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Abstract
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2 X. Yang

1 Introduction

We consider the numerical solution for time-dependent Stokes equations of the form





∂~u
∂t

− ν∇2~u+∇p = 0 in Ω× R+,
∇ · ~u = 0 in Ω× R+,

~u = 0 on ∂Ω× R+,
~u = ~u0 on Ω× {0},

(1.1)

with certain initial and boundary conditions in d-dimensional locally Lipschitz bounded domain
Ω ⊂ Rd (d = 2 or 3). By adopting the idea of “Method of Lines”, equations (1.1) are discretized
in space to obtain the following saddle-structured differential-algebraic equations (DAEs)

Bż(t) +Az(t) = b(t), z(0) = z0, (1.2)

where z(t) =
(
x(t)T , y(t)T

)T
with x(t) and y(t) related to velocity and pressure in equations

(1.1) respectively, B and A are block two-by-two square matrices of the form

B =

(
I 0
0 0

)
and A =

(
A B

−BT 0

)
,

with A ∈ R
r×r being a symmetric positive definite matrix, B ∈ R

r×l a full column-rank matrix,
and I ∈ R

r×r the identity matrix. Here, r and l are known positive integers.

In [3], a class of continuous-time waveform relaxation methods for solving linear DAEs (1.2)
has been proposed by the application of generalized successive overrelaxation (GSOR) technique
[1]. Previous continuous-time waveform relaxation methods, for solving ODEs [2, 8, 9, 16, 18, 19,
20, 21] and DAEs [3, 4, 12, 14], can be regarded as extensions of the classical iterative methods
for solving system of algebraic equations with iterating space changing from R

n to the waveform
space. Since the analytical operations and exact expressions of waveforms are required in each
iterative step, the continuous-time waveform relaxation methods are unlikely to be practical
numerical methods, but only be of theoretical interest.

In actual numerical solution for linear DAEs (1.2), the continuous-time waveform relaxation
methods in [3] are replaced by a class of discrete-time waveform relaxation methods, named
discrete-time accelerated block successive overrelaxation (DABSOR) methods. This paper stud-
ies the general theory of discrete-time waveform relaxation methods for solving linear DAEs and
the special case of the DABSOR method. In previous discrete-time waveform relaxation meth-
ods [8, 10, 11], the waveforms and the linear differential operators in continuous-time waveform
relaxation methods are replaced by vector sequences and discrete linear convolution operators
respectively. Here, the vector sequences are composed of values of waveforms on each time level,
and the discrete linear convolution operators are closely related to the discretizations of the
linear differential operators by different time stepping schemes [5, 7] in each iterative step of the
continuous-time waveform relaxation methods for solving linear DAEs (1.2).

The structure of this paper is as follows. It is started in Section 2 by briefly reviewing the
spectral properties of the discrete linear convolution operator. The general framework of the
discrete-time waveform relaxation methods and the corresponding discrete linear convolution
operator form are stated in Section 3. In Section 4, the convergence properties of the discrete
linear convolution operator derived from the discrete-time waveform relaxation methods for
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solving linear DAEs are analyzed on both finite and infinite time interval. The DABSOR
method without or with windowing technique is constructed in Section 5, and the convergence
domain of relaxation parameters and the optimality of the DABSOR method are also presented
here. The numerical results are listed in Section 6, which is followed by the concluding remarks
in Section 7.

2 Spectral Properties of Discrete Linear Convolution Operator

Consider the following iterative scheme

z
(k)
△t = H△tz

(k−1)
△t + ϕ△t, (2.1)

where the subscript △t is the notation of vector sequences, e.g. z
(k)
△t = {z(k)i }L−1

i=0 , where L
(possibly infinite) is the number of components. Each d-dimensional component denotes the
approximate solution of a d-dimensional ODEs or DAEs on a time level. Operator H△t is a
discrete linear convolution operator with matrix-valued kernel h△t,

(H△tz△t)j = (h△t ⋆ z△t)j =

j∑

i=0

hj−izi, j = 0, . . . , L− 1. (2.2)

The convergence properties of operator H△t are analyzed in the Banach spaces of Cd-valued
p-summable sequences of length L, lp(L;C

d), or lp(L) for short, with norms given by

‖z△t‖p =





p

√∑L−1
i=0 ‖zi‖p 1 ≤ p <∞,

sup
0≤i<L

{‖zi‖} p = ∞,
(2.3)

with ‖·‖ any prescribed C
d vector norm. It is known that the iterative scheme (2.1) is convergent

if and only if the spectral radius of the discrete linear convolution operator H△t, denoted by
ρ(H△t), is smaller than one. The following two lemmas provide specific descriptions of ρ(H△t)
on both finite and infinite time intervals [8].

Lemma 2.1 Consider H△t as an operator in lp(L), with 1 ≤ p ≤ ∞ and L finite. Then, H△t

is a bounded operator and

ρ(H△t) = ρ(h0) = ρ(H△t(∞)),

with H△t(s) =
∑L−1

i=0 his
−i the discrete Laplace transform of h△t.

Lemma 2.2 Suppose that h△t ∈ l1(∞), and consider H△t as an operator in lp(∞), with 1 ≤
p ≤ ∞. Then, H△t is a bounded operator and

ρ(H△t) = max
|s|≥1

ρ(H△t(s)) = max
|s|=1

ρ(H△t(s)),

with H△t(s) =
∑∞

i=0 his
−i the discrete Laplace transform of h△t.
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3 Discrete-Time Waveform Relaxation Methods

The continuous-time waveform relaxation methods for solving the linear DAEs (1.2) are defined
by spliting the square matrices B and A ∈ R

(r+l)×(r+l) into

B =MB −NB and A =MA −NA,

respectively. Then the corresponding iterative scheme is of the form
{
MB ż(k) +MAz(k) = NBż(k−1) +NAz(k−1) + b,

z(k)(0) = z0.
(3.1)

Furthermore, iterative scheme (3.1) can be rewritten explicitly

z(k) = K(z(k−1)) + Φ(b), (3.2)

where

K(z) = (L−1(sMB +MA)
−1(sNB +NA)L)(z)

and

Φ(b) = (L−1(sMB +MA)
−1L)(b).

Here, L denotes the continuous Laplace transform. It has been shown in [4] that

ρ(K) = sup
ℜ(s)=σ

ρ (K(s)) , (3.3)

where

K(s) = (sMB +MA)
−1(sNB +NA). (3.4)

Applying a linear multistep formula to the continuous-time waveform relaxation scheme (3.1)
leads to the following discrete-time waveform relaxation scheme

1

△t

ν∑

j=0

αjMBz
(k)
n+j +

ν∑

j=0

βjMAz
(k)
n+j =

1

△t

ν∑

j=0

αjNBz
(k−1)
n+j +

ν∑

j=0

βjNAz
(k−1)
n+j +

ν∑

j=0

βjbn+j, n ≥ 0. (3.5)

Assume that the ν starting values of the linear multistep formula are known, hence it is not

necessary to iterate on the ν starting values, i.e. z
(k)
j = z

(k−1)
j = zj , for j < ν. Due to the

numerical stability, the rest of this paper is concentrated on the application of implicit linear
multistep formulae, i.e. βν 6= 0.

For every nonnegative integer n, system of linear equations (3.5) can be solved uniquely if
and only if the following condition is satisfied

αν

βν
/∈ sp(MB,−△tMA), (3.6)
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where sp(·) represents the spectrum of the matrix pencil (MB,−△tMA). Subsequently, the
above condition (3.6) is referred to as the discrete solvability condition.

Similar to the calculation in [18], the iterative scheme (3.5) can be rewritten into the following
discrete linear convolution operator form

z
(k)
△t = K△tz

(k−1)
△t + ϕ△t. (3.7)

Since it does not iterate on the ν starting values, a slight change is made on the subscript △t
here, that is

z
(k)
△t = {z(k)ν+i}L−1

i=0 . (3.8)

In order to analyze the properties of the discrete linear convolution operator K△t, the com-

putational error on the k-th iteration of (3.5) is denoted by e
(k)
n = z

(k)
n − zn, where zn is the

exact solution of the disrete system derived from the discretezation of linear DAEs (1.2) by the
corresponding linear multistep formula. Let Cj =

1
△t
αjMB + βjMA and Dj =

1
△t
αjNB + βjNA,

based on (3.5), we get

ν∑

j=0

Cje
(k)
n+j =

ν∑

j=0

Dje
(k−1)
n+j , n ≥ 0. (3.9)

Combine the first L equations, introduce vector notation E(k) =

(
e
(k)
ν

T
, e

(k)
ν+1

T
, . . . , e

(k)
L+ν−1

T
)T

,

and note that e
(k)
j = e

(k−1)
j = 0, j < ν, we have

E(k) = C−1DE(k−1).

Here, matrices C and D are L×L-block lower triangular Toeplitz matrices with ν +1 constant
diagonals. It follows that matrix C−1D is also a L × L-block lower triangular Toeplitz matrix
with ν+1 constant diagonals. Hence, K△t is a discrete linear convolution operator on the Banach
space lp(L).

The discrete Laplace transform of the convolution kernel κ△t of the discrete linear convolution

operator K△t can be obtained by applying discrete Laplace transform to equation (3.9). If ẽ
(k)
△t (s)

denotes the discrete Laplace transform of e
(k)
△t , we find

ẽ
(k)
△t (s) = K△t(s)ẽ

(k−1)
△t (s),

with discrete Laplace transform of the convolution kernel κ△t given by

K△t(s) = (a(s)MB +△tb(s)MA)
−1(a(s)NB +△tb(s)NA). (3.10)

where a(s) =
∑ν

j=0 αjs
j and b(s) =

∑ν
j=0 βjs

j. By comparison to (3.4), we have the following
relation

K△t(s) = K

(
1

△t
a

b
(s)

)
. (3.11)



6 X. Yang

4 Convergence Analysis of K△t

The convergence property of the discrete linear convolution operator K△t on finite time inter-
val is an immediate result of Lemma 2.1. The result can be stated as the following theorem
straightforwardly.

Theorem 4.1 Assume that the discrete solvability condition (3.6) is satisfied, and consider K△t

as a discrete linear convolution operator in lp(L), with 1 ≤ p ≤ ∞ and L finite. Then, K△t is
bounded and

ρ(K△t) = ρ

(
K

(
1

△t
αν

βν

))
. (4.1)

However, the convergence property of the discrete linear convolution operator K△t on infinite
time interval is a little bit complicated, thus, an important lemma is introduced.

Lemma 4.1 Assume that the discrete solvability condition (3.6) is satisfied. Let b(z) 6= 0, ∀
|z| = 1. If sp(MB,−△tMA) ⊂ S̊ and ∞ ∈ S, then K△t is bounded in lp(∞). Where S represents
the absolute stability region of the corresponding linear multistep formula, and S̊ denotes the
interior of S.

Proof : According to the Young’s inequality for discrete convolution product [6], we only need
to prove that the kernel κ△t of the discrete convolution operator K△t is a l1-sequence.

Denote θ
(−1)
△t , θ△t and ζ△t as the sequences whose discrete Laplace transforms are (a(s)MB +

△tb(s)MA)−1sk, s−k(a(s)MB + △tb(s)MA), and s−k(a(s)NB + △tb(s)NA), respectively. Note
that the discrete Laplace transform of κ△t satisfies (3.10), then

κ△t = θ
(−1)
△t ⋆ ζ△t.

Hence, κ△t is a l1-sequence if θ
(−1)
△t and ζ△t are l1-sequence. Obviously, θ△t and ζ△t are l1-

sequence. Furthermore, according to the Wiener’s inversion theorem [13, 15], θ
(−1)
△t is a l1-

sequence if

|a(s)MB +△tb(s)MA| 6= 0, ∀ |s| ≥ 1. (4.2)

Now, we prove the conditions of Lemma 4.1 lead to (4.2). Suppose (4.2) is not satisfied, i.e.
there exists a s0 with |s0| ≥ 1 such that

|a(s0)MB +△tb(s0)MA| = 0. (4.3)

Considering MB can be singular or nonsingular, we remark that: when b(s0) 6= 0, MB can be
either form; when b(s0) = 0, there must be a fact a(s0) 6= 0 due to no common roots for a(s) and
b(s), therefore, MB must be singular to make (4.3) satisfied. In order to keep on the discussion,
we divide b(s0) into two cases, i.e. b(s0) 6= 0 and b(s0) = 0.

If b(s0) 6= 0, (4.3) is equivalent to

∣∣∣a
b
(s0)MB +△tMA

∣∣∣ = 0. (4.4)
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Obviously, (4.4) leads to

a

b
(s0) ∈ sp(MB,−△tMA). (4.5)

Since |s0| ≥ 1, we have a
b
(s0) /∈ S̊. Meanwhile, (4.5) and condition sp(MB,−△tMA) ⊂ S̊ leads

to a
b
(s0) ∈ S̊ which contradicts.

If b(s0) = 0, (4.3) is satisfied directly for the singularity of matrix MB. Moreover, we have
a
b
(s0) = ∞ /∈ S since |s0| ≥ 1 which contradicts with the condition ∞ ∈ S. �

Based on Lemma 2.2, Lemma 4.1, the definition of absolute stability region and the maximal
principle of complex function, we can easily obtain the convergence property of K△t on infinite
time interval.

Theorem 4.2 Assume that the discrete solvability condition (3.6) is satisfied. Let b(z) 6= 0,
∀ |z| = 1. If sp(MB,−△tMA) ⊂ S̊ and ∞ ∈ S, consider K△t as a discrete linear convolution
operator in lp(∞), with 1 ≤ p ≤ ∞. Then

ρ(K△t) = sup{ρ(K(s)) | △ts ∈ C\S̊} (4.6)

= sup
△ts∈∂S

ρ(K(s)). (4.7)

5 Discrete-Time Accelerated Block SOR Method

The splittings of matrices B and A in linear DAEs (1.2) are given by

B =MB −NB =

(
I 0
0 0

)
− 0 (5.1)

and

A =MA −NA =

(
1
ω
A 0

−BT 1
τ
Q

)
−
( (

1
ω
− 1
)
A −B

0 1
τ
Q

)
, (5.2)

where Q ∈ R
l×l is a prescribed symmetric positive definite matrix as the preconditioner of the

Schur complement matrix BTA−1B. Applying the generalized successive overrelaxation (GSOR)
technique in [1], we can define the following discrete-time waveform relaxation method, called
the discrete-time accelerated block successive overrelaxation (DABSOR) method, for solving
linear DAEs (1.2) derived from time-dependent Stokes equations (1.1).

Method 5.1 (The DABSOR Method)
For solving linear constant coefficient DAEs (1.2) on time interval [T1,T2], divide the time
interval into L equal distance time steps, and compute the solution of (1.2) on each of the L
time levels in (T1,T2]. Let Q ∈ R

l×l be a symmetric positive definite matrix preconditioning the

Schur complement matrix BTA−1B. For two positive integers r and l, let x
(0)
△t , f△t

∈ lp(L;C
r)

and y
(0)
△t , g△t ∈ lp(L;C

l) be the initial iterative vector sequences and the vector sequences derived
from the vector values on each time level of the right hand side of the linear DAEs (1.2). x0, . . .,
xν−1 ∈ C

r and y0, . . ., yν−1 ∈ C
l are the initial vector values of the iterative vector sequences.

Then:
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For k = 1, 2, . . ., untill vector sequences x
(k)
△t and y

(k)
△t converge to the exact solution x△t

and y△t

of the discrete system derived from discretizing the linear DAEs (1.2) by linear multistep
formulae, compute:

For n = 0 : 1 : L− 1, solve the following linear systems on each time level





(
αν

△tI +
βν
ω
A)x

(k)
n+ν =

ν∑

j=0

βj((
1

ω
− 1)Ax

(k−1)
n+j −By

(k−1)
n+j + fn+j)−

ν−1∑

j=0

(
αj

△tI +
βj
ω
A)x

(k)
n+j ,

βν
τ
Qy

(k)
n+ν =

ν∑

j=0

βj(B
Tx

(k)
n+j +

1

τ
Qy

(k−1)
n+j + gn+j)−

ν−1∑

j=0

βj
τ
Qy

(k)
n+j.

End

End

The DABSOR method can be rewritten into the following matrix form




Cν

Cν−1 Cν

...
. . .

. . .

C0 · · · Cν−1 Cν

. . .
. . .

. . .
. . .

C0 · · · Cν−1 Cν







z
(k)
ν

z
(k)
ν−1
...

z
(k)
2ν
...

z
(k)
L+ν−1




=




Dν

Dν−1 Dν

...
. . .

. . .

D0 · · · Dν−1 Dν

. . .
. . .

. . .
. . .

D0 · · · Dν−1 Dν







z
(k−1)
ν

z
(k−1)
ν−1
...

z
(k−1)
2ν
...

z
(k−1)
L+ν−1




+




bν

bν−1
...

b2ν
...

bL+ν−1




(5.3)

with

Cj =
αj

△tMB + βjMA Dj = βjNA, j = 0, 1, . . . , ν,

here MB, MA and NA are defined in (5.1)-(5.2). Moreover, z
(k)
ν+n =

(x(k)
ν+n

y
(k)
ν+n

)
(n = 0, 1, . . . , L− 1),

and

bν+n =





ν∑
j=0

βjbn+j +
ν−1−n∑
j=0

(Dj − Cj)zn+j , if n = 0, 1, . . . , ν − 1,

ν∑
j=0

βjbn+j, if n = ν, ν + 1, . . . , L+ ν − 1,
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with

bν+n =

(
fν+n

gν+n

)
, n = 0, 1, . . . , L− 1, and zn =

(
xn
yn

)
, n = 0, 1, . . . , ν − 1.

Remark 5.1 To be theoretical, the length of the simulation time interval [T1,T2] in the DAB-
SOR method can be infinite, i.e. L possibly infinite. In this case, the matrix-vector multiplica-
tions in (5.3) are essentially the discrete linear convolution between certain matrix and vector
sequences with infinite length. However, in actual application of the DABSOR method, no com-
puter can deal with infinite length time interval. Therefore, the length of [T1,T2] is considered
to be finite in the sequel.

5.1 Convergence Domain of Relaxation Parameters

The convergence property of the DABSOR method is described in the following theorem, which
precisely determines the convergence domain of the DABSOR method with respect to the relax-
ation parameters ω and τ . For practical application, only the finite time interval case is studied.

Theorem 5.1 Consider the linear DAEs (1.2) and the corresponding DABSOR method, i.e.
Method 5.1, on finite time interval. Denote the smallest and the largest eigenvalues of the
matrix A by ηmin and ηmax, and those of the matrix (BTB)−1Q by µmin and µmax, respectively.
Then the iterative sequence given by the DABSOR method is convergent, provided

(a) when 0 ≤ σ
ηmax

≤ σ
ηmin

,

0 < τ < 2ηminµmin

(
2

ω
+

σ

ηmax
− 1

)
, 0 < ω < 2;

(b) when −1 < σ
ηmin

≤ σ
ηmax

< 0,

0 < τ < 2ηminµmin

(
2

ω
+

σ

ηmin
− 1

)
, 0 < ω <

2ηmin

ηmin − σ
;

(c) when σ
ηmin

≤ σ
ηmax

< −1,

2ηminµmin

(
2

ω
+

σ

ηmax
− 1

)
< τ < 0,

2ηmax

ηmax − σ
< ω < 2.

Here, σ = 1
△t

αν

βν
.

Proof : According to Theorem 4.1, we know that the spectral radius of the DABSOR method is
given by

ρ(K△t) = ρ

(
K

(
1

△t
αν

βν

))
= ρ (K(σ))

= ρ

((
σI + 1

ω
A 0

−BT 1
τ
Q

)−1( (
1
ω
− 1
)
A −B

0 1
τ
Q

))
.
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Let λ be an eigenvalue of the matrix

(
σI + 1

ω
A 0

−BT 1
τ
Q

)−1( (
1
ω
− 1
)
A −B

0 1
τ
Q

)
(5.4)

and
(
x
y

)
be the corresponding eigenvector. Then we have

( (
1
ω
− 1
)
A −B

0 1
τ
Q

)(
x
y

)
= λ

(
σI + 1

ω
A 0

−BT 1
τ
Q

)(
x
y

)
,

or equivalently

{
(1− ω − λ)Ax− λωσx = ωBy,
(λ− 1)Qy = λτBTx.

(5.5)

Without loss of generality, the vector x is normalized such that x∗x = 1. Here and in the sequel,
x∗ is used to denote the conjugate transpose of the vector x. Denote by

γa = x∗Ax.

If (1− ω − λ)Ax− λωσx = 0, then we have

(1− ω − λ) γa − λωσ = 0,

or equivalently,

λ =
1− ω

1 + ωδ
,

where δ = σ
γa
. Thus, we have

{
0 = By,
(λ− 1)Qy = λτBTx.

It then follows that y = 0 and x ∈ null(BT ), where null(BT ) represents the null space of the
matrix BT . Hence, λ = 1−ω

1+ωδ
is an eigenvalue of K(σ) with corresponding eigenvector (x∗, 0∗)∗,

where x ∈ null(BT ).

Similar to the analysis in [3], we find that λ = 1− ω can also be an eigenvalue of the matrix
in (5.4).

Based on the previous cases, two conditions

|1− ω| < 1 and

∣∣∣∣
1− ω

1 + ωδ

∣∣∣∣ < 1 (5.6)

should be satisfied to guarantee the convergence of the DABSOR method.

If λ 6= 1−ω
1+ωδ

, 1− ω, then by solving y from the second equation in (5.5) we can obtain

y =
λτ

λ− 1
Q−1BTx.
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After substituting this equality into the first equation in (5.5) we have

(1− ω − λ)Ax =
λωτ

λ− 1
BQ−1BTx+ λωσx.

Premultiplying x∗ from left on both sides of the above equality leads to

(1− ω − λ) x∗Ax =
λωτ

λ− 1
x∗BQ−1BTx+ λωσ. (5.7)

Denote by
γq = x∗BQ−1BTx.

Since x /∈ null(BT ), we obtain from (5.7) that

(ωσ + γa)λ
2 + (τωγq − ωσ + ωγa − 2γa)λ+ γa (1− ω) = 0,

with the notation
γ =

γq
γa
,

the above quadratic polynomial can be rewritten into the form

λ2 + φλ+ ψ = 0, (5.8)

where

φ =
τωγ − ωδ + ω − 2

1 + ωδ

and

ψ =
1− ω

1 + ωδ
.

Based on the location of zeros of quadratic polynomial (5.8) [17] and following the steps in
[3], we obtain

(a) When δ ≥ 0, ω and τ satisfy

0 < τ <
2[2 + ω(δ − 1)]

ωγ
, 0 < ω < 2.

(b) When −1 < δ < 0, ω and τ satisfy

0 < τ <
2[2 + ω(δ − 1)]

ωγ
, 0 < ω <

2

1− δ
.

(c) When δ < −1, ω and τ satisfy

2[2 + ω(δ − 1)]

ωγ
< τ < 0,

2

1− δ
< ω < 2.
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Recalling that δ = σ
γa
, γ =

γq
γa
, and γa ∈ [ηmin, ηmax], γq ∈ [ 1

µmax
, 1
µmin

], we can easily calculate
the smallest and the largest bounds about δ and γ, denoted by δmin, γmin and δmax, γmax,
respectively, as follows:

(i) when σ ≥ 0, it holds that

δmin = σ
ηmax

, δmax = σ
ηmin

, and γmin = 1
ηmaxµmax

, γmax = 1
ηminµmin

;

(ii) when σ < 0, it holds that

δmin = σ
ηmin

, δmax = σ
ηmax

, and γmin = 1
ηmaxµmax

, γmax = 1
ηminµmin

.

By making use of these bounds, from the feasible domain about ω and τ determined in (a)-(c),
we can straightforwardly obtain the following convergence domains for the DABSOR method:

(a) when 0 ≤ δmin ≤ δmax, ω and τ satisfy

0 < τ <
2[2 + ω(δmin − 1)]

ωγmax
, 0 < ω < 2;

(b) when −1 < δmin ≤ δmax < 0, ω and τ satisfy

0 < τ <
2[2 + ω(δmin − 1)]

ωγmax
, 0 < ω <

2

1− δmin
;

(c) when δmin ≤ δmax < −1, ω and τ satisfy

2[2 + ω(δmax − 1)]

ωγmax
< τ < 0,

2

1− δmax
< ω < 2.

�

From the proof of Theorem 5.1, we immediately get the following corollary.

Corollary 5.1 The nonzero eigenvalues of the matrix K(σ) are given by λ = 1−ω
1+ωδ

, λ = 1− ω
or

λ =
1

2(1 + ωδ)

[
−(τωγ − ωδ + ω − 2)±

√
(τωγ − ωδ + ω − 2)2 − 4(1 − ω)(1 + ωδ)

]
, (5.9)

where γ and δ are the same as in the proof of Theorem 5.1.

5.2 The Optimal Iterative Parameters and Convergence Factor

In this subsection, the optimal iterative parameters and the corresponding optimal convergence
factor of the DABSOR method on finite time interval is discussed. Since the linear multistep
formula selected in the DABSOR method always leads to σ > 0, the condition σ > 0 is added
in the optimality discussion of the DABSOR method.
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Follow the notations in Section 5.1, according Theorem 5.1, we know that the iteration pa-
rameters ω and τ of the DABSOR method must satisfy

0 < τ <
2[2 + ω(δmin − 1)]

ωγmax
, 0 < ω < 2. (5.10)

Due to the definition of δ and the symmetric positive definite matrix block A, the condition
σ > 0 leads to δ > 0. Therefore, the sequential discussion is divided into two cases δ > 1 and
0 < δ ≤ 1.

For the case δ > 1, we denote the following functions as





f1(ω, τ, γ, δ) =
1

2(1+ωδ)

[
2− ω + ωδ − τωγ +

√
(2− ω + ωδ − τωγ)2 − 4(1 − ω)(1 + ωδ)

]
,

for ω > 4τγ
(τγ−δ+1)2+4δ

, τγ < δ − 1,

or 4τγ
(τγ−δ+1)2+4δ

< ω < 2
τγ−δ+1 , δ − 1 < τγ < δ + 1;

f2(ω, τ, γ, δ) =
1

2(1+ωδ)

[
τωγ − ωδ + ω − 2 +

√
(τωγ − ωδ + ω − 2)2 − 4(1 − ω)(1 + ωδ)

]
,

for ω > 4τγ
(τγ−δ+1)2+4δ

, τγ > δ + 1,

or ω > 2
τγ−δ+1 , δ − 1 < τγ < δ + 1;

f3(ω, τ, γ, δ) = g(ω, δ) =
√

1−ω
1+ωδ

,

for ω < 4τγ
(τγ−δ+1)2+4δ

.

The above functions are induced from calculating the magnitudes of the nonzero eigenvalues of
the matrix K(σ) given in the Corollary 5.1 based on the following three cases:

(i) 2− ω + ωδ − τωγ > 0, (2− ω + ωδ − τωγ)2 − 4(1 − ω)(1 + ωδ) > 0;

(ii) 2− ω + ωδ − τωγ < 0, (2− ω + ωδ − τωγ)2 − 4(1 − ω)(1 + ωδ) > 0;

(iii) (2− ω + ωδ − τωγ)2 − 4(1− ω)(1 + ωδ) ≤ 0.

The first two cases correspond to the positive discriminant of the quadratic polynomial (5.8)
and the sign of the term 2− ω + ωδ − τωγ. Meanwhile, the third case corresponds to the non-
positive discriminant. Further investigating each of these cases, together with the intervals given
in (5.10) with respect to ω and τ , leads to the definitions of functions fj(ω, τ, γ, δ) (j = 1, 2, 3)
respectively.

Assumption 5.1 ωσ
τ
/∈ sp(Q−1BTB).

On account of Assumption 5.1, similar to the analysis in [3], we have

(1− ω) /∈ sp(K(σ)).

At the same time, the restrictions on ω and τ in the definitions of functions fj(ω, τ, γ, δ) (j =
1, 2, 3) make it holds that

fj(ω, τ, γ, δ) ≥
√

1− ω

1 + ωδ
≥ 1− ω

1 + ωδ
, j = 1, 2, 3.
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Now, we discuss the monotone properties of the functions fj(ω, τ, γ, δ) (j = 1, 2, 3) with
respect to γ and ω.

By specific computation, we get





∂f1(ω,τ,γ,δ)
∂γ

= − τω
2(1+ωδ)

[
1 + 1√

(2−ω+ωδ−τωγ)2−4(1−ω)(1+ωδ)

]
,

for ω > 4τγ
(τγ−δ+1)2+4δ

, τγ < δ − 1,

or 4τγ
(τγ−δ+1)2+4δ

< ω < 2
τγ−δ+1 , δ − 1 < τγ < δ + 1;

∂f2(ω,τ,γ,δ)
∂γ

= τω
2(1+ωδ)

[
1 + 1√

(τωγ−ωδ+ω−2)2−4(1−ω)(1+ωδ)

]
,

for ω > 4τγ
(τγ−δ+1)2+4δ , τγ > δ + 1,

or ω > 2
τγ−δ+1 , δ − 1 < τγ < δ + 1;

∂f3(ω,τ,γ,δ)
∂γ

= 0,

for ω < 4τγ
(τγ−δ+1)2+4δ

.

Thus





∂f1(ω,τ,γ,δ)
∂γ

< 0, for ω > 4τγ
(τγ−δ+1)2+4δ

, τγ < δ − 1,

or 4τγ
(τγ−δ+1)2+4δ

< ω < 2
τγ−δ+1 , δ − 1 < τγ < δ + 1;

∂f2(ω,τ,γ,δ)
∂γ

> 0, for ω > 4τγ
(τγ−δ+1)2+4δ

, τγ > δ + 1,

or ω > 2
τγ−δ+1 , δ − 1 < τγ < δ + 1;

∂f3(ω,τ,γ,δ)
∂γ

= 0, for ω < 4τγ
(τγ−δ+1)2+4δ

.

(5.11)

Based on (5.11), we find that: f1(ω, τ, γ, δ) decreases with respect to γ when ω > 4τγ
(τγ−δ+1)2+4δ

and τγ < δ − 1, or when 4τγ
(τγ−δ+1)2+4δ < ω < 2

τγ−δ+1 and δ − 1 < τγ < δ + 1; f2(ω, τ, γ, δ)

increases with respect to γ when ω > 4τγ
(τγ−δ+1)2+4δ

and τγ > δ + 1, or when ω > 2
τγ−δ+1 and

δ − 1 < τγ < δ + 1; f3(ω, τ, γ, δ) is not related to γ.

Denote fnume
j (j = 1, 2, 3) as the numerator of the functions fj (j = 1, 2, 3). Then





∂fnume
1 (ω,τ,γ,δ)

∂ω
= −

[
τγ − δ + 1 + (2−ω+ωδ−τωγ)(τγ−δ+1)+2(δ−1−2ωδ)√

(2−ω+ωδ−τωγ)2−4(1−ω)(1+ωδ)

]
,

for ω > 4τγ
(τγ−δ+1)2+4δ

, τγ < δ − 1,

or 4τγ
(τγ−δ+1)2+4δ < ω < 2

τγ−δ+1 , δ − 1 < τγ < δ + 1;
∂fnume

2 (ω,τ,γ,δ)
∂ω

= τγ − δ + 1 + (τωγ−ωδ+ω−2)(τγ−δ+1)−2(δ−1−2ωδ)√
(τωγ−ωδ+ω−2)2−4(1−ω)(1+ωδ)

,

for ω > 4τγ
(τγ−δ+1)2+4δ

, τγ > δ + 1,

or ω > 2
τγ−δ+1 , δ − 1 < τγ < δ + 1;
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Therefore




∂f1(ω,τ,γ,δ)
∂ω

=
(1+ωδ) ∂

∂ω
fnume
1 −δfnume

1

2(1+ωδ)2 ,

for ω > 4τγ
(τγ−δ+1)2+4δ

, τγ < δ − 1,

or 4τγ
(τγ−δ+1)2+4δ

< ω < 2
τγ−δ+1 , δ − 1 < τγ < δ + 1;

∂f2(ω,τ,γ,δ)
∂ω

=
(1+ωδ) ∂

∂ω
fnume
2 −δfnume

2

2(1+ωδ)2
,

for ω > 4τγ
(τγ−δ+1)2+4δ , τγ > δ + 1,

or ω > 2
τγ−δ+1 , δ − 1 < τγ < δ + 1;

∂f3(ω,τ,γ,δ)
∂ω

= −1√
1−ω(

√
1+ωδ)

3 ,

for ω < 4τγ
(τγ−δ+1)2+4δ

.

Denote

ϑ(ω) = δ
[
(η2 + 4δ)η − δ(δ − 1)2

]
ω2 − 2δ(η + τγ)τγω − 4τ2γ2,

where η = τγ − δ + 1.

Assumption 5.2 ϑ(ω) ≤ 0 when ω > 4τγ
(τγ−δ+1)2+4δ

and τγ < δ − 1, or when 4τγ
(τγ−δ+1)2+4δ

<

ω < 2
τγ−δ+1 and δ − 1 < τγ < δ + 1.

Then




∂f1(ω,τ,γ,δ)
∂ω

> 0, when Assumption 5.2 is true, and

for ω > 4τγ
(τγ−δ+1)2+4δ

, τγ < δ − 1,

or 4τγ
(τγ−δ+1)2+4δ < ω < 2

τγ−δ+1 , δ − 1 < τγ < δ + 1;
∂f2(ω,τ,γ,δ)

∂ω
> 0, for ω > 4τγ

(τγ−δ+1)2+4δ , τγ > δ + 1,

or ω > 2
τγ−δ+1 , δ − 1 < τγ < δ + 1;

∂f3(ω,τ,γ,δ)
∂ω

< 0, for ω < 4τγ
(τγ−δ+1)2+4δ

.

(5.12)

In view of (5.12), we conclude that: f1(ω, τ, γ, δ) increases with respect to ω when ω > 4τγ
(τγ−δ+1)2+4δ

and τγ < δ − 1, or when 4τγ
(τγ−δ+1)2+4δ

< ω < 2
τγ−δ+1 and δ − 1 < τγ < δ + 1; f2(ω, τ, γ, δ) in-

creases with respect to ω when ω > 4τγ
(τγ−δ+1)2+4δ

and τγ > δ + 1, or when ω > 2
τγ−δ+1 and

δ − 1 < τγ < δ + 1; f3(ω, τ, γ, δ) decreases with respect to ω when ω < 4τγ
(τγ−δ+1)2+4δ

.

Moreover, when fj(ω, τ, γ, δ) (j = 1, 2, 3) are well defined for positive reals γ and τ , we have




f1(ω, τ, γ, δ) = f3(ω, τ, γ, δ) if ω = 4τγ
(τγ−δ+1)2+4δ

,

f2(ω, τ, γ, δ) = f3(ω, τ, γ, δ) if ω = 4τγ
(τγ−δ+1)2+4δ ,

f1(ω, τ, γ, δ) = f2(ω, τ, γ, δ) if ω = 2
τγ−δ+1 .

(5.13)

Denote ω(τ, γ) = 4τγ
(τγ−δ+1)2+4δ

, then ω(τ, γ) increases with respect to γ when τγ < δ + 1, and

ω(τ, γ) decreases with respect to γ when τγ > δ + 1.

For two different reals γ1 and γ2, we have

f1(ω, τ, γ1, δ) = f2(ω, τ, γ2, δ) if ω =
4

τ(γ1 + γ2)− 2(δ − 1)
. (5.14)
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In addition, we define the functions

ω−(τ) = ω(γmin, δ), ω+(τ) = ω(γmax, δ), ω0(τ) =
4

τ(γmin + γmax)− 2(δ − 1)
.

By applying the Corollary 5.1, after concrete computations we know that the magnitudes of
the nonzero eigenvalues λ of the matrix K(σ) can be expressed as following:

when τγ < δ − 1, |λ| =
∣∣∣ 1−ω
1+ωδ

∣∣∣ or

|λ| =
{
f1(ω, τ, γ, δ), for ω > 4τγ

(τγ−δ+1)2+4δ ,

g(ω, δ), for ω < 4τγ
(τγ−δ+1)2+4δ

;
(5.15)

when δ − 1 < τγ < δ + 1, |λ| =
∣∣∣ 1−ω
1+ωδ

∣∣∣ or

|λ| =





f1(ω, τ, γ, δ), for 4τγ
(τγ−δ+1)2+4δ < ω < 2

τγ−δ+1 ,

f2(ω, τ, γ, δ), for ω > 2
τγ−δ+1 ,

g(ω, δ), for ω < 4τγ
(τγ−δ+1)2+4δ

;

(5.16)

when τγ > δ + 1, |λ| =
∣∣∣ 1−ω
1+ωδ

∣∣∣ or

|λ| =
{
f2(ω, τ, γ, δ), for ω > 4τγ

(τγ−δ+1)2+4δ
,

g(ω, δ), for ω < 4τγ
(τγ−δ+1)2+4δ

.
(5.17)

By observing (5.15)-(5.16), we find that in order to compute the spectral radius of ρ(K(σ))
we have to discuss in the following three cases with respect to the parameter τ :

(a) τ ≤ δ−1
γmax

;

(b) τ ≥ δ+1
γmin

;

(c) δ−1
γmax

< τ < δ+1
γmin

.

For the case 0 < δ ≤ 1, a similar discussion can be stated as long as Assumption 5.2 is
replaced as the following one.

Assumption 5.3 ϑ(ω) ≤ 0 when 4τγ
(τγ−δ+1)2+4δ < ω < 2

τγ−δ+1 and 0 < τγ < δ + 1.

Based on the above analysis, we can give a specific demonstration of the optimal iterative
parameters and the corresponding optimal convergence factor of the DABSOR method.

Theorem 5.2 Consider the linear DAEs (1.2) and the corresponding DABSOR method, i.e.
Method 5.1, on finite time interval. Let σ > 0, and take the same notations in Theorem 5.1.

For the case δ > 1, let τ̂ = δ+1√
γminγmax

, then ω−(τ̂) = ω+(τ̂ ) = ω0(τ̂ ), and

{
ω−(τ) ≤ ω+(τ) ≤ ω0(τ),

δ−1
γmax

< τ < τ̂ ,

ω0(τ) ≤ ω+(τ) ≤ ω−(τ), τ̂ < τ < δ+1
γmin

.
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When δ−1
γmax

< τ < τ̂ , let γ1, γ2 ∈ (γmin, γmax) be positive reals satisfying





γ1 = sup
{
γ | τγ < δ − 1 and δ−1

γmax
< τ < τ̂

}
,

γ2 = sup
{
γ | τγ < δ + 1 and δ−1

γmax
< τ < τ̂

}
.

When τ̂ < τ < δ+1
γmin

, let γ1, γ2 ∈ (γmin, γmax) be positive reals satisfying





γ1 = sup
{
γ | τγ < δ − 1 and τ̂ < τ < δ+1

γmin

}
,

γ2 = sup
{
γ | τγ < δ + 1 and τ̂ < τ < δ+1

γmin

}
.

Denote ω̂0(τ) =
4

τ(γ1+γ2)−2(δ−1) as the point of intersection of f1(ω, τ, γ1, δ) and f2(ω, τ, γ2, δ),

ω̂−(τ) = ω(τ, γ1) as the point of intersection of f1(ω, τ, γ1, δ) and g(ω, δ), ω̂+(τ) = ω(τ, γ2) as
the point of intersection of f2(ω, τ, γ2, δ) and g(ω, δ). If Assumptions 5.1 and 5.2 are satisfied,
then

(a) when δ−1
γmax

< τ < δ+1√
γminγmax

,

(i) for ω̂−(τ) < ω̂+(τ) < ω̂0(τ),

ρ(K(σ)) =





g(ω, δ), for 0 < ω < ω−(τ),
f1(ω, τ, γmin, δ), for ω−(τ) < ω < ω0(τ),
f2(ω, τ, γmax, δ), for ω0(τ) < ω < 2;

(ii) for ω̂0(τ) < ω̂−(τ) < ω̂+(τ),

ρ(K(σ)) =

{
g(ω, δ), for 0 < ω < ω−(τ),
f1(ω, τ, γmin, δ), for ω−(τ) < ω < 2;

(b) when δ+1√
γminγmax

< τ < δ+1
γmin

,

ρ(K(σ)) =

{
g(ω, δ), for 0 < ω < ω+(τ),
f2(ω, τ, γmax, δ), for ω+(τ) < ω < 2.

For the case 0 < δ ≤ 1, if Assumptions 5.1 and 5.3 are satisfied, then

(a) when δ+1
γmax

< τ < δ+1√
γminγmax

,

ρ(K(σ)) =





g(ω, δ), for 0 < ω < ω−(τ),
f1(ω, τ, γmin, δ), for ω−(τ) < ω < ω0(τ),
f2(ω, τ, γmax, δ), for ω0(τ) < ω < 2;

(b) when δ+1√
γminγmax

< τ < δ+1
γmin

,

ρ(K(σ)) =

{
g(ω, δ), for 0 < ω < ω+(τ),
f2(ω, τ, γmax, δ), for ω+(τ) < ω < 2.
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Furthermore, for any δ > 0, the optimal iterative parameters τopt and ωopt are given by

τopt =
δ + 1√
γminγmax

and ωopt =
4
√
γminγmax

(δ + 1)(γmin + γmax)− 2(δ − 1)
√
γminγmax

,

and the corresponding optimal convergence factor of the DABSOR method is given by

ρ(K(σ))opt =

√
γmax −

√
γmin√

γmax +
√
γmin

,

here, δ ∈ (δmin, δmax).

Remark 5.2 According to the expressions of the optimal iterative parameters τopt and ωopt

in Theorem 5.2, (τopt, ωopt) is not a single point in ω-τ plane, which means that the optimal
convergence factor ρ(K(σ))opt is obtained on a parameterized curve (τopt(δ), ωopt(δ)) with respect
to δ ∈ (δmin, δmax). Thus, the above parameterized curve which shows all the optimal parameters
is called optimal convergence curve. Moreover, the properties of the optimal convergence
curve are closely related to the linear multistep formulae selected and the properties of the matrix
block A, B and the preconditioner Q.

5.3 The DABSOR Method with Windowing Technique

It is known that there is a typical phenomenon of the waveform relaxation methods based
on matrix splitting that standard matrix splitting iterative methods for solving linear algebraic
system may not have, that is, during the iterative procedure of the waveform relaxation methods,
the intermediate solutions contain spurious oscillations with growth of the error and translation
of the oscillating region.

To be specific, according to Theorems 4.1 and 4.2, the spectral radius of K△t as a discrete linear
convolution operator on finite time interval is smaller than that on infinite time interval. Thus,
it is reasonable that the waveform relaxation methods are convergent on finite time interval,
and divergent on infinite time interval. In this case, the iterative procedure on a sufficient
long time interval firstly seems to diverge, i.e. oscillations appear in large part of the whole
computation time interval. Eventually, the iterative procedure surely starts to converge, i.e.
the length of time interval with small error extends slowly as the iteration proceeds. Therefore,
the asymptotic convergence behavior is dictated by Theorem 4.1. Nevertheless, it takes a large
number of iterative steps to make the region of divergent behavior receding backward, which
predicts a rapid increase to the computation load.

In order to get around the above shortcoming during long time interval simulation, an ac-
celeration technique, called windowing, is introduced to the waveform relaxation methods. In
fact, windowing is a technique to divide the whole long time interval into a number of short time
subintervals based on certain rules, and apply the corresponding waveform relaxation methods
on each subinterval. Since the subintervals are short, the number of iterative steps of the wave-
form relaxation methods on each subinterval is smaller than that on the whole long time interval.
Furthermore, the sum of computation loads on all of the subintervals is certainly smaller than
the computation load while simulating on the whole long time interval. To improve computing
efficiency, the DABSOR method is integrated with windowing technique.
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Method 5.2 (The DABSOR Method with Windowing Technique)
For solving linear constant coefficient DAEs (1.2) on time interval [T1,T2], divide the time
interval into L equal distance time steps, and compute the solution of (1.2) on each of the L
time levels in Ωt = (T1,T2]. Choosing N +1 time levels T1 = t0 < t1 < · · · < tN = T2 to divide

time interval Ωt into N smaller subintervals Ω
(i)
t = (ti−1, ti], i = 1, 2, . . . , N , with Li time levels

in each subinterval Ω
(i)
t , and

∑N
i=1 Li = L. Let Q ∈ R

l×l be a symmetric positive definite matrix
preconditioning the Schur complement matrix BTA−1B. For two positive integers r and l, let

x
(0)
△t, i, f△t, i

∈ lp(Li;C
r) and y

(0)
△t, i, g△t, i

∈ lp(Li;C
l) be the initial iterative vector sequences and

the vector sequences derived from the vector values on each of the corresponding Li time levels
of the right hand side of the linear DAEs (1.2). x0, . . ., xν−1 ∈ C

r and y0, . . ., yν−1 ∈ C
l are

the initial vector values of the iterative vector sequences. Then:

For i = 1, 2, . . . , N , on each subinterval Ω
(i)
t , compute

For k = 1, 2, . . .untill vector sequences x
(k)
△t, i and y

(k)
△t, i converge to the exact solution x△t, i

and y△t, i
of the discrete system derived from discretizing the linear DAEs (1.2) by

linear multistep formulae, compute

For n =
∑i−1

j=1 Lj : 1 : Li − 1 +
∑i−1

j=1 Lj (if i = 1,
∑i−1

j=1 Lj = 0), solve the following
linear systems on each time level




(
αν

△tI +
βν
ω
A)x

(k)
n+ν =

ν∑

j=0

βj((
1

ω
− 1)Ax

(k−1)
n+j −By

(k−1)
n+j + fn+j)−

ν−1∑

j=0

(
αj

△tI +
βj
ω
A)x

(k)
n+j ,

βν
τ
Qy

(k)
n+ν =

ν∑

j=0

βj(B
Tx

(k)
n+j +

1

τ
Qy

(k−1)
n+j + gn+j)−

ν−1∑

j=0

βj
τ
Qy

(k)
n+j.

End

End

End

6 Numerical Results

In this section, numerical tests are performed to demonstrate the correctness of theoretical
results presented in previous sections and the efficiency of the DABSOR method with windowing
technique, i.e. the Method 5.2, for solving the linear DAEs derived from time-dependent Stokes
equations.

Consider the two-dimensional time-dependent Stokes equations on the domain Ω = {−1 ≤
x ≤ 1,−1 ≤ y ≤ 1}:





∂u
∂t

− ν( ∂
2u

∂x2 + ∂2u
∂y2 ) +

∂p
∂x = 0,

∂v
∂t

− ν( ∂
2v

∂x2 + ∂2v
∂y2 ) +

∂p
∂y = 0,

∂u
∂x + ∂v

∂y = 0.

(6.1)
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Note that the analytic solution of equations (6.1) is of the form





u⋆(x, y; t) = u(y)eθx−ζt, u(y) = c1 sin(θy) +
2κ
θ
c2 sin(κy),

v⋆(x, y; t) = v(y)eθx−ζt, v(y) = c1 cos(θy) + 2c2 cos(κy),

p⋆(x, y; t) = p(y)eθx−ζt, p(y) = ζ
θ
c1 sin(θy),

where the parameters are chosen the same as in [3], i.e. set ν = 1, θ = 1, ζ = 11.6348, κ = 3.5545,
c1 = 3.390472650419484, c2 = 1.

Since this paper focuses on the study of solving linear DAEs by waveform relaxation methods,
less attention is paid to spacial discretization of the time-dependent Stokes equations (6.1). For
a uniform spacial grid with stepsize hx = 2

ℓx+1 and hy = 2
ℓy+1 , we simply choose Scheme

II defined in [3] for the implementation of the DABSOR method, which applies the centered
difference scheme to the Laplacian, performs the forward difference scheme to the pressure
variable, and discretizes the third equation in (6.1) by the backward difference scheme. Then we
obtain a linear DAEs of the form (1.2), the details of its coefficient matrices and right-hand side
vector-valued function can be found in [3]. Besides, the choices of the preconditioner matrix Q
are shown in Table 1.

Table 1: The Choices of the Preconditioner Matrix Q

Case No. Matrix Q Description

Q1 BT Â−1B Â = tridiag(A)

Q2 BT Â−1B Â = diag(A)

Due to the stiffness of the linear DAEs, the backward differentiation formulae (BDF) of order
1 to order 6 are selected to be the linear multistep formulae for the DABSOR method. The
coefficients of backward differentiation formulae are shown in Table 2.

In fact, the purpose for simulation is to compute the approximate solution of the time-

dependent Stokes equations (6.1) on a finite time interval Ωt = ∪N
i=1Ω

(i)
t , where Ω

(i)
t = (T1+△t×∑i−1

j=1 Lj,T1+△t×∑i
j=1 Lj] is the i-th window of the DABSOR method (if i = 1,

∑i−1
j=1 Lj = 0).

Here, △t represents the time stepsize, N denotes the number of windows, and Li is the number
of time steps on the i-th window. The stopping criterion on the i-th window of the DABSOR

Table 2: The coefficients of BDF

Order ν βν α6 α5 α4 α3 α2 α1 α0

1 1 1 −1

2 2
3 1 −4

3
1
3

3 6
11 1 − 8

11
9
11 − 2

11

4 12
25 1 −48

25
36
25 −16

25
3
25

5 60
137 1 −300

137
300
137 −200

137
75
137 − 12

137

6 60
147 1 −360

147
450
147 −400

147
225
147 − 72

147
10
147
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method is set to be

ǫ(k,i) =
sup

Ω×Ω
(i)
t

{∣∣u(k,i)h − u
(∗,i)
h

∣∣,
∣∣v(k,i)h − v

(∗,i)
h

∣∣,
∣∣p(k,i)h − p

(∗,i)
h

∣∣
}

sup
Ω×Ω

(i)
t

{∣∣u(∗,i)h

∣∣,
∣∣v(∗,i)h

∣∣,
∣∣p(∗,i)h

∣∣
} < 10−6, (6.2)

where u
(k,i)
h , v

(k,i)
h , p

(k,i)
h are the k-th iterate on the i-th window of the DABSOR method, and

u
(∗,i)
h , v

(∗,i)
h , p

(∗,i)
h are the entries of the exact solution on the i-th window of the linear DAEs

(1.2) derived from equations (6.1). Moreover, the initial waves are chosen to be

u
(0)
h =

1

1 + 10000ζt
u⋆(x, y; 0),

v
(0)
h =

1

1 + 10000ζt
v⋆(x, y; 0)

and

p
(0)
h =

1

1 + 10000ζt
p⋆(x, y; 0).

Since the DABSOR method is integrated with windowing technique, long time interval simu-
lation of the time-dependent Stokes equations (6.1) can be obtained by simply adding as many
windows as required to the end of the existing time interval. Hence, it is not necessary to choose
a long time interval for numerical tests. In the sequel, the time step is fixed as △t = 0.001, and
the simulation time interval of the time-dependent Stokes equations (6.1) is (0.01, 0.13]. Due to
the application of linear multistep formulae to the DABSOR method, the exact solution of the
time-dependent Stokes equations (6.1) on [0, 0.01] is taken to serve as the initial values. For a
precise and comprehensive demonstration, the following three subsections present the numerical
results in three different aspects.

6.1 Optimal Convergence Curve

In Theorem 5.2 and Remark 5.2, there is a curve in ω-τ plane related to the optimality of the
CABSOR method called the optimal convergence curve. The curve is shown in this section in
different situations.

Surfaces of spectral radii of the discrete linear convolution operator K△t based on six different
linear multistep formulae like BDF(1-6), one grid size as 12 × 12 and two different choices of
preconditioners Q in Table 1 are shown in Figures 1-6. Here, BDF(i) represents the backward
differentiation formula of order i. According to Theorem 5.2 and Remark 5.2, the optimal
iterative parameter pair (ωopt, τopt) is not a single point in ω-τ plane, all possible choices of
optimal iterative parameter pair (ωopt, τopt) lead to a finite length parameterized curve with
respect to δ ∈ (δmin, δmax), i.e. the optimal convergence curve.

After careful observation of the surfaces based on preconditioner Q1 in Figures 1-6, we find
that the lower bound of spectral radii of the discrete linear convolution operator K△t shown in
each surface based on BDF of six different orders is available along a 3-D curve of certain length.
Obviously, the projection of such 3-D curve to the ω-τ plane is just the optimal convergence
curve, which coincides with the description in Theorem 5.2 and Remark 5.2. However, for the
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Figure 1: Surfaces of spectral radii of linear convolution operator K△t on finite time interval
with respect to ω and τ based on BDF(1), 12× 12 grid and preconditioners (a) Q1 and (b) Q2.

case of preconditioner Q2, the length of optimal convergence curve decreases sharply when the
order of BDF increases. Especially for BDF(4-6), the optimal convergence curve shrinks to
a single point. It means that the optimal convergence factor of the DABSOR method based
on preconditioner Q2 is much more sensitive to the choice of iterative parameters than that
based on preconditioner Q1. According to the expressions of optimal iterative parameters ωopt

and τopt, we find that the length of optimal convergence curve closely related to matrices A,
B and preconditioner Q. Apparently, the difference between surfaces in each figure is caused
by choosing different preconditioner Q. There are also good news for preconditioner Q2, that
is, the lower bound of spectral radii of the discrete linear convolution operator K△t based on
preconditioner Q2 is much smaller than that based on preconditioner Q1. It means that the
DABSOR method with optimal convergence parameters based on preconditioner Q2 is much
faster than that based on preconditioner Q1. Therefore, the preconditioner matrix Q should be
chosen carefully.

6.2 Optimal Convergence Factor: Theoretical vs Practical

In Theorems 4.1 and 5.2, the general spectral radius formula of discrete-time waveform relax-
ation methods for solving general linear DAEs and the optimal convergence factor formula of the
DABSOR method for solving linear DAEs derived from the time-dependent Stokes equations
are discovered on finite time interval respectively. In this subsection, the comparison between
theoretical and practical value of optimal convergence factor of the DABSOR method is exhib-
ited. The computation of theoretical value is based on Theorems 4.1 and 5.2. The practical
value represents the average experimental convergence rate.

The comparisons between theoretical and practical value of optimal convergence factor based
on six different linear multistep formulae like BDF(1-6), two grid sizes as 12 × 12, 24 × 24 and
two different choices of preconditioners Q in Table 1 are presented in Tables 3-6. In these tables,
DTOCF denotes the theoretical value of optimal convergence factor of the DABSOR method on
finite time interval, APOCF represents the practical value of static iterative method for solving
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Figure 2: Surfaces of spectral radii of linear convolution operator K△t on finite time interval
with respect to ω and τ based on BDF(2), 12× 12 grid and preconditioners (a) Q1 and (b) Q2.
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Figure 3: Surfaces of spectral radii of linear convolution operator K△t on finite time interval
with respect to ω and τ based on BDF(3), 12× 12 grid and preconditioners (a) Q1 and (b) Q2.
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Figure 4: Surfaces of spectral radii of linear convolution operator K△t on finite time interval
with respect to ω and τ based on BDF(4), 12× 12 grid and preconditioners (a) Q1 and (b) Q2.
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Figure 5: Surfaces of spectral radii of linear convolution operator K△t on finite time interval
with respect to ω and τ based on BDF(5), 12× 12 grid and preconditioners (a) Q1 and (b) Q2.
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Figure 6: Surfaces of spectral radii of linear convolution operator K△t on finite time interval
with respect to ω and τ based on BDF(6), 12× 12 grid and preconditioners (a) Q1 and (b) Q2.

the system of linear equations with respect to coefficient matrix A in linear DAEs (1.2) and
iterative matrix K(σ) with ωopt and τopt, and DPOCF(N) is the practical value of optimal
convergence factor of the DABSOR method with N windows. After observing Tables 3-6, we
find that the practical value DPOCF(N) of the DABSOR method decreases when the the num-
ber of windows increases, and the larger the number of windows, the closer the practical value
DPOCF(N) to the theoretical value DTOCF. Specifically, for smaller number of windows, the
computation load of the DABSOR method increases intensively because of larger spurious oscil-
lations discussed in section 5.3 occurred on each window. Thus, the practical value DPOCF(N)
with small number of windows is far beyond the theoretical value DTOCF. When N the num-
ber of windows increases, the spurious oscillations on each window becomes less apparent, and
the DABSOR method tends to be more efficient. In addition, the practical value APOCF of
the static iterative method is always smaller than the theoretical value DTOCF and practical
value DPOCF(N) of the DABSOR method, indicating that the convergence rate of the DAB-
SOR method is unlikely to be faster than the corresponding static iterative method. On the
other hand, theoretical and practical values based on preconditioner Q2 are much smaller than
that based on preconditioner Q1, which means that preconditioner Q2 always leads to faster
convergence rate. The findings are consist with the results in subsection 6.1.

6.3 Accelerating Effect by Windowing Technique

In fact, the accelerating effect by windowing technique is revealed in the sense of practical
optimal convergence factor in subsection 6.2. The larger the number of windows, the smaller
the practical optimal convergence factor, or equivalently, the faster the convergence rate of the
DABSOR method. In this subsection, the accelerating effect by windowing technique is exhibited
in the sense of average number of iterative steps of the DABSOR method on each window.

The comparisons of average number of iterative steps of the DABSOR method based on six
different linear multistep formulae like BDF(1-6), two grid sizes as 12 × 12, 24 × 24 and two
different choices of preconditioners Q in Table 1 are outlined in Tables 7-10. In these tables,
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Table 3: Theoretical vs Practical: the optimal convergence factor based on 12 × 12 grid and
preconditioner Q1

BDF(1) BDF(2) BDF(3) BDF(4) BDF(5) BDF(6)

DTOCF 0.3590 0.3921 0.4991 0.4812 0.5058 0.4943

APOCF 0.2154 0.2512 0.2154 0.2154 0.2154 0.2154

DPOCF(6) 0.7252 0.7834 0.8555 0.8918 0.9041 0.9056

DPOCF(12) 0.6519 0.6679 0.7960 0.8287 0.8417 0.8414

DPOCF(20) 0.6138 0.5695 0.7321 0.7687 0.7832 0.7803

DPOCF(30) 0.4527 0.4808 0.5985 0.5950 0.6152 0.6065

DPOCF(40) 0.3915 0.4206 0.5501 0.5424 0.5649 0.5530

DPOCF(60) 0.3237 0.3435 0.4855 0.4737 0.4946 0.4803

Table 4: Theoretical vs Practical: the optimal convergence factor based on 12 × 12 grid and
preconditioner Q2

BDF(1) BDF(2) BDF(3) BDF(4) BDF(5) BDF(6)

DTOCF 0.2940 0.1804 0.0559 0.1098 0.1250 0.1084

APOCF 0.0631 0.0316 0.0316 0.0100 0.0316 0.0100

DPOCF(6) 0.6081 0.6302 0.6661 0.6585 0.7341 0.7282

DPOCF(12) 0.4892 0.4762 0.4728 0.4603 0.5754 0.5601

DPOCF(20) 0.4115 0.3490 0.3300 0.3051 0.4420 0.4215

DPOCF(30) 0.3516 0.2673 0.2053 0.2107 0.2457 0.2205

DPOCF(40) 0.3006 0.2083 0.1493 0.1590 0.1838 0.1520

DPOCF(60) 0.2379 0.1412 0.0926 0.0895 0.1176 0.0827

Table 5: Theoretical vs Practical: the optimal convergence factor based on 24 × 24 grid and
preconditioner Q1

BDF(1) BDF(2) BDF(3) BDF(4) BDF(5) BDF(6)

DTOCF 0.3632 0.3298 0.5236 0.3408 0.5004 0.3493

APOCF 0.2154 0.2154 0.2154 0.2154 0.2154 0.2154

DPOCF(6) 0.6811 0.7525 0.8203 0.8188 0.8808 0.8567

DPOCF(12) 0.5875 0.6930 0.7603 0.7123 0.8061 0.7616

DPOCF(20) 0.5860 0.6271 0.6926 0.6156 0.7365 0.6722

DPOCF(30) 0.4684 0.4844 0.6039 0.4861 0.6026 0.4848

DPOCF(40) 0.4065 0.4189 0.5589 0.4168 0.5514 0.4158

DPOCF(60) 0.3412 0.3369 0.4973 0.3323 0.4816 0.3284
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Table 6: Theoretical vs Practical: the optimal convergence factor based on 24 × 24 grid and
preconditioner Q2

BDF(1) BDF(2) BDF(3) BDF(4) BDF(5) BDF(6)

DTOCF 0.4799 0.4061 0.3195 0.3097 0.2891 0.1871

APOCF 0.1000 0.0631 0.0631 0.0316 0.0316 0.0631

DPOCF(6) 0.5998 0.6641 0.6984 0.7475 0.7926 0.7880

DPOCF(12) 0.5231 0.5815 0.5894 0.6165 0.6703 0.6516

DPOCF(20) 0.5231 0.5149 0.4862 0.5044 0.5632 0.5326

DPOCF(30) 0.4282 0.4144 0.3569 0.3636 0.3537 0.3136

DPOCF(40) 0.3989 0.3649 0.2982 0.3021 0.2888 0.2398

DPOCF(60) 0.3506 0.3021 0.2267 0.2267 0.2107 0.1672

Table 7: Average number of iteration steps of the DABSOR method based on 12× 12 grid and
preconditioner Q1

NoW BDF(1) BDF(2) BDF(3) BDF(4) BDF(5) BDF(6) NoU

1 161.0 412.0 — — — — 51840

2 91.5 171.0 392.0 677.5 — — 25920

3 68.0 112.7 233.0 369.0 472.7 691.7 17280

4 58.8 77.2 160.0 200.5 294.2 314.0 12960

5 48.8 64.8 118.8 147.0 201.0 211.8 10368

6 42.8 58.0 92.0 126.5 146.2 152.5 8640

NoW stands for the number of windows, NoU is the number of unknowns on each window,
and “—” means the DABSOR method does not converge on at least one of the windows in
800 iterative steps. Obviously, the average number of iterative steps decreases in all kinds of
situations when NoW increases, which implies a decrease to the computation load. In another
word, the computation efficiency of the DABSOR method is greatly improved by applying
windowing technique. Moreover, the average number of iterative steps of the DABSOR method
based on preconditioner Q2 is apparently smaller than that based on preconditioner Q1, which
tells the same story as in subsections 6.1 and 6.2.

It is known that high order time stepping schemes lead to high accuracy for solving ODEs
and DAEs, meanwhile the computation load increases intensively. It is found in Tables 7-10
that the average number of iterative steps of the DABSOR method increases when the order
of BDF becomes higher. For extreme situations, when NoW is small, the DABSOR methods
based on high order BDF methods do not converge in 800 iterative steps. Hence, there should
be a balance between computation accuracy and computation efficiency.

7 Concluding Remarks

This paper studies the general theory of the discrete-time waveform relaxation methods. Then,
the DABSOR method is proposed for solving linear DAEs (1.2) derived from time-dependent
Stokes equations (1.1). The convergence property and optimality of the DABSOR method are
stated in detail. Due to the requirement of acceleration, the DABSOR method is integrated with
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Table 8: Average number of iteration steps of the DABSOR method based on 12× 12 grid and
preconditioner Q2

NoW BDF(1) BDF(2) BDF(3) BDF(4) BDF(5) BDF(6) NoU

1 160.0 428.0 697.0 — — — 51840

2 76.0 134.0 210.5 373.5 717.5 — 25920

3 49.7 75.0 107.7 159.3 193.3 264.3 17280

4 36.8 47.5 71.2 87.5 121.2 125.2 12960

5 31.2 35.0 43.6 59.8 67.6 83.2 10368

6 27.7 30.7 35.3 34.7 47.7 47.7 8640

Table 9: Average number of iteration steps of the DABSOR method based on 24× 24 grid and
preconditioner Q1

NoW BDF(1) BDF(2) BDF(3) BDF(4) BDF(5) BDF(6) NoU

1 154.0 350.0 721.0 — — — 207360

2 75.0 129.0 261.0 363.0 719.5 — 103680

3 54.7 80.7 162.0 176.3 283.3 379.0 69120

4 46.5 62.8 115.2 122.2 209.8 189.0 51840

5 39.0 53.8 87.8 91.6 148.4 129.6 41472

6 34.2 47.5 69.2 69.2 110.8 93.5 34560

Table 10: Average number of iteration steps of the DABSOR method based on 24× 24 grid and
preconditioner Q2

NoW BDF(1) BDF(2) BDF(3) BDF(4) BDF(5) BDF(6) NoU

1 168.0 366.0 — — — — 207360

2 76.0 138.5 238.0 325.5 601.0 — 103680

3 48.0 75.7 110.7 150.0 226.0 338.0 69120

4 35.0 47.5 68.2 98.0 118.8 153.8 51840

5 29.6 36.8 49.0 62.4 83.2 102.4 41472

6 25.7 33.0 38.2 47.5 60.5 60.7 34560



DABSOR Methods for Time-Dependent Stokes Equations 29

windowing technique, which leads to great acceleration as shown in Section 6. In fact, further
acceleration by algebraic techniques like Krylov subspace on each window is another path to
improve the DABSOR method. The future work will follow right this path.
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