipate the energy, while the NLSE
conserves the energy at all the time.

During the last several decades, constructions and analysis about the vortex solutions as well as studies
of quantized vortex dynamics and interaction related with the CGLE (1.1) under different scalings have been
extensively studied in the literatures. For the whole space case , i.e., D = R

2, Neu [40] studied dynamics
and interaction of well-separated quantized vortices for GLE with λε = 1 and NLSE under scaling ε = 1.
He found numerically that quantized vortices with winding number m = ±1 are dynamically stable, and
respectively, |m| > 1 dynamically unstable in the GLE dynamics. Moreover, he found that vortices behave
like point vortices in ideal fluid. Using asymptotic analysis, he derived the reduced dynamical laws (RDLs)
which are sets of ordinary differential equations (ODEs) for governing the dynamics of the vortex centers
to the leading order. Recently, Neu’s results were extented by Bethuel et al. to investigate the asymptotic
behaviour of vortices as ε→ 0 in the GLE dynamics under the accelerating time scale λε =

1
ln 1

ε

[11, 12, 13]

and in the NLSE dynamics [10]. The corresponding RDLs that govern the motion of the limiting vortices
have also be derived.

Inspired by Neu’s work, many other papers have been dedicated to the study of the vortex states and
dynamics for the GLE and NLSE with 0 < ε < 1 on a bounded domain under different BCs. For the GLE
case, Lin [34, 32, 33] considered the the dynamics of vortices in the asymptotic limit ε → 0 under various
scales of λε and with Dirichlet BC (1.3) or homogeneous Neumann (1.4). He derived the RDLs that govern
the motion of these vortices and rigorously proved that vortices move with velocities of order | ln ε|−1 if
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λε = 1. Similar studies have also been conducted by E [21], Jerrard et al. [25], Jimbo et al. [29, 27] and
Sandier et al. [44]. Unfortunately, all those RDLs are only valid up to the first time that the vortices
collide or exit the domain and cannot describe the motion of multiple degree vortices. Recently, Serfaty [45]
extended the RDLs for the dynamics of the vortices after collisions. For the NLSE case, Mironescu [39] and
Lin [35] investigated stability of the vortices in NLSE with (1.3). Subsequently, Lin and Xin [37] studied the
vortex dynamics on a bounded domain with either Dirichlet or Neumann BC, which was further investigated
by Jerrard and Spirn [26]. In addition, Colliander and Jerrard [15, 16] studied the vortex structures and
dynamics on a torus or under periodic BC. In these studies, RDLs were put forth to describe the asymptotic
behaviour of the vortices as ε→ 0, which indicate that to the leading order the vortices move according to
the Kirchhoff law in the bounded domain case. However, these RDLs cannot indicate radiation and/or sound
propagations created by highly co-rotating or overlapping vortices. In fact, it remains as a very fascinating
and fundamental open problem to understand the vortex-sound interaction [41], and how the sound waves
modify the motion of vortices [22].

For the CGLE, under scaling λε ∼ O( 1
ln(1/ε) ), Miot [38] studied the dynamics of vortices asymptotically

as ε → 0 in the whole plane case and Kurzke et al. [31] investigated that in the bounded domain case, the
corresponding RDLs were derived to govern the motion of the limiting vortices in the whole plane and/or
the bounded domain, respectively. Their results showed that the RDLs in the CGLE is actually a hybrid
of RDL for GLE and that for NLSE. More recently, Serfaty and Tice [46] studied the vortex dynamics in a
more complicated CGLE which involves electromagnetic field and pinning effect.

On the numerical aspects, finite element methods were proposed to investigate numerical solutions of
GLE and related Ginzburg-Landau models for modelling superconductivity [20, 19, 30, 1, 14]. Recently, by
proposing efficient and accurate numerical methods for solving the CGLE (1.1) in the whole space, Zhang
et al. [49, 50] compared the dynamics of quantized vortices from the RDLs obtained by Neu with those
obtained from the direct numerical simulation results from GLE and NLSE under different parameters and
initial setups. Very recently, The second author designed some efficient and accurate numerical methods
for studying vortex dynamics and interactions in the GLE and/or NLSE on bounded domains with either
Dirichlet or Neumann BCs [7, 8]. These numerical methods can be extended and applied for studying
the rich and complicated phenomena related to vortex dynamics and interaction in the CGLE (1.1) with
either Dirichlet BC (1.3) or homogeneous Neumann BC (1.4) on bounded domains. The main purpose of
this paper is organised as: (i). to present efficient and accurate numerical methods for solving the RDLs
and the CGLE (1.1) on bounded domains under different BCs; (ii). to understand numerically how the
boundary condition and geometry of the domain affect vortex dynamics and interction; (iii). to study
numerically vortex interaction in the CGLE dynamics and/or compare them with those from the RDLs
with different initial setups and parameter regimes; (iv). to identify cases where the reduced dynamical laws
agree qualitatively and/or quantitatively as well as fail to agree with those from CGLE on vortex interaction.

The rest of the paper is organized as follows. In section 2, we briefly review the reduced dynamical laws
of vortex interaction under the CGLE (1.1) with either Dirithlet or homogeneous Neumann BC and present
numerical methods to discretize them. In section 3, efficient and accurate numerical methods are briefly
outlined for solving the CGLE on bounded domains with different BCs. In section 4 and section 5, ample
numerical results are reported for studying vortex dynamics and interaction of CGLE under Dirichlet BC
and homogeneous Neumann BC. Finally, some conclusions are drawn in section 6.

2. The reduced dynamical laws and their discretization

The CGLE can be thought of as a hybird equation between the GLE and NLSE, and it has been proved
that vortices in GLE dynamics move with a velocity of the order of ln(1/ε) if λε = 1, Therefore, to obtain
nontrivial vortex dynamics, hereafter in this paper, we always choose

λε =
α

ln(1/ε)
, 0 < ε < 1, (2.1)

where α is a positive number. In this section, we review the RDLs for governing the dynamics of vortex
centers in the CGLE (1.1) with either Dirichlet or homogeneous Neumann BCs.
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To simplify our discussion, for j = 1, · · · , N , hereafter we let x0
j(t) = (x0j , y

0
j ) and xεj(t) = (xεj(t), y

ε
j (t))

be the location of the M distinct and isolated vortex centers in the intial data ψ0 (1.2) and solution of the
CGLE (1.1) with initial condition (1.2) at time t ≥ 0, respectively. By denoting

X0 := (x0
1,x

0
2, . . . ,x

0
M ), Xε := Xε(t) = (xε1(t),x

ε
2(t), . . . ,x

ε
M (t)), t ≥ 0,

then we have [31, 15, 33]:

Theorem 2.1. As ε→ 0, for j = 1, · · · , N , the vortex center xεj(t) will converge to point xj(t) satisfying:

(αI + βnjJ)
dxj(t)

dt
= −∇xj

W (X), 0 ≤ t < T, (2.2)

xj(t = 0) = x0
j . (2.3)

In equation (2.2), T is the first time that either two vortex collide or any vortex exit the domain, nj = +1
or −1 is the winding number of the vortex, X := X(t) = (x1(t),x2(t), . . . ,xM (t)),

I =

(

1 0
0 1

)

, J =

(

0 −1
1 0

)

,

are the 2 × 2 identity and symplectic matrix, respectively. Moreover, the function W (X) is the so called
renormalized energy defined as:

W (X) =:Wcen(X) +Wbc(X), (2.4)

where Wcen is the renormalized energy associated to the M vortex centers that defined as

Wcen(X) = −
∑

1≤i6=j≤N
ninj ln |xi − xj |, (2.5)

andWbc(X) is the renormalized energy involving the effect of the BC (1.3) and/or (1.4), which takes different
formations in different cases.

2.1. Under Dirichlet boundary condition

For the CGLE (1.1) with initial condition (1.2) under Dirichlet BC (1.3), it has been derived formally
and rigorously [34, 31, 36, 15, 9, 45] that Wbc(X) = Wdbc(X) in the renormalized energy (2.4) admits the
form:

Wdbc(X) =: −
M
∑

j=1

njR(xj ;X) +

∫

∂D



R(x;X) +

M
∑

j=1

nj ln |x− xj |





∂ν⊥ω(x)

2π
ds, (2.6)

where, for any fixed X ∈ DM , R(x;X) is a harmonic function in x, i.e.,

∆R(x;X) = 0, x ∈ D, (2.7)

satisfying the following Neumann BC

∂R(x;X)

∂ν
= ∂ν⊥ω(x) −

∂

∂ν

M
∑

l=1

nl ln |x− xl|, x ∈ ∂D. (2.8)

Notice that to calculate ∇xj
W (X), we need to calculate ∇xj

R, and since for j = 1, · · · , N , xj is implicitly
included in R(x, X) as a parameter, hence it is difficult to calculate ∇xj

R and thus difficult to solve the
RDL (2.2) with (2.4)–(2.6) even numerically. However, by using an identity in [9] (see Eq. (51) on page 84),

∇xj
[W (X) +Wdbc(X)] = −2nj∇x



R(x;X) +

M
∑

l=1&l 6=j
nl ln |x− xl|





x=xj

,

we have the following simplified equivalent form for (2.2).
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Lemma 2.1. For 1 ≤ j ≤M and t > 0, system (2.2) can be simplified as

(αI + βmjJ)
d

dt
xj(t) = 2nj



∇xR (x;X) |
x=xj(t) +

M
∑

l=1&l 6=j
nl

xj(t)− xl(t)

|xj(t)− xl(t)|2



 . (2.9)

Moreover, for any fixed X ∈ DM , by introducing function H(x, X) and Q(x, X) that both are harmonic in
x satisfying respectively the boundary condition [25, 37]:

∂H(x;X)

∂ν⊥
= ∂ν⊥ω(x) −

∂

∂ν

M
∑

l=1

nl ln |x− xl|, x ∈ ∂D, (2.10)

Q(x;X) = ω(x)−
M
∑

l=1

nlθ(x − xl), x ∈ ∂D, (2.11)

with the function θ : R
2 → [0, 2π) defined as

cos(θ(x)) =
x

|x| , sin(θ(x)) =
y

|x| , 0 6= x = (x, y) ∈ R
2, (2.12)

we have the following lemma for the equivalence of the RDL (2.9) [7, 8]:

Lemma 2.2. . For any fixed X ∈ DM , we have the following identity

J∇xQ (x;X) = ∇xR (x;X) = J∇xH (x;X) , x ∈ D, (2.13)

which immediately implies the equivalence between system (2.9) and the following two systems: for t > 0

(αI + βnjJ)
d

dt
xj(t) = 2nj



J∇xH (x;X) |
x=xj(t) +

M
∑

l=1&l 6=j
nl

xj(t)− xl(t)

|xj(t)− xl(t)|2



 ,

(αI + βnjJ)
d

dt
xj(t) = 2nj



J∇xQ (x;X) |
x=xj(t) +

M
∑

l=1&l 6=j
nl

xj(t)− xl(t)

|xj(t)− xl(t)|2



 .

Proof. For any fixed X ∈ DM , since Q is a harmonic function, there exists a function ϕ1(x) such that

J∇xQ (x;X) = ∇ϕ1(x), x ∈ D.

Thus, ϕ1(x) satisfies the Laplace equation

∆ϕ1(x) = ∇ · (J∇xQ(x;X)) = ∂yxϕ1(x) − ∂xyϕ1(x) = 0, x ∈ D, (2.14)

with the following Neumann BC

∂νϕ1(x) = (J∇xQ(x;X)) · ν = ∇xQ(x;X) · ν⊥ = ∂ν⊥Q(x;X), x ∈ ∂D. (2.15)

Noticing (2.11), we obtain for x ∈ ∂D,

∂νϕ1(x) = ∂ν⊥ω(x)−
∂

∂ν⊥

M
∑

l=1

nlθ(x− xl) = ∂ν⊥ω(x)−
∂

∂ν

M
∑

l=1

nl ln |x− xl|. (2.16)

Combining (2.14), (2.16), (2.7) and (2.8), we get

∆(R(x;X)− ϕ1(x)) = 0, x ∈ D, ∂ν (R(x;X)− ϕ1(x)) = 0, x ∈ ∂D. (2.17)
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Thus
R(x;X) = ϕ1(x) + constant, x ∈ D,

which immediately implies the first equality in (2.13).
Similarly, since H is a harmonic function, there exists a function ϕ2(x) such that

J∇xH (x;X) = ∇ϕ2(x), x ∈ D.

Thus, ϕ2(x) satisfies the Laplace equation

∆ϕ2(x) = ∇ · (J∇xH(x;X)) = ∂yxϕ2(x)− ∂xyϕ2(x) = 0, x ∈ D, (2.18)

with the following Neumann BC

∂νϕ2(x) = (J∇xH(x;X)) · ν = ∇xH(x;X) · ν⊥ = ∂ν⊥H(x;X), x ∈ ∂D. (2.19)

Combining (2.18), (2.19), (2.7), (2.8) and (2.10), we get

∆(R(x;X)− ϕ2(x)) = 0, x ∈ D, ∂ν (R(x;X)− ϕ2(x)) = 0, x ∈ ∂D. (2.20)

Thus
R(x;X) = ϕ2(x) + constant, x ∈ D,

which immediately implies the second equality in (2.13). �

2.2. Under homogeneous Neumann boundary condition

For the CGLE (1.1) with initial condition (1.2) under homogeneous Neumann BC (1.4), it has been
derived formally and rigorously [26, 31, 15] that Wbc(X) in the renormalized energy (2.4) admit the form:

Wbc(X) =Wnbc(X) := −
M
∑

j=1

njR̃(xj ;X), (2.21)

and by using the following identity

∇xj
[W (X) +Wnbc(X)] = −2nj∇x



R̃(x;X) +

M
∑

l=1&l 6=j
nl ln |x− xl|





xj

, (2.22)

we have the following simplified equivalent form for (2.2):

Lemma 2.3. For 1 ≤ j ≤M and t > 0, system (2.2) can be simplified as

(αI + βnjJ)
d

dt
xj(t) = 2nj



∇xR̃ (x;X) |
x=xj(t) +

M
∑

l=1&l 6=j
nl

xj(t)− xl(t)

|xj(t)− xl(t)|2



 . (2.23)

Moreover, for any fixed X ∈ DM , by introducing function H̃(x, X) and Q̃(x, X) that both are harmonic in
x satisfying respectively the boundary condition [28, 29, 27, 37]:

∂H̃(x;X)

∂ν⊥
= − ∂

∂ν

M
∑

l=1

nlθ(x − xl), x ∈ ∂D, (2.24)

∂Q̃(x;X)

∂ν
= − ∂

∂ν

M
∑

l=1

nlθ(x − xl), x ∈ ∂D, (2.25)

with the function θ : R
2 → [0, 2π) being defined in (2.12), we have the following lemma for the equivalence

of the RDL (2.23) [7, 8]:
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Lemma 2.4. For any fixed X ∈ DM , we have the following identity

J∇xQ̃ (x;X) = ∇xR̃ (x;X) = J∇xH̃ (x;X) , x ∈ D, (2.26)

which immediately implies the equivalence of system (2.23) and the following two systems: for t > 0

(αI + βnjJ)
d

dt
xj(t) = 2nj



∇xH̃ (x;X) |
x=xj(t) +

M
∑

l=1&l 6=j
nl

xj(t)− xl(t)

|xj(t)− xl(t)|2



 ,

(αI + βnjJ)
d

dt
xj(t) = 2nj



J∇xQ̃ (x;X) |
x=xj(t) +

M
∑

l=1&l 6=j
nl

xj(t)− xl(t)

|xj(t)− xl(t)|2



 .

Proof 2.1. Follow the line in the proof of lemma 2.1 and we omit the details here for brevity.

3. Numerical methods

In this section, we will give a brief outline for discussing by some efficient and accurate numerical methods
how to solve the CGLE (1.1) on either a rectangle or a disk with initial condition (1.2) and under either
Dirichlet BC (1.3) or homogeneous Neumann BC (1.4). The key idea in our numerical methods are based on:
(i) applying a time-splitting technique which has been widely used for nonlinear partial differential equations
to decouple the nonlinearity in the CGLE [24, 48, 6, 49]; and (ii) adopting proper finite difference/element
and/or spectral method to discretize a gradient flow with constant coefficients [5, 7, 8].

Let τ > 0 be the time step size, denote tn = nτ for n ≥ 0. For n = 0, 1, . . ., from time t = tn to t = tn+1,
the CGLE (1.1) is solved in two splitting steps. One first solves

(λε + iβ)∂tψ
ε(x, t) =

1

ε2
(1 − |ψε|2)ψε, x ∈ D, t ≥ tn, (3.1)

for the time step of length τ , followed by solving

(λε + iβ)∂tψ
ε(x, t) = ∆ψε, x ∈ D, t ≥ tn, (3.2)

for the same time step. Methods to discretize equation (3.2) will be outlined later. For t ∈ [tn, tn+1], we
can easily obtain from equation (3.1) the following ODE for ρε(x, t) = |ψε(x, t)|2:

∂tρ
ε(x, t) = η[1− ρε(x, t)]ρε(x, t), x ∈ D, tn ≤ t ≤ tn+1, (3.3)

where η = 2λε/ε
2(λ2ε + β2). Solving equation (3.3), we have

ρε(x, t) =
ρε(x, tn)

ρε(x, tn) + (1− ρε(x, tn)) exp[−η(t− tn)]
. (3.4)

Plugging (3.4) into (3.1), we can integrate it exactly to get

ψε(x, t) = ψε(x, tn)

√

P̂ (x, t) exp

[

− iβ

2λ2ε
ln P̂ (x, t)

]

, (3.5)

where

P̂ (x, t) =
1

|ψε(x, tn)|2 + (1− |ψε(x, tn)|2) exp(−η(t− tn))
. (3.6)

We remark here that, in practice, we always use the second-order Strang splitting [48], that is, from time
t = tn to t = tn+1: (i) evolve (3.1) for half time step τ/2 with initial data given at t = tn; (ii) evolve (3.2)
for one step τ starting with the new data; and (iii) evolve (3.1) for half time step τ/2 again with the newer
data.
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When Ω = [a, b] × [c, d] is a rectangular domain, we denote hx=
b−a
N and hy=

d−c
L with N and L being

two even positive integers as the mesh sizes in x−direction and y−direction, respectively. Similar to the
discretization of the gradient flow with constant coefficient [7], when the Dirichlet BC (1.3) is used for
the equation (3.2), it can be discretized by using the 4th-order compact finite difference discretization for
spatial derivatives followed by a Crank-Nicolson (CNFD) scheme for temporal derivative [7, 8]; and when
homogeneous Neumann BC (1.4) is used for the equation (3.2), it can be discretized by using cosine spectral
discretization for spatial derivatives followed by integrating in time exactly [7, 8]. The details are omitted here
for brevity. Combining the CNFD and cosine psedudospectral discretization for Dirichlet and homogeneous
Neumann BC, respectively, with the second order Strang splitting, we can obtain time-splitting Crank-
Nicolson finite difference (TSCNFD) and time-splitting cosine psedudospectral (TSCP) discretizations for
the CGLE (1.1) on a rectangle with Dirichlet BC (1.3) and homogeneous Neumann BC (1.4), respectively.
Both TSCNFD and TSCP discretizations are unconditionally stable, second order in time, the memory cost
is O(NL) and the computational cost per time step is O (NL ln(NL)). In addition, TSCNFD is fourth order
in space and TSCP is spectral order in space.

When Ω = {x | |x| < R} := BR(0) is a disk with R > 0 a fixed constant. Similar to the discretization of
the GPE with an angular momentum rotation [4, 5, 49] and/or the gradient flow with constant coefficient
[7], it is natural to adopt the polar coordinate (r, θ) in the numerical discretization by using the standard
Fourier pseduospectral method in θ-direction [47], finite element method in r-direction, and Crank-Nicolson
method in time [4, 5, 49]. Again, the details are omitted here for brevity.

4. Numerical results under Dirichlet BC

In the section, we report numerical results for vortex interactions of the CGLE (1.1) under the Dirichlet
BC (1.3) and compare them with those obtained from the corresponding RDLs. For simplicity, from now
on, we assume that the parameters α = 1 in (2.1) and β = 1 in (1.1).

We study how the dimensionless parameter ε, initial setup, boundary value and geometry of the domain
D affect the dynamics and interaction of vortices. For a given bounded domain D, the CGLE (1.1) is
unchanged by the re-scaling x → lx, t → l2t and ε → lε with l the diameter of D. Thus without lose of
generality, hereafter, without specification, we always assume that the diameter of D is O(1). The function
g in the Dirichlet BC (1.3) is given as

g(x) = ei(h(x)+
∑M

j=1
njθ(x−x

0

j)), x ∈ ∂D,

and the initial condition ψε0 in (1.2) is chosen as

ψε0(x) = ψε0(x, y) = eih(x)
M
∏

j=1

φεnj
(x− x0

j ), x = (x, y) ∈ D, (4.1)

where M > 0 is the total number of vortices in the initial data, the phase shift h(x) is a harmonic function,
θ(x) is defined in (2.12) and for j = 1, 2, . . . ,M , nj = 1 or −1, and x0

j = (x0j , y
0
j ) ∈ D are the winding

number and initial location of the j-th vortex, respectively. Moreover, for j = 1, . . . ,M , the function φεnj
(x)

is chosen as a single vortex centered at the origin with winding number nj = 1 or −1 which was computed
numerically and depicted in section 4 in [7, 8]. In addition, in the following sections, we mainly consider six
different modes of the phase shift h(x) :

• Mode 0: h(x) = 0, Mode 1: h(x) = x+ y,

• Mode 2: h(x) = x− y, Mode 3: h(x) = x2 − y2,

• Mode 4: h(x) = x2 − y2 + 2xy, Mode 5: h(x) = x2 − y2 − 2xy.

To simplify our discussion, for j = 1, 2, . . . ,M , hereafter we let xr
j(t) be the j-th vortex center in the

reduced dynamics and denote dεj(t) = |xεj(t) − xr
j(t)| as the difference of the vortex centers in the CGLE

8



(a)
−1 0 1

−1

0

1

x

y

−1 0 1
−1

0

1

x

y

−1 0 1
−1

0

1

x

y

(b)
−1 0 1

−1

0

1

x

y

0 0.75 1.5
0

0.07

0.14

t

d 1ε

 

 

ε=1/16

ε=1/32

ε=1/64

0 1 2
0

0.12

0.24

t

d 1ε

 

 

ε=1/16

ε=1/32

ε=1/64

Figure 1: Trajectory of the vortex center in CGLE under Dirichlet BC when ε = 1

32
under four cases, i.e. cases II-IV and VI,

and the time evolution of dε
1
for different ε under cases II and VI (from left to right and then from top to bottom) in section

4.1.

dynamics and reduced dynamics. Furthermore, in the presentation of figures, the initial location of a vortex
with winding number +1, −1 and the location that two vortices merge are marked as ‘+’, ‘◦’ and ‘⋄’,
respectively. Finally, in our computations, if not specified, we take D = [−1, 1]2, mesh sizes hx = hy = ε

10
and time step τ = 10−6. The CGLE (1.1) with (1.3) and (1.2) is solved by the method TSCNFD presented
in section 3.

4.1. Single vortex

In this subsection, we present numerical results of the motion of a single quantized vortex in the CGLE
dynamics and the corresponding reduced dynamics. We choose the parameters as M = 1, n1 = 1 in (4.1).
To study how the initial phase shift h(x), initial location of the vortex x0 and domain geometry affect the
motion of the vortex and to understand the validity of the RDL, we consider the following 16 cases:

• Case I-III: x0
1 = (0, 0), h(x) is chosen as Mode 1, 2 or 3, and D is type I;

• Case IV-VIII: x0
1 = (0.1, 0), h(x) is chosen as Mode 1, 2, 3, 4 or 5, and D is type I;

• Case IX-XII: x0
1 = (0.1, 0.2), h(x) is chosen as Mode 2, 3, 4 or 5, and D is type I;

• Case XIII-XIV: x0
1 = (0, 0), h(x) = x+ y and D is chosen as type II or III;

• Case XV-XVI: x0
1 = (0.1, 0.2), h(x) = x2 − y2 and D is chosen as type II or III,

where three different types of domains D are considered: type I: D = [−1, 1] × [−1, 1], type II: D =
[−1, 1]× [−0.65, 0.65], type III: D = B1(0).

Fig. 1 shows the trajectory of the vortex center when ε = 1
32 for cases II-IV and VI as well as the time

evolution of dε1(t) for different ε for cases II and VI, and the trajectory of the vortex center under cases V-VIII
and cases IX-XII are, respectively, shown by Fig. 2 and Fig. 3 when ε = 1

32 in CGLE. Based on these ample
numerical results (although some results are not shown here for brevity), we made the following observations
for the single vortex dynamics: (i). When h(x) ≡ 0, the vortex center doesn’t move, which is similar to

9
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Figure 2: Trajectory of the vortex center in CGLE under Dirichlet BC when ε = 1

32
under cases V-VIII (left) and cases IX-XII

(right) in section 4.1.
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Figure 3: Trajectory of the vortex center in CGLE under Dirichlet BC when ε = 1

32
for cases: (a) I, XIII, XIV, (b) X, XV,

XVI (from left to right) in section 4.1.

the vortex dynamics in the whole space in GLE and NLSE dynamics. (ii). When h(x) = (x + by)(x − y
b )

with b 6= 0, the vortex does not move if x0 = (0, 0), while it does move if x0 6= (0, 0) (please see case III
and VI for b = 1). This is the same as the phenomena in GLE and NLSE dynamics. (iii). When h(x) 6= 0
and h(x) 6= (x + by)(x − y

b ) with b 6= 0, in general, the vortex center does move to a different point from
its initial location and then it will stay there forever. This is quite different from the corresponding case in
the whole space, since in that case a single vortex may move to infinity under the initial data (4.1) with
h(x) 6= 0. (iv). In general, the initial location, the geometry of the domain and the boundary value will
take effect on the motion of the vortex center. (v). When ε → 0, the dynamics of the vortex center in the
CGLE dynamics converges uniformly in time to that in the reduced dynamics (see Fig. 1) which verifies
numerically the validation of the RDLs. In fact, based on our extensive numerical experiments, the motion
of the vortex center from the RDLs agrees with those from the CGLE dynamics qualitatively when 0 < ε < 1
and quantitatively when 0 < ε≪ 1.
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Figure 4: Trajectory of the vortex centers (a) and their corresponding time evolution of the GL functionals (b) in CGLE
dynamics under Dirichlet BC when ε = 1

25
with different h(x) in (4.1) in section 4.2.

4.2. Vortex pair

Here we present numerical results of the interaction of vortex pair in the CGLE dynamics and its
corresponding reduced dynamics. In the following numerical simulations of the subsection, we take M = 2,
n1 = n2 = 1, x0

1 = (−0.3, 0) and x0
2 = (0.3, 0) in (4.1). Fig. 4 depicts the trajectory of the vortex centers and

their corresponding time evolution of the GL functionals when ε = 1
25 in the CGLE with different h(x) in

(4.1), and Fig. 5 shows contour plots of |ψε(x, t)| for ε = 1
25 at different times as well as the time evolution

of xε1(t), x
r
1(t) and d

ε
1(t) for different ε with h(x) = 0 in (4.1).

According to our ample numerical experiments, we made the following observations for the interaction of
vortex pair in the CGLE dynamics with Dirichlet BC: (i). The motion of the vortex pair may be thought of
as a kind of combination between that in the GLE and NLSE dynamics with Dirichlet BC. From Figs. 4-5,
we observed that the two vortices undergo a repulsive interaction, and they first rotate with each other and
meanwhile move apart from each other towards the boundary of the domain, then stop somewhere near the
boundary, which indicates that the boundary of the domain imposes a repulsive force on the two vortices.
As shown in previous studies [7, 8], a vortex pair in the GLE dynamics moves outward along the line that
connects with the two vortices and finally stay static near the boundary, while in the NLSE dynamics the
two vortices always rotate around each other periodically. In fact, based on our extensive numerical results,
we found that the larger the value β (or α) is, the closer the motion in CGLE dynamics is to that in NLSE
(or GLE) dynamics, which gives the sufficient numerical evidence for our above conclusion. (ii). The phase
shift h(x) affects the motion of the vortices significantly. When h(x) = (x + by)(x − y

b ) with b 6= 0, the
vortices will move outward symmetric with respect to the origin, i.e., x1(t) = −x2(t) (see Fig. 4). (iii).
When ε → 0, the dynamics of the two vortex centers in the CGLE dynamics converges uniformly in time
to that in the reduced dynamics (see Fig. 5) which verifies numerically the validation of the RDLs in this
case. In fact, based on our extensive numerical experiments, the motions of the two vortex centers from the
RDLs agree with those from the CGLE dynamics qualitatively when 0 < ε < 1 and quantitatively when
0 < ε ≪ 1. (iv). During the dynamics evolution of CGLE, the GL functional and its kinetic part decrease
as the time evolves, its interaction part changes dramatically when t is small, and when t→ ∞, all the three
quantities converge to constants (see Fig. 4), which immediately indicates that a steady state solution will
be reached when t→ ∞.
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Figure 5: Contour plot of |ψε(x, t)| for ε = 1

25
at different times as well as time evolution of xε

1
(t) in CGLE dynamics and

x
r

1
(t) in the reduced dynamics under Dirichlet BC with h(x) = 0 in (4.1) and their difference dε

1
(t) for different ε in section 4.2.

4.3. Vortex dipole

Here we present numerical results of the interaction of vortex dipole under the CGLE dynamics and its
corresponding reduced dynamical laws. We choose the parameters in the simulations asM = 2, n1 = −n2 =
−1, x0

2 = −x0
1 = (0.3, 0) in (4.1). Fig. 6 depicts the trajectory of the vortex centers and their corresponding

time evolution of the GL functionals when ε = 1
25 in the CGLE with different h(x) in (4.1), and Fig. 7

shows contour plot of |ψε(x, t)| for ε = 1
25 at different times as well as the time evolution of xε1(t), x

r
1(t) and

dε1(t) for different ε with h(x) = 0 in (4.1).
From Figs. 6-7 and ample numerical experiments (not shown here for brevity), we made the following

observations for the interaction of vortex dipole in the CGLE dynamics with Dirichlet BC: (i). The two
vortices undergo an attractive interaction, they will collide and annihilate with each other. (ii). The phase
shift h(x) and the initial distance of the two vortices affect the motion of the vortices significantly. If h(x) = 0,
regardless of where the vortices are initially located, the vortex dipole will finally merge. However, similar
as the case in GLE dynamics, if h(x) 6≡ 0, say h(x) = x + y for example, there would be a critical distance
dεc, which depends on the value of ε, that divides the motion of the vortex dipole into two cases: (a) if the
initial distance between the vortex dipole |x0

2 − x0
1| > dεc, the vortex will never merge, they will finally stay

static and separate at somewhere near the boundary. (b) otherwise, they do finally merge and annihilate.
(iii). For h(x) = 0, when ε → 0, the dynamics of the two vortex centers in the CGLE dynamics converges
uniformly in time to that in the reduced dynamics (see Fig. 7), which verifies numerically the validation
of the RDLs in this case. In fact, based on our extensive numerical experiments, the motions of the two
vortex centers from the RDLs agree with those from the CGLE dynamics qualitatively when 0 < ε < 1
and quantitatively when 0 < ε ≪ 1 before they merge. (iv). During the dynamics evolution of CGLE,
the GL functional decreases as the time evolves, its kinetic and interaction parts don’t change dramatically
when t is small, while all the three quantities converge to constants when t → ∞. Moreover, if finite time
merging/annihilation happens, the GL functional and its kinetic and interaction parts change significantly
during the collision. In addition, when t → ∞, the interaction energy goes to 0 which immediately implies
that a steady state will be reached in the form of φε(x) = eic(x), where c(x) is a harmonic function satisfying

c(x)|∂D = h(x) +
∑M

j=1 njθ(x− x0
j ).
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Figure 6: Trajectory of the vortex centers (a) and their corresponding time evolution of the GL functionals (b) in CGLE
dynamics under Dirichlet BC when ε = 1

25
with different h(x) in (4.1) in section 4.3.
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Figure 7: Contour plots of |ψε(x, t)| for ε = 1
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at different times as well as time evolution of xε

1
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(t)

in the reduced dynamics under Dirichlet BC with h(x) = 0 in (4.1) and their difference dε
1
(t) for different ε in section 4.3.

4.4. Vortex lattice

Here we present numerical results about the interaction of vortex lattices under the CGLE dynamics.

We consider the following 15 cases: case I. M = 3, n1 = n2 = n3 = 1, x0
1 = (0.5, 0); x0

2 = (−0.25,
√
3
4 ),

x0
3 = (−0.25,−

√
3
4 ), case II. M = 3, n1 = n2 = n3 = 1, x0

1 = (−0.4, 0), x0
2 = (0, 0), x0

3 = (0.4, 0);
case III. M = 3, n1 = n2 = n3 = 1, x0

1 = (0, 0.3), x0
2 = (0.15, 0.15), x0

3 = (0.3, 0); case IV. M = 3,

13



−n1 = n2 = n3 = 1, x0
1 = (0.5, 0); x0

2 = (−0.25,
√
3
4 ), x0

3 = (−0.25,−
√
3
4 ), case V. M = 3, n2 = −1,

n1 = n3 = 1, x0
1 = (−0.4, 0), x0

2 = (0, 0), x0
3 = (0.4, 0); case VI. M = 3, n1 = −1, n2 = n3 = 1,

x0
1 = (0.2, 0.3), x0

2 = (−0.3, 0.4), x0
3 = (−0.4,−0.2); case VII. M = 4, n1 = n2 = n3 = n4 = 1, x0

1 = (0.5, 0),
x0
2 = (0, 0.5), x0

3 = (−0.5, 0), x0
4 = (0,−0.5); case VIII. M = 4, n1 = n3 = 1, n2 = n4 = −1, x0

1 = (0.5, 0),
x0
2 = (0, 0.5), x0

3 = (−0.5, 0), x0
4 = (0,−0.5); case IX. M = 4, n2 = n3 = −1, n1 = n4 = 1, x0

1 = (0.5, 0),
x0
2 = (0, 0.5), x0

3 = (−0.5, 0), x0
4 = (0,−0.5); case X. M = 4, n1 = n3 = 1, n2 = n4 = −1, x0

1 = (0.5, 0.5),
x0
2 = (−0.5, 0.5), x0

3 = (−0.5,−0.5), x0
4 = (0.5,−0.5); case XI. M = 4, n2 = n3 = −1, n1 = n4 = 1,

x0
1 = (0.5, 0.5), x0

2 = (−0.5, 0.5), x0
3 = (−0.5,−0.5), x0

4 = (0.5,−0.5); case XII. M = 4, n1 = n3 = −1,
n2 = n4 = 1, x0

1 = (0.4, 0), x0
2 = (−0.4/3, 0), x0

3 = (0.4/3, 0), x0
4 = (0.4, 0); case XIII. M = 4, n2 = n3 = −1,

n1 = n4 = 1, x0
1 = (0.4, 0), x0

2 = (−0.4/3, 0), x0
3 = (0.4/3, 0), x0

4 = (0.4, 0); case XIV. M = 4, n1 = n2 = −1,
n3 = n4 = 1, x0

1 = (0.4, 0), x0
2 = (−0.4/3, 0), x0

3 = (0.4/3, 0), x0
4 = (0.4, 0); case XV. M = 4, n1 = n3 = −1,

n2 = n4 = 1, x0
1 = (0.2, 0.3), x0

2 = (−0.3, 0.4), x0
3 = (−0.4,−0.2); x0

4 = (0.3,−0.3).
Fig. 8 shows the trajectory of the vortex centers when ε = 1

32 in CGLE (1.1) and h(x) = 0 in (4.1) for the
above 15 cases. From Fig. 8 and ample numerical experiments (not shown here for brevity), we made the
following observations: (i). The dynamics and interaction of vortex lattices under the CGLE dynamics with
Dirichlet BC depends on its initial alignment of the lattice, geometry of the domain D and the boundary
value g(x). (ii). For a lattice of M vortices, if they have the same index, then no collisions will happen for
any time t ≥ 0. On the other hand, if they have opposite index, e.g. M+ > 0 vortices with index ‘+1’ and
M− > 0 vortices with index ‘−1’ satisfying M+ +M− = M , collisions will always happen at finite time.
More precisely, when t is sufficiently large, there exist exactly |M+ −M−| vortices with winding number
‘+1’ if M+ > M−; while if M+ < M−, there exist exactly |M+ −M−| vortices with winding number ‘−1’.

In order to study how the geometry of the domain and boundary conditions take effect on the alignment
of vortices in the steady state patterns in the CGLE dynamics under Dirichlet BC, we made the following
set-up for our numerical computations. We chose the parameters as ε = 1

32 ,

nj = 1, x0
j = 0.5

(

cos

(

2jπ

M

)

, sin

(

2jπ

M

))

, j = 1, 2, . . . ,M,

i.e., initially we have M like vortices which are located uniformly in a circle centered at origin with radius
R1 = 0.5. Denote φε(x) as the steady state, i.e., φε(x) = limt→∞ ψε(x, t) for x ∈ D. Fig. 9 depicts the
contour plots of the amplitude |φε| of the steady state in the CGLE dynamics with h(x) = 0 in (4.1) for
different M and domains, and Fig. 10 depicts similar results with M = 12 for different h(x) in (4.1).

Based on Figs. 9-10 and ample numerical results (not shown here for brevity), we made the following
observations for the steady state patterns of vortex lattices under the CGLE dynamics with Dirichlet BC:
(i). The vortex lattices with the same winding number undergo repulsive interaction between each other
and finally they move to somewhere near the boundary of the domain. During the evolution process, no
particle-like collision phenomena happen and a steady state pattern is finally formed when t → ∞. As a
matter of fact, the steady state is also the solution of the following minimization problem

φε = argminφ(x)|x∈∂D=ψε
0
(x)|x∈∂D

Eε(φ).

(ii). Both the geometry of the domain and the phase shift, i.e. h(x), will take significant effect on steady
state patterns. (iii). At the steady state, the distance between the vortex centers and the boundary of the
domain depends on ε and M . If M is fixed, when ε decreases, the distance decreases; while if ε is fixed,
when M increases, the distance decreases. We remark it here as an interesting open problem to find how
the width depends on the value of ε, the boundary condition as well as the geometry of the domain.

5. Numerical results under Neumann BC

In this section, we report numerical results for vortex interactions of the CGLE (1.1) under the homoge-
neous Neumann BC (1.4) and compare them with those obtained from the corresponding RDLs. The initial
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Figure 8: Trajectory of vortex centers for the interaction of different vortex lattices in GLE under Dirichlet BC with ε = 1

32

and h(x) = 0 for cases I-IX (from left to right and then from top to bottom) in section 4.4.
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(a)

(b)

(c)

Figure 9: Contour plots of |φε(x)| for the steady states of vortex lattice in CGLE under Dirichlet BC with ε = 1

32
for

M = 8, 12, 16, 20 (from left column to right column) and different domains: (a) unit disk D = B1(0), (b) square domain
D = [−1, 1]2, (c) rectangular domain D = [−1.6, 1.6]× [−0.8, 0.8].

condition ψε0 in (1.2) is also chosen as the form (4.1), but with harmonic function h(x) replaced as hn(x) so
that it will satisfy the Neumann BC as

∂

∂n
hn(x) = − ∂

∂n

M
∑

l=1

nlθ(x− x0
l ), x ∈ ∂Ω.

The CGLE (1.1) with (1.4) and (4.1) is solved by the numerical method TSCP presented in section 3 in the
following simulations.

5.1. Single vortex

In the subsection, we present numerical results of the motion of a single quantized vortex in the CGLE
dynamics with Neumann BC and its corresponding reduced dynamical laws. We choose the parameters as
M = 1 and n1 = 1 in (4.1). Fig. 11 shows the trajectory of the vortex center for different x0

1 in (4.1) when
ε = 1

25 as well as time evolution of xε1 and dε1 for different ε.
By observing Fig. 11 and ample numerical simulation results (not shown here for brevity), we could see

that: (i). The initial location of the vortex affects the motion of the vortex significantly and this reflects the
boundary effect coming from the Neumann BC. (ii). If x0

1 = (0, 0), the vortex does not move at any time;
otherwise, the vortex does move and it will run out of the domain and never come back. This phenomenon
is quite different from the case with Dirichlet BC in bounded domains, in which a single vortex can never
move out of the domain, or the case with the initial condition (4.1) in the whole space, in which a single
vortex doesn’t move at all, regardless of the initial location of the vortex for the both cases. (iii). As ε→ 0,
the dynamics of the vortex center under the CGLE dynamics converges uniformly in time to that of the
RDLs very well before it exits the domain, which verifies numerically the validation of the RDLs in this
case. Apparently, when the vortex center moves out of the domain, the reduced dynamics laws are no longer
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Figure 10: Contour plots of |φε(x)| for the steady states of vortex lattice in CGLE under Dirichlet BC with ε = 1

32
and M = 12

on a unit disk D = B1(0) (top row) or a square D = [−1, 1]2 (middle row) or a rectangular domain D = [−1.6, 1.6]× [−0.8,0.8]
(bottom row) under different h(x) = x+ y, x2 − y2, x− y, x2 − y2 + 2xy, x2 − y2 − 2xy (from left column to right column).

valid. Based on our extensive numerical experiments, the motion of the vortex center from the RDLs agrees
with that from the CGLE dynamics qualitatively when 0 < ε < 1 and quantitatively when 0 < ε≪ 1 before
it moves out of the domain.

5.2. Vortex pair

Here we present numerical results of the interaction of vortex pair under the CGLE dynamics with
Neumann BC and its corresponding reduced dynamical laws. We choose the simulation parameters as
M = 2, n1 = n2 = 1 and x0

2 = −x0
1 = (d0, 0) with 0 < d0 < 1 in (4.1). Fig. 12 shows the contour plots of

|ψε(x, t)| at different times when ε = 1
25 , and Fig. 13 shows the trajectory of the vortex pair when ε = 1

25
as well as time evolution of xε1(t) and d

ε
1(t) for different d0 in (4.1).

From Figs. 12-13 and ample numerical results (not shown here for brevity), we made the following
observations: (i). The initial location of the vortex, i.e., the value of d0 affects the motion of the vortex
significantly and this reflects the boundary effect coming from the Neumann BC. (ii). For the CGLE with ε
fixed, there exists a sequence of critical values dc,ε1 > dc,ε2 > dc,ε3 > · · · > dc,εk > · · · , which can determine the
escape approach about how the vortex pair moves out of the domain. More precisely, if the value of d0 falls
into the interval (dc,ε2n+1, d

c,ε
2n ), where n = 0, 1, . . ., and dc,ε0 = +∞, then the two vortices will move out of

the domain from the side boundary; otherwise, if it falls into the interval (dc,ε2n+2, d
c,ε
2n+1), they will move out

of the domain from the top-bottom boundary. For the RDL, there also exists such corresponding sequence
of critical values {dc,rk , k = 0, 1, . . .} which determine the trajectory of the vortex pair motion. We note
that it might be an interesting problem to find the values of those dc,εk and dc,rk and study their convergence
relations between them. (iii). The motion of the vortex pair exhibits hybrid properties of that in the GLE
dynamics and NLSE dynamics with Neumann BC. As given by previous studies [7, 8], a vortex pair in
the GLE dynamics will always move outward along the line that connects with the two vortices and finally
they will move out of the domain, while in the NLSE dynamics, they will always rotate around each other
periodically. Based on our extensive numerical results, we also found that under a fixed initial setup, the
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Figure 11: Trajectory of the vortex center when ε = 1

25
(left) as well as time evolution of xε

1
(middle) and dε

1
for different ε

(right) for the motion of a single vortex in CGLE under homogeneous Neumann BC with different x
0

1
in (4.1) in section 5.1:

(a) x
0

1
= (0.1, 0), (b) x

0

1
= (0.1, 0.2).
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Figure 12: Contour plots of |ψε(x, t)| at different times when ε = 1

25
((a) & (b)) and the corresponding time evolution of the

GL functionals ((c) & (d)) for the motion of vortex pair in CGLE under homogeneous Neumann BC with different d0 in (4.1)
in section 5.2: top row: d0 = 0.3, bottom row: d0 = 0.7.

larger the value β becomes, the more rotations the vortex pair will do before they exit the domain, which
means that as β becomes larger, the closer the motion in CGLE dynamics is to that in NLSE dynamics;
on the other hand, as the value α becomes larger, the time when the vortex pair exits the domain becomes
faster, which also means that the motion in CGLE dynamics becomes closer to that in GLE dynamics. This
gives sufficient numerical evidence for our conclusion. (iv). As ε→ 0, the dynamics of the vortex pair under
the CGLE dynamics converges uniformly in time to that of the RDLs very well before either of the two
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Figure 13: Trajectory of the vortex center when ε = 1

25
(left) as well as time evolution of xε

1
(middle) and dε

1
for different ε

(right) for the motion of vortex pair in CGLE under homogeneous Neumann BC with different d0 in (4.1) in section 5.2: (a)
d0 = 0.3, (b) d0 = 0.7.
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Figure 14: Contour plots of |ψε(x, t)| at different times when ε = 1

25
and the corresponding time evolution of the GL

functionals for the motion of vortex dipole in CGLE under homogeneous Neumann BC with different d0 in (4.1) in section 5.3:
top row: d0 = 0.3, bottom row: d0 = 0.7.

vortices exit the domain, which verifies numerically the validation of the RDLs in this case. (iv). During the
dynamics evolution of CGLE, the GL functional and its kinetic parts decrease as the time increases. They
do not change much when t is small and change dramatically when either of the two vortices move out of
the domain. When t → ∞, all the three quantities converge to 0 (see Fig. 12 (c) & (d)), which indicates
that a constant steady state have been reached in the form of φε(x) = eic0 for x ∈ D with c

0
a constant.
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Figure 15: Trajectory of the vortex center when ε = 1

25
(left) as well as time evolution of xε

1
(middle) and dε

1
for different ε

(right) for the motion of vortex dipole in CGLE under homogeneous Neumann BC with different d0 in (4.1) in section 5.2: (a)
d0 = 0.3, (b) d0 = 0.7.

5.3. Vortex dipole

Here we present numerical results of the interaction of vortex dipole in the CGLE dynamics with Neu-
mann BC and its corresponding reduced dynamics. We choose the simulation parameters as M = 2,
n2 = −n1 = 1 and x0

2 = −x0
1 = (d0, 0) with 0 < d0 < 1 in (4.1). Fig. 14 shows the contour plots of |ψε(x, t)|

at different times when ε = 1
25 , and Fig. 15 depicts the trajectory of the vortex pair when ε = 1

25 as well as
time evolution of xε1(t) and d

ε
1(t) for different d0 in (4.1).

From Fig. 14 and 15 and ample numerical results (not shown here for brevity), we can make the following
observations for the interaction of vortex pair under the NLSE dynamics with homogeneous Neumann BC:
(i). The initial location of the vortex, i.e., the value of d0 affects the motion of the vortex significantly. (ii).
For the CGLE with ε fixed, there exists a critical value dεc such that: if d0 > dεc, the two vortices will exit
the domain from the side boundary; otherwise, they will merge somewhere in the domain. For the RDL,
there also exists such corresponding critical values drc . We also note that it might be an interesting problem
to find those values dεc and drc , and to study their convergence relation. (iii). As ε → 0, the dynamics of
the two vortex centers under the CGLE dynamics converge uniformly in time to that of the RDLs very well
before they move out of the domain or merge with each other, which verifies numerically the validation of
the RDLs in this case.

5.4. Vortex lattice

Here we present numerical results of the interaction of vortex lattices under the CGLE dynamics with
Neumann BC. We consider the following 15 cases:

case I. M = 3, n1 = n2 = n3 = 1, x0
1 = (0.4, 0), x0

2 = (−0.2,
√
3
5 ), x0

3 = (−0.2,−
√
3
5 ); case II. M = 3,

n1 = n2 = n3 = 1, x0
1 = (−0.4, 0.2), x0

2 = (0, 0.2), x0
3 = (0.4, 0.2); case III. M = 3, n1 = n2 = n3 = 1, x0

1 =

(−0.4, 0), x0
2 = (0, 0), x0

3 = (0.4, 0); case IV. M = 3, −n1 = n2 = n3 = 1, x0
1 = (0.4, 0); x0

2 = (−0.2,
√
3
5 ),

x0
3 = (−0.2,−

√
3
5 ); case V. M = 3, −n2 = n1 = n3 = 1, x0

1 = (−0.4, 0), x0
2 = (0, 0), x0

3 = (0.4, 0);
case VI. M = 3, −n2 = n1 = n3 = 1, x0

1 = (−0.7, 0), x0
2 = (0, 0), x0

3 = (0.7, 0); case VII. M = 4,
n1 = n2 = n3 = n4 = 1, x0

1 = (0.4, 0), x0
2 = (0, 0.4), x0

3 = (−0.4, 0), x0
4 = (0,−0.4); case VIII. M = 4,

n1 = n3 = −1, n2 = n4 = 1, x0
1 = (0.4, 0), x0

2 = (0, 0.4), x0
3 = (−0.4, 0), x0

4 = (0,−0.4); case IX. M = 4,
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Figure 16: Trajectory of vortex centers for the interaction of different vortex lattices in CGLE under Neumman BC with
ε = 1

32
for cases I-IX (from left to right and then from top to bottom) in section 5.4.
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n1 = n3 = −1, n2 = n4 = 1, x0
1 = (0.59, 0), x0

2 = (0, 0.59), x0
3 = (−0.59, 0), x0

4 = (0,−0.59); case X. M = 4,
n1 = n3 = −1, n2 = n4 = 1, x0

1 = (0.7, 0), x0
2 = (0, 0.7), x0

3 = (−0.7, 0), x0
4 = (0,−0.7); case XI. M = 4,

n2 = n3 = −1, n1 = n4 = 1, x0
1 = (0.4, 0), x0

2 = (0, 0.4), x0
3 = (−0.4, 0), x0

4 = (0,−0.4); case XII. M = 4,
n2 = n3 = −1, n1 = n4 = 1, x0

1 = (0.6, 0), x0
2 = (0, 0.6), x0

3 = (−0.6, 0), x0
4 = (0,−0.6); case XIII. M = 4,

n1 = n3 = −1, n2 = n4 = 1, x0
1 = (0.4, 0), x0

2 = (−0.4/3, 0), x0
3 = (0.4/3, 0), x0

4 = (0.4, 0); case XIV. M = 4,
n1 = n3 = −1, n2 = n4 = 1, x0

1 = (0.4, 0), x0
2 = (−0.4/3, 0), x0

3 = (0.4/3, 0), x0
4 = (0.4, 0); case XV. M = 4,

n1 = n3 = −1, n2 = n4 = 1, x0
1 = (−0.6, 0), x0

2 = (−0.1, 0), x0
3 = (0.1, 0), x0

4 = (0.6, 0).
Fig. 16 shows the trajectory of the vortex centers for the above 15 cases when ε = 1

32 , and Fig. 17
depicts the contour plots of |ψε| for the initial data and corresponding steady states for cases I, III, V, VI,
VII and XIV. From Figs. 16 and 17 and ample numerical experiments (not shown here for brevity), we
can make the following observations: (i). The dynamics and interaction of vortex lattices under the CGLE
dynamics with Dirichlet BC depends on its initial alignment of the lattice, geometry of the domain D. (ii).
For a lattice of M vortices, if they have the same index, then at least M − 1 vortices will move out of the
domain at finite time and no collision will happen at any time; On the other hand, if they have opposite
index, collision will happen at finite time. After collisions, the leftover vortices will continue to move and
at most one vortex may be left in the domain. When t is sufficiently large, in most cases, no vortex can
be left in the domain; but when the geometry and initial setup are properly set to be symmetric and M is
odd, there maybe one vortex left in the domain. (iii). If finally no vortex can be left in the domain, the GL
functionals will always vanish as t→ ∞, which indicates that the final steady state always admits the form
of φε(x) = eic0 for x ∈ D with c0 a real constant.

6. Conclusion

In this paper, we proposed efficient and accurate numerical methods to simulate complex Ginzburg-
Landau equation (CGLE) with a dimensionless parameter 0 < ε < 1 on bounded domains with either
Dirichlet or homogenous Neumann BC and its corresponding reduced dynamical laws (RDLs). By these
numerical methods, we studied numerically vortex dynamics and interaction in the CGLE and compared
them with those obtained from the corresponding RDLs under different initial setups. To some extent, we
found that vortex dynamics in the CGLE is a hybrid of that in GLE and NLSE, which can be reflected from
the fact that CGLE is a combination equation between GLE and NLSE.

Based on our extensive numerical results, we verified that the dynamics of vortex centers under the CGLE
dynamics converges to that of the RDLs when ε → 0 before they collide and/or move out of the domain.
Apparently, when the vortex center moves out of the domain, the reduced dynamics laws are no longer valid;
however, the dynamics and interaction of quantized vortices are still physically interesting and they can be
obtained from the direct numerical simulations for the CGLE with fixed ε > 0 even after they collide and/or
move out of the domain. We also identified the parameter regimes where the RDLs agree with qualitatively
and/or quantitatively as well as fail to agree with those from the CGLE dynamics. Some very interesting
nonlinear phenomena related to the quantized vortex interactions in the CGLE were also observed from our
direct numerical simulation results of CGLE. Different steady state patterns of vortex lattices under the
CGLE dynamics were obtained numerically. From our numerical results, we observed that both boundary
conditions and domain geometry affect significantly on vortex dynamics and interaction, which can exhibit
different interaction patterns compared with those in the whole space case [49, 50].
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(a)

(b)

(c)

(d)

Figure 17: Contour plots of |ψε(x, t)| for the initial data ((a) & (c)) and corresponding steady states ((b) & (d)) of vortex
lattice in CGLE dynamics under Neumman BC with ε = 1

32
and for cases I, III, V, VI, VII and XIV (from left to right and

then from top to bottom) in section 5.4.
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