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A B S T R A C T 
 

In the present paper we study the impact of dispersion and nonlinearity on DNA dynamics. We rely 
on the helicoidal Peyrard-Bishop model and use the fact that nonlinear DNA dynamics represents 
an interplay between nonlinearity and dispersion. We state that a dispersion coefficient P  and a 
coefficient of nonlinearity Q , existing in nonlinear Schrödinger equation, are mutually dependent 
and show how function  and  can be obtained. Also, we show how all this can be used 
to find a possible interval for the parameter describing helicoidal structure of DNA.   
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1. Introduction 
 
       Nonlinear Schrödinger equation (NLSE) has been used in many branches of physics and 
mathematics. One of its solutions, having profound physical meaning, is a modulated solitonic 
wave. An example, relevant for this paper, where NLSE is applied, is nonlinear dynamics of DNA. 
To study this dynamics we rely on helicoidal Peyrard-Bishop (HPB) model [1].
       Nonlinear dynamics of DNA can be viewed as an interplay between nonlinearity and dispersion 
[2]. This means that nonlinearity increases wave amplitude and decreases its width, while the 
impact of dispersion on the wave is opposite. This is demonstrated in this paper. In particular, we 
show that the mentioned relationships between the wave characteristics and nonlinearity and 
dispersion hold if nonlinear and dispersion parameters, existing in NLSE, are mutually dependent. 
We study how they depend on each other and show that this procedure can be used to determine 
possible intervals of some internal parameters, describing chemical interactions and geometry of 
DNA. The method explained here can be used in all branches of science where NLSE is used and 
some parameters are not known. 
       The paper is organized as follows. In Section 2 we give a brief review of HPB model of DNA. 
In the next two sections we study the relationships between nonlinearity and dispersion while 
Section 5 comprises some concluding remarks.  
        
 
2. A brief review of the HPB model 
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       It is well known that DNA molecule is a double helix and each strand is a polymeric collection 
of nucleotides. The nucleotides belonging to the same strand are connected by strong covalent 
bonds, modelled by the nearest-neighbour harmonic interactions, while the strands are coupled to 
each other through the weak hydrogen bonds, modeled by Morse potential. In what follows we very 
briefly describe the HPB model. All important details and derivations can be found in a review 
paper [3].  
       The HPB model takes only transversal displacements of nucleotides into consideration. 
Helicoidal structure of DNA chain is taken into account assuming that a nucleotide at the site  of 
one strand interacts with both ( )th and (

n
hn + hn − )th nucleotides of the other strand [1,3]. We here 

use  [3].5=h
       Let  and  be the displacements of the nucleotides belonging to different strands at the 
position  from their equilibrium positions along the direction of the hydrogen bond. If  and  
represent the pertaining velocities then the Hamiltonian, describing DNA dynamics, is 
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where  is a common mass for all the nucleotides and the parameters  and m k K  are the harmonic 
constants of the longitudinal and helicoidal springs, respectively. The last term is the Morse 
potential where  and  are the depth and the inverse width of the potential well, respectively. 
The Hamiltonian (1) brings about the following nonlinear dynamical equation of motion 
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where a new coordinate 2/)( nnn vuy −= , describing the out-of-phase transversal motion, 
represents a stretching of the nucleotide pair at the position  [1,3]. To solve Eq. (2) we assume 
that the nucleotides oscillate around the bottom of the Morse potential well, i.e. 

n
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and look for wave solutions of the form  
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where  is the distance between two neighbouring nucleotides in the same strand, l ω  is the optical 
frequency of the linear approximation,  is the wave number whose role will be discussed later, cc 
represents complex conjugate terms and the function  is real. Notice four parameters in Eq. (1) 
and one more in Eq. (5). These are: , 

q

0F
k K , ,  and .       D a q

       One can show that the functions  and  can be expressed through , which is a solution of 
the well-known NLSE 
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where the dispersion coefficient P  and the coefficient of nonlinearity Q  are given by 
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To derive Eq. (6) a continuum limit  and new coordinates  and znl → t2ετ = ( )tVzS g−= ε  were 
introduced [1,3]. The relevant terms involved in the expressions for  and Q  are [3]: P
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and    
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       It was suggested that the corresponding wave length covers an integer number of nucleotides, 
i.e. [4] 
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Therefore, one can assume  as the internal parameter instead of . The interval N q
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was suggested [5], corresponding to , as the well known value for the 
distance is . 
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       The final expression for stretching of the nucleotide pair at the position  is n
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representing the modulated soliton. As was mentioned above all the formulas and detailed 
derivations can be found in Ref. [3]. It suffices now to show how its amplitude A  and the wave 
width L  depend on  and Q . These crucial relationships are: P
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where  and  [3,6], while  stands for a function of 0>P 0>Q f P  and Q . 
       It was stated above that nonlinear dynamics of DNA should be viewed as an interplay between 
nonlinearity and dispersion. This means that A  and L  should depend on  and  in the following 
way: 
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where the arrows  and ↓  mean increasing and decreasing functions, respectively. In the next 
section we will show that 

↑
P  and Q  are mutually dependent and will obtain functions  and 

, satisfying Eq. (17).  
)(PQ
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3. Nonlinearity vs. dispersion 
 
       If we look at Eqs. (16) we do not see that Eq. (17) is satisfied. One might think that A  equaly 
depends on both parameters and that the wave width does not depend on Q  at all. Of course, this is 
wrong and certainly indicates that P  and Q  are mutually dependent. For example, if  then 
Eq. (17) holds for . Hence, our next task is to obtain a function .   

nQP ∝
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       Let us remind ourselves that P  and Q  depend on five internal parameters. These are: k , K , 
,  and . The values of these parameters are still not available from experiments or ab initio 

calculations. We have done a big effort trying to estimate them [5,7-10]. For example, we estimated 
the window of a ratio 

D a N

Kk  [9,10]. The approximate interval would be 
 

21070 << Kk .                                                                                                                  (18) 
 
Of course, each interval depends on the assumed values for the remaining parameters. 
       The most intriguing of all the internal parameters is K , which reflects the helicoidal structure 
of DNA chain. If we pick up particular values for the remaining four parameters we obtain the 
functions  and . From them, we can obtain the relationship between )(KP )(KQ P  and Q . The 
function  is shown in Fig. 1 for two chosen values of  and for a certain combination of the 
remaining three parameters [5]. For the parameter 

)(PQ N
K  we picked up the interval 

 
mN15.0mN05.0 << K ,                                                                                                 (19) 

 
which approximately matches the interval (18), for the chosen value of the parameter k . The figure 
obviously indicates a linear decreasing function. In what follows we study whether Eq. (17) is 
satisfied for  
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where   and  are positive constants. The second step will be  as a polynomial of . All the 
values for 
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Fig. 1. A function  for: ,  )(PQ
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       One can easily show that the function , given by Eq. (16), is an increasing one for f
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which is a requirement for the first of Eqs. (17) to be satisfied. Also, the second one holds for 
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while the remaining two are satisfied without any additional requirement.  
       Therefore, we now know the intervals for  and  that have physical meaning. As the 
functions  and  are known we can, using a computer, easily find the appropriate interval 
for 

P Q
)(KP )(KQ

K . This will be demonstrated for 10=N . Notice that for this particular value for  the 
function  can be obtained analytically as the function  exists. Let us pick up two points 
for the linear function, determined by 

N
)(PQ )(PK

mN07.01 =K  and mN13.02 =K . According to the 
functions  and  we can obtain the appropriate values for  and  , which 
yields 
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336.00 =C ,                .                                                                                     (24) 30.200 =Q

 
Of course, all the units are determined by Eq. (21). Finally, using the computer and the functions 

 and  we can easily show that Eqs. (22) and (23) give the intervals )(KP )(KQ mN29.0<K  and 
mN31.00 << K , respectively. Therefore, the conclusion is 

 
mN29.0<K ,                                                                                                                    (25) 
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which is much broader interval than the assumed one, given by Eq. (19). This means that our initial 
choice was good. This is so because Eq. (19) is a result of the previous investigations. However, the 
values of the parameters are usually not known. Without precise experimental results, the best that 
the theoreticians can do is to shorten the allowed intervals as much as possible. For this purpose we 
should combine all the known procedures. The one used in this paper is simple and may be 
convenient to start with. Of course, when we obtain a few intervals corresponding to different 
methods we accept the overlapping values. We should keep in mind that NLSE is widely used. Very 
often the researchers have almost no idea about the possible values of a certain parameter. If so then 
we should start with much wider interval. In the next section we study a general approach. We start 
with a large interval for K  and look for  as a polynomial.  )(PQ
 
 
4. General approach 
 
       A purpose of this section is to increase precision of the procedure explained in the previous 
one. To achieve this goal, the functions  and  are expressed as the third order 
polynomials.  

)(QP )(PQ

       Let us start with  
 

mN40.0<K ,                                                                                                                    (26) 
 
which is much wider interval than the one in Eq. (19). The function  can be obtained using a 
computer. It is shown in Fig. 2 together with its fit. It is not linear any more and should be 
represented by the polynomial. The third order polynomial is 
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95.81492.61725.010240.2 233 +−+×−= − QQQP .                                                          (27) 

 
The same procedure can be done for  and the corresponding polynomial is )(PQ
 

47.214695.010206.410247.2 2335 +−×+×−= −− PPPQ .                                                (28) 
 
We do not have to use higher order polynomials as the precision of the third order polynomial is 

. Of course, both  and  are expressed in units given by Eq. (21). 410 − P Q
       According to Eqs. (16) and (27) we can easily express the amplitude A  as a function of . 
This is a decreasing function for . This cut off gives the highest allowed value for the 
parameter 

Q
083.9>Q

K . Namely, according to Eqs. (8), (9), (11)-(13) we easily obtain the function , 
which is 
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This function is shown in Fig. 3. Hence,  for 1232 sm10083.9 −−×>Q
 

mN375.0<K .                                                                                                                  (30) 
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Fig. 2. A function  as a third order polynomial. )(QP
       
 

 

Fig. 3. A function  for: ,  )(KQ
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       If we used Eq. (28) instead of Eq. (27) we would obtain the function . This is the 
increasing function for 

)(PA
sm1052.35 28−×<P . The curve  brings about Eq. (30) again. )(KP

       It is obvious that the value given by Eq. (25) is more precise than the one given by Eq. (30). 
This does not mean that the linear function ensures better results than the polynomials because the 
initial interval for K  was bigger in the latter case.        
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5. Concluding remarks 
 
       In this paper we demonstrated the expected interplay between nonlinearity and dispersion 
regarding the solution of NLSE. Also, we showed how the impact of nonlinear and dispersion 
parameters on the amplitude and the wave length of the solitonic wave can be used to study the 
possible values of unknown intrinsic parameters.  
       Nonlinear DNA dynamics was picked up as an particularly interesting example. However, this 
procedure is rather general as NLSE has been applied in many branches of physics and mathematics 
[11]. Some examples could be plasma physics [12,13] and nonlinear optics [14,15]. This famous 
equation has also been used to study oceanic waves [16,17], nonlinear electrical lines [6], Bose-
Einstein condensates [18] and so on. Therefore, our procedure is rather general and can be applied 
wherever NLSE is used and the values of some parameters are not known.   
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