UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

New minimal bounds for the derivatives of rational Bezier paths and rational rectangular Bezier surfaces

Bez, Neal; Bez, Helmut

DOI:
10.1016/j.amc.2013.09.039

License:
None: All rights reserved

Document Version

Peer reviewed version
Citation for published version (Harvard):
Bez, N \& Bez, H 2013, 'New minimal bounds for the derivatives of rational Bezier paths and rational rectangular Bezier surfaces', Applied Mathematics and Computation, vol. 225, pp. 475-479.
https://doi.org/10.1016/j.amc.2013.09.039

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

NOTICE: this is the author's version of a work that was accepted for publication in Applied Mathematics and Computation. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Applied Mathematics and Computation Volume 225, 1 December 2013, Pages 475-479 DOI:
http://dx.doi.org/10.1016/j.amc.2013.09.039

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
\bullet User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
-Users may not further distribute the material nor use it for the purposes of commercial gain.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

NEW MINIMAL BOUNDS FOR THE DERIVATIVES OF RATIONAL BÉZIER PATHS AND RATIONAL RECTANGULAR BÉZIER SURFACES

H. E. BEZ AND N. BEZ

Abstract

New minimal bounds are derived for the magnitudes of the derivatives of the rational Bézier paths and the rational rectangular Bézier surface patches of arbitrary degree, which improve previous work of this type in many cases. Moreover, our new bounds are explicitly given by simple and closedform expressions. An important advantage of the closed-form expressions is that they allow us to prove that our bounds are sharp under certain welldefined conditions. Some numerical examples, highlighting the potential of the new bounds in providing improved estimates, are given in an appendix.

1. Introduction

For vertices $v=\left(v_{0}, \ldots, v_{n}\right)$ and weights $w=\left(w_{0}, \ldots, w_{n}\right)$, for $w_{i}>0$, let $\sigma[v, w]$ be the associated rational Bézier path of degree n. Some classical derivative bounds of Floater [5] are

$$
\begin{equation*}
\left\|\sigma^{\prime}[v, w]\right\|_{\infty} \leq n \Delta_{1}(v)\left(\frac{\max _{i} w_{i}}{\min _{j} w_{j}}\right)^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\sigma^{\prime}[v, w]\right\|_{\infty} \leq n \Delta_{2}(v)\left(\frac{\max _{i} w_{i}}{\min _{j} w_{j}}\right) \tag{2}
\end{equation*}
$$

where $\Delta_{1}(v)=\max _{i}\left\|v_{i+1}-v_{i}\right\|$ and $\Delta_{2}(v)=\max _{i, j}\left\|v_{i}-v_{j}\right\|$. Zheng [14] considered the problem of identifying the value of $\lambda>0$ which minimises the quantity

$$
\frac{\max _{i} \lambda^{i} w_{i}}{\min _{j} \lambda^{j} w_{j}}
$$

The objective was to improve upon the above derivative bounds of Floater by exploiting the invariance of the curve under Möbius transformations of the form $t \mapsto \lambda t(1+(\lambda-1) t)^{-1}$, for fixed $\lambda>0$, which transform the weights by $w_{i} \mapsto \lambda^{i} w_{i}$. In [14] the optimal Möbius parameter λ is not identified in closed form; it is shown that it is obtainable from

$$
\lambda=\exp \left(-\frac{\bar{W}_{j_{0}}+\underline{W}_{k_{0}}}{j_{0}+k_{0}}\right)
$$

where it is necessary to determine integers j_{0} and k_{0} for which

$$
\frac{j_{0} \bar{W}_{j_{0}}-k_{0} \underline{W}_{k_{0}}}{j_{0}+k_{0}}=\max _{1 \leq j, k \leq n}\left\{\frac{j \bar{W}_{j}-k \underline{W}_{k}}{j+k}\right\}
$$

Here,

$$
\bar{W}_{k}=\max _{k \leq i \leq n}\left(\log w_{i}-\log w_{i-k}\right), \quad \text { and } \quad \underline{W}_{k}=\min _{k \leq i \leq n}\left(\log w_{i}-\log w_{i-k}\right) .
$$

In subsequent work, Cai and Wang [2] provided an alternative approach to the above result of Zheng for curves, with the benefit that their approach generalised to rectangular Bézier surfaces. Again, the optimal Möbius parameters were not identified in closed form, and in the surface case, the implicit equations satisfied by the optimal Möbius parameters (see Theorem 3.6 in [2]) are substantially more complex than those in the curve case given above.

Our goal in this paper is to obtain closed form expressions for the optimal Möbius parameters as functions of the weights. We also wish to improve upon the minimal derivative bounds obtained from the work of Zheng and Cai-Wang in terms of the size of the bounds, by obtaining the minimal bounds associated to smaller derivative bounds than those of Floater in (1) and (2). To this end, in this paper we consider the derivative bounds of the form

$$
\begin{equation*}
\left\|\sigma^{\prime}[v, w]\right\|_{\infty} \leq n \Delta_{\tau}(v) \Lambda_{\tau}(w), \tag{3}
\end{equation*}
$$

where

$$
\Lambda_{\tau}(w)=\max \left\{\frac{w_{i+1}}{w_{i}}, \frac{w_{i}}{w_{i+1}}: i=0, \ldots, n-1\right\}^{\gamma_{\tau}}
$$

and $\gamma_{\tau}>0$. It is known (see [9]) that (3) holds when $\tau=2$ and $\gamma_{2}=1$, for all $n \geq 2$, and these bounds are smaller than those in (2). When $\tau=1$ it is conjectured in [8] that (3) also holds with $\gamma_{1}=1$ for all $n \geq 2$; if true, this means such bounds are also smaller than those in (1). This conjecture has been verified for $n=1,2$, and is currently open for $n \geq 3$; more precisely, the current best known results on the conjecture (see [12] and [8]) are

$$
\gamma_{1}=\left\{\begin{array}{cl}
\frac{n}{3} & n \text { odd } \\
\frac{n+1}{3} & n \text { even, } n \neq 6 \\
2 & n=6
\end{array}\right.
$$

Our main result is that we compute the minimal bound associated with the estimate in (3) and the analogous minimal bound for rectangular surfaces. Importantly, our approach is elementary, easily applies to the curve case and the surface case, and it yields closed form expressions for the optimal Möbius parameter. Moreover, in many cases (described more precisely below), we obtain smaller bounds than those obtained in [2] and [14].

To state our main results we write $\widetilde{w} \sim w$, if $\widetilde{w}_{i}=\lambda^{i} w_{i}$ for some $\lambda>0$, and introduce the notation

$$
\widetilde{\Lambda}_{\tau}(w)=\min _{\widetilde{w} \sim w} \Lambda_{\tau}(\widetilde{w})
$$

for the minimal (or invariant) bound associated to a pointwise bound $\Lambda_{\tau}(w)$. For curves, our main result is the following.

Theorem 1.1. If $\sigma[v, w]$ is a rational Bézier path of degree n with vertices $v=$ $\left(v_{0}, \ldots, v_{n}\right)$ and positive weights $\left(w_{0}, \ldots, w_{n}\right)$, then the pointwise bound

$$
\left\|\sigma^{\prime}[v, w]\right\|_{\infty} \leq n \Delta_{\tau}(v) \Lambda_{\tau}(w)
$$

where

$$
\Lambda_{\tau}(w)=\max _{i}\left\{\frac{w_{i+1}}{w_{i}}, \frac{w_{i}}{w_{i+1}}\right\}^{\gamma_{\tau}}
$$

for some $\gamma_{\tau}>0$, has minimal bound $n \Delta_{\tau}(v) \widetilde{\Lambda}_{\tau}(w)$, where

$$
\widetilde{\Lambda}_{\tau}(w)=\left(\frac{\max _{i}\left\{\frac{w_{i+1}}{w_{i}}\right\}}{\min _{j}\left\{\frac{w_{j+1}}{w_{j}}\right\}}\right)^{\frac{\gamma_{\tau}}{2}},
$$

which is attained at weights $\left(w_{0}, \lambda w_{1}, \ldots, \lambda^{n} w_{n}\right)$ corresponding to the optimal Möbius parameter

$$
\lambda=\left(\min _{i}\left\{\frac{w_{i+1}}{w_{i}}\right\} \max _{j}\left\{\frac{w_{j+1}}{w_{j}}\right\}\right)^{-\frac{1}{2}} .
$$

For surfaces, we have the following analogue.
Theorem 1.2. If $\Sigma[v, w]$ is a rational rectangular Bézier surface of degree (m, n) with vertices v and weights $w=\left(w_{0,0}, \ldots, w_{m, n}\right)$ then a pointwise bound of the form

$$
\left\|\partial_{1} \Sigma[v, w]\right\|_{\infty} \leq m \Delta_{\tau}(v) \Lambda_{\tau}(w)
$$

where

$$
\Lambda_{\tau}(w)=\max _{i, j}\left\{\frac{w_{i, j}}{w_{i+1, j}}, \frac{w_{i+1, j}}{w_{i, j}}\right\}^{\gamma_{\tau}}
$$

for some $\gamma_{\tau}>0$, has minimal bound $m \Delta_{\tau}(v) \widetilde{\Lambda}_{\tau}(w)$, where

$$
\widetilde{\Lambda}_{\tau}(w)=\left(\frac{\max _{i, j}\left\{\frac{w_{i+1, j}}{w_{i, j}}\right\}}{\min _{k, \ell}\left\{\frac{w_{k+1, \ell}}{w_{k, \ell}}\right\}}\right)^{\frac{\gamma_{\tau}}{2}}
$$

which is attained for weights $\lambda^{i} w_{i, j}$ corresponding to the optimal Möbius parameter

$$
\lambda=\left(\min _{i, j}\left\{\frac{w_{i+1, j}}{w_{i, j}}\right\} \max _{k, \ell}\left\{\frac{w_{k+1, \ell}}{w_{k, \ell}}\right\}\right)^{-\frac{1}{2}} .
$$

In the next section, we prove Theorems 1.1 and 1.2. In the final section, we prove that our results are sharp in a certain sense; this is made possible precisely because we obtain closed-form expressions for the minimal bounds in our theorems above. Finally, in an Appendix, we present some numerical examples to highlight the gain provided by our results over the previous work in [2] and [14].

2. Proofs of Theorems 1.1 and 1.2

Our approach is elementary and Theorems 1.1 and 1.2 will follow almost immediately from the following lemma.

Lemma 2.1. If $x_{0}, x_{1}, \ldots, x_{n-1}>0$, then

$$
\min _{\lambda>0} \max _{i}\left\{\lambda x_{i}, \frac{1}{\lambda x_{i}}\right\}=\left(\frac{\max _{i}\left\{x_{i}\right\}}{\min _{j}\left\{x_{j}\right\}}\right)^{\frac{1}{2}}
$$

which occurs at

$$
\lambda=\left(\min _{i}\left\{x_{i}\right\} \max _{j}\left\{x_{j}\right\}\right)^{-\frac{1}{2}}
$$

Proof. For $x_{i}>0$, the functions $f_{i}^{-}(\lambda)=\frac{1}{\lambda x_{i}}$ are monotonically decreasing on $0 \leq \lambda<\infty$ with $\lim _{\lambda \rightarrow 0} f_{i}^{-}(\lambda)=\infty$ and $\lim _{\lambda \rightarrow \infty} f_{i}^{-}(\lambda)=0$ and the functions $f_{i}^{+}(\lambda)=\lambda x_{i}$ are monotonically increasing on $0 \leq \lambda<\infty$ with $f_{i}^{+}(0)=0$ and $\lim _{\lambda \rightarrow \infty} f_{i}^{+}(\lambda)=\infty$.

We write $x_{k}=\min _{j}\left\{x_{j}\right\}$ and $x_{\ell}=\max _{i}\left\{x_{i}\right\}$ (it is not important that the choice of k and ℓ may not be unique). Then, we have $\max _{i}\left\{f_{i}^{-}\right\}=f_{k}^{-}, \max _{i}\left\{f_{i}^{+}\right\}=f_{\ell}^{+}$and hence

$$
\max _{i}\left\{f_{i}^{+}, f_{i}^{-}\right\}=\max \left\{f_{k}^{-}, f_{\ell}^{+}\right\}= \begin{cases}f_{k}^{-} & \text {on }\left[0, \lambda^{*}\right) \\ f_{\ell}^{+} & \text {on }\left[\lambda^{*}, \infty\right)\end{cases}
$$

Here, $\lambda^{*}=\left(x_{k} x_{\ell}\right)^{-\frac{1}{2}}$ is the value of λ at which $f_{k}^{-}(\lambda)=f_{\ell}^{+}(\lambda)$ and, from the monotonic nature of f_{k}^{-}and f_{ℓ}^{+}, also the point at which the minimum of the function $\max _{i}\left\{f_{i}^{+}, f_{i}^{-}\right\}$occurs. It follows that

$$
\min _{\lambda>0} \max _{i}\left\{\lambda x_{i}, \frac{1}{\lambda x_{i}}\right\}=\left(\frac{x_{\ell}}{x_{k}}\right)^{\frac{1}{2}}=\left(\frac{\max _{i}\left\{x_{i}\right\}}{\min _{j}\left\{x_{j}\right\}}\right)^{\frac{1}{2}}
$$

as claimed.

For Theorem 1.1, with $\widetilde{w}_{i}=\lambda^{i} w_{i}$ we have $\frac{\widetilde{w}_{i+1}}{\widetilde{w}_{i}}=\lambda \frac{w_{i+1}}{w_{i}}$, and so the result follows by applying Lemma 2.1 with $x_{i}=\frac{w_{i+1}}{w_{i}}$. For the surface case in Theorem 1.2, weight vectors, \widetilde{w} equivalent to w are those for which $\widetilde{w}_{i, j}=\lambda^{i} \mu^{j} w_{i, j}$, where $\lambda, \mu>0$. Then

$$
\frac{\widetilde{w}_{i+1, j}}{\widetilde{w}_{i, j}}=\lambda \frac{w_{i+1, j}}{w_{i, j}}
$$

and, as with Theorem 1.1, the result follows by applying Lemma 2.1 with $x_{i}=$ $\frac{w_{i+1, j}}{w_{i, j}}$.
Remarks. (1). At this stage, we can point out why our approach is significantly simpler than that in [2] and [14], particularly in the surface case. The reason is that in the expression

$$
\Lambda_{\tau}(w)=\max _{i, j}\left\{\frac{w_{i, j}}{w_{i+1, j}}, \frac{w_{i+1, j}}{w_{i, j}}\right\}^{\gamma_{\tau}}
$$

the second index j is the same on the numerator and denominator, and as a consequence, the parameter μ does not appear in the minimisation problem.
(2). As far as we are aware, the only previous known results on minimal bounds for arbitrary degree are those in [2] and [14]. Comparing our results with those obtained in these papers, we remark that in the case $\tau=2$, our minimal bounds for both curves and surfaces are smaller for all $n \geq 2$. When $\tau=1$, since we
have already noted in the Introduction that we can take γ_{1} to be either 1 or 2 for $n \leq 6$, our minimal bounds are smaller for such degrees. We also remark that our minimal bounds will automatically improve subject to any further progress on the conjecture of Li et al concerning the minimum value of γ_{1}. If the conjecture is completely confirmed for all $n \geq 2$ (or, less strongly, if we can take $\gamma_{1} \leq 2$ for all $n \geq 2$) then our minimal bounds will be better than those obtained in [2] and [14] for the remaining $n \geq 7$ in the $\tau=1$ case.
(3) There are pointwise bounds which improve upon bounds of the form (3); see, for example, some of the derivative bounds obtained in [1], [3]-[7], [9], [11]-[13], and also the useful overview of such bounds in [8]. However, except for the pointwise bounds $\Lambda_{\tau}(w)$ under consideration in this paper, the associated minimal bounds appear to be difficult to compute for arbitrary degree (especially so in closed-form).

3. Sharpness of our minimal bounds

In this section we write \mathcal{J}_{i}, for $i=0, \ldots, n-2$, for the independent set of invariants for the rational Bézier paths of degree n defined by

$$
\mathcal{J}_{i}(w)=\frac{w_{i+1}}{\left(w_{i} w_{i+2}\right)^{\frac{1}{2}}} .
$$

Theorem 3.1. If $\mathcal{J}_{i}(w) \geq 1$, for all $i=0, \ldots, n-2$, we have

$$
\begin{equation*}
\widetilde{\Lambda}_{\tau}(w)=\left(\prod_{i=0}^{n-2} \mathcal{J}_{i}(w)\right)^{\gamma_{\tau}} \tag{4}
\end{equation*}
$$

Consequently, for such w, the associated minimal bounds for which $\gamma_{\tau}=1$ are sharp.

Proof. Observe that if $\mathcal{J}_{i}(w) \geq 1$ then $\frac{w_{i+1}}{w_{i}} \geq \frac{w_{i+2}}{w_{i+1}}$ and it follows immediately from Theorem 1.1 that

$$
\widetilde{\Lambda}_{\tau}(w)=\left(\frac{w_{1} w_{n-1}}{w_{0} w_{n}}\right)^{\frac{\gamma_{\tau}}{2}}
$$

In addition, it is easy to show that $\left(\prod_{i=0}^{n-2} \mathcal{J}_{i}(w)\right)^{2}=\frac{w_{1} w_{n-1}}{w_{0} w_{n}}$ and therefore (4) holds. For the sharpness claim, we note that

$$
\left|\sigma[v, w]^{\prime}(0)\right|=n\left|v_{1}-v_{0}\right| \frac{w_{1}}{w_{0}} \quad \text { and } \quad\left|\sigma[v, w]^{\prime}(1)\right|=n\left|v_{n}-v_{n-1}\right| \frac{w_{n-1}}{w_{n}}
$$

so by choosing v such that $\left|v_{1}-v_{0}\right|=\left|v_{n}-v_{n-1}\right|=\Delta_{\tau}(v)$ we obtain

$$
\left\|\sigma[v, w]^{\prime}\right\|_{\infty} \geq\left(\left|\sigma[v, w]^{\prime}(0) \| \sigma[v, w]^{\prime}(1)\right|\right)^{1 / 2}=n \Delta_{\tau}(v) \prod_{i=0}^{n-2} \mathcal{J}_{i}(w)
$$

For such w, it follows that when $\gamma_{\tau}=1$ the associated minimal bounds are sharp.

Recall that when $\tau=2$ we can take $\gamma_{2}=1$ for all $n \geq 2$, and when $\tau=1$ we can take $\gamma_{1}=1$ for $n=2,3$.

By modifying the above proof, it can be shown that when $\mathcal{J}_{i}(w) \leq 1$, for all $i=$ $0, \ldots, n-2$ we have

$$
\widetilde{\Lambda}_{\tau}(w)=\left(\prod_{i=0}^{n-2} \mathcal{J}_{i}(w)\right)^{-\gamma_{\tau}}
$$

which means such bounds always exhibit singularities near the origin of the invariant space. It would be interesting to find pointwise bounds smaller than $\Lambda_{\tau}(w)$, for which singularities do not occur in this way; the authors [1] have demonstrated in the quadratic path case that this can be done.

Appendix

For comparative purposes, we use the same numerical examples used in [2] to highlight our gain.

For rational Bézier paths of degree 6 with weights $w=(5,2,8,56,80,96,64)$:
(i) Using the pointwise bound of Zhang-Ma (corresponding to $\tau=1, \gamma_{1}=2$) we obtain, from Theorem 1.1, the minimal value $105 \Delta_{1}(v)$, whereas [2] (and [14]) yields $294 \Delta_{1}(v)$.
(ii) Using the Selimovic bound (corresponding to $\tau=2, \gamma_{2}=1$) we obtain, from Theorem 1.1, the minimal value $6\left(\frac{35}{2}\right)^{\frac{1}{2}} \Delta_{2}(v)<\frac{36}{\sqrt{2}} \Delta_{2}(v)$, whereas [2] (and [14]) yields $42 \Delta_{2}(v)$.

For the degree $(3,3)$ Bézier surface with weights:

$$
\left[\begin{array}{cccc}
5 & 18 & 27 & 27 \\
2 & 42 & 36 & 270 \\
8 & 60 & 72 & 216 \\
32 & 72 & 144 & 216
\end{array}\right]
$$

we obtain $15 \Delta_{2}(v)$ from Theorem 1.2, whereas [2] yields a bound of $1029 \Delta_{2}(v)$ for this example.

For the degree $(2,3)$ Bézier surface with weights:

$$
\left[\begin{array}{cccc}
1 & 7 & 5 & 3 \\
12 & 16 & 12 & 4 \\
8 & 16 & 4 & 8
\end{array}\right]
$$

we obtain $12 \Delta_{2}(v)$ from Theorem 1.2, whereas [2] yields $1024 \Delta_{2}(v)$.
Acknowledgement. The authors wish to thank the London Mathematical Society for partially funding this work under grant SC7-1011-15.

References

[1] H. E. Bez, N. Bez, On derivative bounds for the rational quadratic Bézier paths, Computer Aided Geometric Design 30 (2013), 254-261.
[2] H. J. Cai, G. J. Wang, Minimizing the ratio of weights of rational Bézier curves and surfaces, Computer Aided Geometric Design 27 (2010), 746-755.
[3] C. Deng, Improved bounds on the magnitude of the derivative of rational Bézier curves, Applied Mathematics and Computation 218 (2011), 204-206.
[4] C. Deng, Y. Li, A new bound on the magnitude of the derivative of rational Bézier curve, Computer Aided Geometric Design 30 (2013), 175-180.
[5] M. S. Floater, Derivatives of rational Bézier curves, Computer Aided Geometric Design 9 (1992), 161-174.
[6] T. Hermann, On the derivatives of second and third degree rational Bézier curves, Computer Aided Geometric Design 16 (1999), 157-163.
[7] Y. Huang, H. Su, The bound on derivatives of rational Bézier curves, Computer Aided Geometric Design 23 (2006), 698-702.
[8] Y. Li, C. Deng, W. Jin, N. Zhao, On the bounds of the derivative of rational Bézier curves, Applied Mathematics and Computation 219 (2013), 10425-10433.
[9] I. Selimovic, New bounds on the magnitude of the derivative of rational Bézier curves and surfaces, Computer Aided Geometric Design 22 (2005), 321-326.
[10] G. J. Wang, T. W. Sederberg, T. Saito, Partial derivatives of rational Bézier surfaces, Computer Aided Geometric Design 14 (1997), 377-381.
[11] Z. Wu, F. Lin, H. S. Seah, K. Y. Chan, Evaluation of difference bounds for computing rational Bézier curves and surfaces, Computers and Graphics 28 (2004), 551-558.
[12] R. J. Zhang, W. Ma, Some improvements on the derivative bounds of rational Bézier curves and surfaces, Computer Aided Geometric Design 23 (2006), 563-572.
[13] R. J. Zhang, G. J. Wang, The proof of Hermann's conjecture, Applied Mathematics Letters 17 (2004), 1387-1390.
[14] J. Zheng, Minimizing the maximal ratio of weights of a rational Bézier curve, Computer Aided Geometric Design 22 (2005), 275-280.

Department of Computer Science, Loughborough University, Loughborough, LE11 3TU, UK

School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

