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NEW MINIMAL BOUNDS FOR THE DERIVATIVES OF

RATIONAL BÉZIER PATHS AND RATIONAL RECTANGULAR

BÉZIER SURFACES

H. E. BEZ AND N. BEZ

Abstract. New minimal bounds are derived for the magnitudes of the deriva-

tives of the rational Bézier paths and the rational rectangular Bézier surface
patches of arbitrary degree, which improve previous work of this type in many
cases. Moreover, our new bounds are explicitly given by simple and closed-

form expressions. An important advantage of the closed-form expressions is
that they allow us to prove that our bounds are sharp under certain well-
defined conditions. Some numerical examples, highlighting the potential of
the new bounds in providing improved estimates, are given in an appendix.

1. Introduction

For vertices v = (v0, . . . , vn) and weights w = (w0, . . . , wn), for wi > 0, let σ[v, w]
be the associated rational Bézier path of degree n. Some classical derivative bounds
of Floater [5] are

(1) ∥σ′[v, w]∥∞ ≤ n∆1(v)

(
maxi wi

minj wj

)2

and

(2) ∥σ′[v, w]∥∞ ≤ n∆2(v)

(
maxi wi

minj wj

)
,

where ∆1(v) = maxi ∥vi+1−vi∥ and ∆2(v) = maxi,j ∥vi−vj∥. Zheng [14] considered
the problem of identifying the value of λ > 0 which minimises the quantity

maxi λ
iwi

minj λjwj
.

The objective was to improve upon the above derivative bounds of Floater by
exploiting the invariance of the curve under Möbius transformations of the form
t 7→ λt(1+ (λ− 1)t)−1, for fixed λ > 0, which transform the weights by wi 7→ λiwi.
In [14] the optimal Möbius parameter λ is not identified in closed form; it is shown
that it is obtainable from

λ = exp

(
−

W j0 +W k0

j0 + k0

)
,
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where it is necessary to determine integers j0 and k0 for which

j0W j0 − k0W k0

j0 + k0
= max

1≤j,k≤n

{
jW j − kW k

j + k

}
.

Here,

W k = max
k≤i≤n

(logwi − logwi−k), and W k = min
k≤i≤n

(logwi − logwi−k).

In subsequent work, Cai and Wang [2] provided an alternative approach to the
above result of Zheng for curves, with the benefit that their approach generalised
to rectangular Bézier surfaces. Again, the optimal Möbius parameters were not
identified in closed form, and in the surface case, the implicit equations satisfied
by the optimal Möbius parameters (see Theorem 3.6 in [2]) are substantially more
complex than those in the curve case given above.

Our goal in this paper is to obtain closed form expressions for the optimal Möbius
parameters as functions of the weights. We also wish to improve upon the minimal
derivative bounds obtained from the work of Zheng and Cai–Wang in terms of the
size of the bounds, by obtaining the minimal bounds associated to smaller derivative
bounds than those of Floater in (1) and (2). To this end, in this paper we consider
the derivative bounds of the form

(3) ∥σ′[v, w]∥∞ ≤ n∆τ (v)Λτ (w),

where

Λτ (w) = max

{
wi+1

wi
,

wi

wi+1
: i = 0, . . . , n− 1

}γτ

and γτ > 0. It is known (see [9]) that (3) holds when τ = 2 and γ2 = 1, for all
n ≥ 2, and these bounds are smaller than those in (2). When τ = 1 it is conjectured
in [8] that (3) also holds with γ1 = 1 for all n ≥ 2; if true, this means such bounds
are also smaller than those in (1). This conjecture has been verified for n = 1, 2,
and is currently open for n ≥ 3; more precisely, the current best known results on
the conjecture (see [12] and [8]) are

γ1 =


n
3 n odd

n+1
3 n even, n ̸= 6
2 n = 6.

Our main result is that we compute the minimal bound associated with the estimate
in (3) and the analogous minimal bound for rectangular surfaces. Importantly, our
approach is elementary, easily applies to the curve case and the surface case, and
it yields closed form expressions for the optimal Möbius parameter. Moreover, in
many cases (described more precisely below), we obtain smaller bounds than those
obtained in [2] and [14].

To state our main results we write w̃ ∼ w, if w̃i = λiwi for some λ > 0, and
introduce the notation

Λ̃τ (w) = min
w̃∼w

Λτ (w̃)

for the minimal (or invariant) bound associated to a pointwise bound Λτ (w). For
curves, our main result is the following.
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Theorem 1.1. If σ[v, w] is a rational Bézier path of degree n with vertices v =
(v0, . . . , vn) and positive weights (w0, . . . , wn), then the pointwise bound

∥σ′[v, w]∥∞ ≤ n∆τ (v)Λτ (w)

where

Λτ (w) = max
i

{
wi+1

wi
,

wi

wi+1

}γτ

for some γτ > 0, has minimal bound n∆τ (v)Λ̃τ (w), where

Λ̃τ (w) =

(
maxi{wi+1

wi
}

minj{wj+1

wj
}

) γτ
2

,

which is attained at weights (w0, λw1, . . . , λ
nwn) corresponding to the optimal Möbius

parameter

λ = (min
i
{wi+1

wi
}max

j
{wj+1

wj
})− 1

2 .

For surfaces, we have the following analogue.

Theorem 1.2. If Σ[v, w] is a rational rectangular Bézier surface of degree (m,n)
with vertices v and weights w = (w0,0, . . . , wm,n) then a pointwise bound of the form

∥∂1Σ[v, w]∥∞ ≤ m∆τ (v) Λτ (w),

where

Λτ (w) = max
i,j

{
wi,j

wi+1,j
,
wi+1,j

wi,j

}γτ

for some γτ > 0, has minimal bound m∆τ (v)Λ̃τ (w), where

Λ̃τ (w) =

maxi,j

{
wi+1,j

wi,j

}
mink,ℓ

{
wk+1,ℓ

wk,ℓ

}


γτ
2

,

which is attained for weights λiwi,j corresponding to the optimal Möbius parameter

λ = (min
i,j

{wi+1,j

wi,j
}max

k,ℓ
{wk+1,ℓ

wk,ℓ
})− 1

2 .

In the next section, we prove Theorems 1.1 and 1.2. In the final section, we prove
that our results are sharp in a certain sense; this is made possible precisely because
we obtain closed-form expressions for the minimal bounds in our theorems above.
Finally, in an Appendix, we present some numerical examples to highlight the gain
provided by our results over the previous work in [2] and [14].

2. Proofs of Theorems 1.1 and 1.2

Our approach is elementary and Theorems 1.1 and 1.2 will follow almost immedi-
ately from the following lemma.
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Lemma 2.1. If x0, x1, . . . , xn−1 > 0, then

min
λ>0

max
i

{
λxi,

1

λxi

}
=

(
maxi{xi}
minj{xj}

) 1
2

which occurs at
λ = (min

i
{xi}max

j
{xj})−

1
2 .

Proof. For xi > 0, the functions f−
i (λ) = 1

λxi
are monotonically decreasing on

0 ≤ λ < ∞ with limλ→0 f
−
i (λ) = ∞ and limλ→∞ f−

i (λ) = 0 and the functions
f+
i (λ) = λxi are monotonically increasing on 0 ≤ λ < ∞ with f+

i (0) = 0 and
limλ→∞ f+

i (λ) = ∞.

We write xk = minj{xj} and xℓ = maxi{xi} (it is not important that the choice of
k and ℓ may not be unique). Then, we have maxi{f−

i } = f−
k , maxi{f+

i } = f+
ℓ and

hence

max
i

{f+
i , f−

i } = max{f−
k , f+

ℓ } =

{
f−
k on [0, λ∗)
f+
ℓ on [λ∗,∞).

Here, λ∗ = (xkxℓ)
− 1

2 is the value of λ at which f−
k (λ) = f+

ℓ (λ) and, from the

monotonic nature of f−
k and f+

ℓ , also the point at which the minimum of the

function maxi{f+
i , f−

i } occurs. It follows that

min
λ>0

max
i

{
λxi,

1

λxi

}
=

(
xℓ

xk

) 1
2

=

(
maxi{xi}
minj{xj}

) 1
2

as claimed. �

For Theorem 1.1, with w̃i = λiwi we have
w̃i+1

w̃i
= λwi+1

wi
, and so the result follows by

applying Lemma 2.1 with xi =
wi+1

wi
. For the surface case in Theorem 1.2, weight

vectors, w̃ equivalent to w are those for which w̃i,j = λiµjwi,j , where λ, µ > 0.
Then

w̃i+1,j

w̃i,j
= λ

wi+1,j

wi,j

and, as with Theorem 1.1, the result follows by applying Lemma 2.1 with xi =
wi+1,j

wi,j
.

Remarks. (1). At this stage, we can point out why our approach is significantly
simpler than that in [2] and [14], particularly in the surface case. The reason is
that in the expression

Λτ (w) = max
i,j

{
wi,j

wi+1,j
,
wi+1,j

wi,j

}γτ

the second index j is the same on the numerator and denominator, and as a conse-
quence, the parameter µ does not appear in the minimisation problem.

(2). As far as we are aware, the only previous known results on minimal bounds
for arbitrary degree are those in [2] and [14]. Comparing our results with those
obtained in these papers, we remark that in the case τ = 2, our minimal bounds
for both curves and surfaces are smaller for all n ≥ 2. When τ = 1, since we
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have already noted in the Introduction that we can take γ1 to be either 1 or 2 for
n ≤ 6, our minimal bounds are smaller for such degrees. We also remark that our
minimal bounds will automatically improve subject to any further progress on the
conjecture of Li et al concerning the minimum value of γ1. If the conjecture is
completely confirmed for all n ≥ 2 (or, less strongly, if we can take γ1 ≤ 2 for all
n ≥ 2) then our minimal bounds will be better than those obtained in [2] and [14]
for the remaining n ≥ 7 in the τ = 1 case.

(3) There are pointwise bounds which improve upon bounds of the form (3); see,
for example, some of the derivative bounds obtained in [1], [3]–[7], [9], [11]–[13], and
also the useful overview of such bounds in [8]. However, except for the pointwise
bounds Λτ (w) under consideration in this paper, the associated minimal bounds
appear to be difficult to compute for arbitrary degree (especially so in closed-form).

3. Sharpness of our minimal bounds

In this section we write Ii, for i = 0, . . . , n−2, for the independent set of invariants
for the rational Bézier paths of degree n defined by

Ii(w) =
wi+1

(wiwi+2)
1
2

.

Theorem 3.1. If Ii(w) ≥ 1, for all i = 0, . . . , n− 2, we have

(4) Λ̃τ (w) =

( n−2∏
i=0

Ii(w)

)γτ

.

Consequently, for such w, the associated minimal bounds for which γτ = 1 are
sharp.

Proof. Observe that if Ii(w) ≥ 1 then wi+1

wi
≥ wi+2

wi+1
and it follows immediately from

Theorem 1.1 that

Λ̃τ (w) =

(
w1wn−1

w0wn

) γτ
2

.

In addition, it is easy to show that (
∏n−2

i=0 Ii(w))
2 = w1wn−1

w0wn
and therefore (4) holds.

For the sharpness claim, we note that

|σ[v, w]′(0)| = n|v1 − v0|
w1

w0
and |σ[v, w]′(1)| = n|vn − vn−1|

wn−1

wn
,

so by choosing v such that |v1 − v0| = |vn − vn−1| = ∆τ (v) we obtain

∥σ[v, w]′∥∞ ≥ (|σ[v, w]′(0)||σ[v, w]′(1)|)1/2 = n∆τ (v)

n−2∏
i=0

Ii(w).

For such w, it follows that when γτ = 1 the associated minimal bounds are sharp.
�

Recall that when τ = 2 we can take γ2 = 1 for all n ≥ 2, and when τ = 1 we can
take γ1 = 1 for n = 2, 3.
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By modifying the above proof, it can be shown that when Ii(w) ≤ 1, for all i =
0, . . . , n− 2 we have

Λ̃τ (w) =

( n−2∏
i=0

Ii(w)

)−γτ

,

which means such bounds always exhibit singularities near the origin of the invariant
space. It would be interesting to find pointwise bounds smaller than Λτ (w), for
which singularities do not occur in this way; the authors [1] have demonstrated in
the quadratic path case that this can be done.

Appendix

For comparative purposes, we use the same numerical examples used in [2] to high-
light our gain.

For rational Bézier paths of degree 6 with weights w = (5, 2, 8, 56, 80, 96, 64):

(i) Using the pointwise bound of Zhang–Ma (corresponding to τ = 1, γ1 = 2) we
obtain, from Theorem 1.1, the minimal value 105∆1(v), whereas [2] (and [14]) yields
294∆1(v).

(ii) Using the Selimovic bound (corresponding to τ = 2, γ2 = 1) we obtain, from

Theorem 1.1, the minimal value 6( 352 )
1
2∆2(v) < 36√

2
∆2(v), whereas [2] (and [14])

yields 42∆2(v).

For the degree (3, 3) Bézier surface with weights:
5 18 27 27
2 42 36 270
8 60 72 216
32 72 144 216


we obtain 15∆2(v) from Theorem 1.2, whereas [2] yields a bound of 1029∆2(v) for
this example.

For the degree (2, 3) Bézier surface with weights: 1 7 5 3
12 16 12 4
8 16 4 8


we obtain 12∆2(v) from Theorem 1.2, whereas [2] yields 1024∆2(v).

Acknowledgement. The authors wish to thank the London Mathematical Society
for partially funding this work under grant SC7-1011-15.
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