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1. Introduction
1.1. Historical background

Difference equations can model effectively almost any physical and artificial phenomena [5]. One of the earliest recur-
rences, or in other words, a difference equation, giving us the Fibonacci sequence, was introduced in 1202 in the old “Liber
Abaci” [15], a book about the abacus, by the famous Italian mathematician Leonardo Pisano better known as Fibonacci. The
first numbers of this sequence are

0,1,1,2,3,5,8,13,21,...

This example is related to ecology but one may find many applications of this sequence of numbers in various branches of
science like pure and applied mathematics, in biology or in phyllotaxies, among many others.
If x, represents a number in this sequence, with n =0,1,2, ..., then the Fibonacci numbers satisfy the recurrence

Qni2 = Qni1 T Gns q0:O7 q1=]. (1)
Obviously, we can look the above recurrence as a difference equation. The general solution of Eq. (1) is given by the Binet
formula

1 n
A :ﬁ@) -(1-9)"),

where ¢ = 1%/ is the well known golden ratio.
The Eq. (1) can be written in matrix notation

Xn+1 :f(xn)v (2)
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11
where f(X,) = AX,, A= { } X, = [q”“} and X,,; {q”*z}.
10 n qn+1
It is easy to find the solution of Eq. (2) via the powers of the matrix A4, i.e., X, = A"X, and using the eigenvalues of A, ¢ and
1—¢.
Recently, Edson and Yayenie [3] studied a non-autonomous generalization of the Fibonacci recurrence. They considered
the equation

Xni2 = ApXny1 + Xn, (3)

with initial conditions xo and x; in which a, is a 2-periodic non-zero sequence of non-negative integer numbers, i.e., a, = ay if
n is even and a, = a; if n is odd. They found a Binet Formula for this equation using generating functions.

Now, let {a,},n=0,1,2,... be a k-periodic non-zero sequence of non-negative integer numbers with fixed k > 2, i.e.,
a, = dnyp, foralln =0,1,2,.. .. It was stated in [3] that to find a Binet formula for Eq. (3), for all n = 0,1,2,..., was an open
problem.

Later on, Lewis joined the previous authors in another nice paper [4] on the same subject, where the k-periodic equation
was treated using again generating functions. In that paper is developed an elegant new technique to obtain the solutions,
which are not presented explicitly for the general case {a,},n=0,1,2,....

In a series of papers [11-13] Mallik studied the solutions of linear difference equations with variable coefficients. Using
classical techniques of iteration, he was able to find the solutions of certain special linear difference equations. In [11] he
studied a second order equation and he was able to write expressions for the solutions. In [12] the author presented the solu-
tion of a linear difference equation of unbounded order. As special cases, the solutions of nonhomogeneous and homoge-
neous linear difference equations of order n with variable coefficients were obtained. From these solutions, Mallik was
able to get the expressions for the product of companion matrices, and the power of a companion matrix. The closed form
solution of the n-th order difference equation (n > 3) is presented in [13] using some combinatorial properties in the indices
of the coefficients in an indirect manner. The results of Mallik, being very interesting and original, were new approaches to
the classic problem of solving linear difference equations with variable coefficients.

In [9] de Jesus and Petronilho established algebraic conditions for the existence of a polynomial mapping using a monic
orthogonal polynomial sequence (OPS). In particular in Section 5.1 of this paper is introduced a method to study such se-
quences with periodic coefficients that are related with difference equations with periodic coefficients. These results were
developed in a recent work [14] by Petronilho to compute the solutions of the periodic case via orthogonal polynomials
and a determinant of a tridiagonal matrix associated with the dynamics generated by Eq. 3. Again, an explicit expression
of the solution for the general case {a,},n=0,1,2,..., is not presented. We point out that the work in [14] can be related
to the recent method of computing generating functions via kneading determinants [1] applied to finite and infinite order
difference equations. We suggest that this last method is a good way to tackle the problem of computing explicitly the solu-
tions of this and other non-autonomous problems in future work.

1.2. Purpose and overview

Changing completely the perspective from the above mentioned literature we approach the problem in the framework of
classic linear periodic difference equations using extensively linear algebra methods.

There exists a simpler method to find the solutions developed by Achille Marie Gaston Floquet (1847-1920) [7]. Floquet
theory, first published in 1883 for periodic linear differential equations, was extended to difference equations being a long
time classic and familiar in many textbooks [2,6,8,10]. In Floquet theory it is necessary to find explicitly a monodromy matrix
and its eigenvalues, the Floquet multipliers.

We go further since we study the Eq. (3) in the general non-autonomous case for any complex initial conditions and con-
sidering arbitrary complex sequences of parameters {a,}, n =0,1,2,..., not necessarily periodic. We consider a, € C sin-
ce our method works with complex equations and orbits being not restricted to the original formulation on the natural
numbers.!

Let us write the non-autonomous difference Eq. (3) in matrix form, namely

|:Xn+2:| _ |:an 1 :| |:xn+1 :|
Xn+1 B 1 0 Xn

foralln=0,1,2,..., or equivalently

Xn+1 = Anxn, (4)
where
a, 1 Xn+1 Xni2
Ap = Xn = Xni1 = .
" |:1 O:|7 " |: Xn :|’ m |:Xn+1:|

1 We consider the natural numbers as the non-negative integers.
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The solution X, of the general non-autonomous case is given by the matrix product

n-1
Xn =An1An2 ... A1AeXo = (HAnli)XO-

i=0
If we call
n-1

Cn :An—lAn—Z o ~A1AO = HAn—l—i (5)

i=0
we can write the solution of (4) in the form
Xy = CiXo.

where X, € C? is a given initial condition. Therefore the core of our work rests on techniques to obtain the products of the
2 x 2 matrices A, € C?*? that are obtained in the main Theorem 2.10 of this paper in Section 2. It is noticeable that the linear
algebra approach is still complicated regarding that we have only products of very simple 2 x 2 matrices.

When the sequence of numbers a,,n=0,1,2,... is k-periodic with a, = a; with k minimal, a similar iteration gives
X = CiXo. In the periodic case, the matrix C, is known as the monodromy matrix [2,6,8,10] of the periodic Eq. (4). Using
the monodromy matrix one can construct the solution of Eq. (4) since

Xk = CI"Xo

for any m > 0. For a general n = mk + r with r < k we have

r—1
Xn = (HArli> C;anO

i=0

and, again, the solution of the periodic case is obtained computing matrix powers and products of matrices. The key of the
periodic problem is to obtain the eigenvalues of the monodromy matrix, usually called Floquet multipliers in the field of
dynamical systems. Moreover, the asymptotic behavior of the solutions can be studied via these numbers.

The problem of finding the Floquet multipliers is not easy, since we have to solve the characteristic equation

det (C,, — ) = 0

and the entries of C, satisfy the same recurrences of the original problem. Consequently, in Section 3 we approach this prob-
lem computing directly the eigenvalues of the monodromy matrix, i.e., the Floquet multipliers of the periodic equation.

In Section 4 we study more deeply the solutions of Eq. (3). We determine explicitly conditions for the periodicity or non-
periodicity of the solutions. We remark here that the limits of the quotients of consecutive iterates exhibit periodicity when
the iteration time n tends to infinity. Something similar to the convergence to the golden ratio of the quotients of consecutive
iterates in the original Fibonacci problem.

Finally, using the techniques previously developed, we present some examples in Section 5. More specifically, we give a
complete study of a 3-periodic and a 4-periodic equation where k = 3 and k = 4 respectively.

In a nutshell we can say that in this paper the main result rests mainly on the general technique to compute arbitrary
products of some special 2 x 2 matrices. As usual in the field of linear difference equations most part of the theory can be
seen as a reinterpretation of linear algebra results as we can see in [2,6,8,10]. We present explicit solutions of difference
Eq. (3) for general sequences of complex numbers {a,},n =0,1,2,..., periodic or not, not obtained before in the literature.
We provide abundant examples to help facilitate clarity.

2. Main result

We start this section by introducing some definitions and notations that will help us greatly in the statement of the re-
sults. As usual N represents the set of non-negative integers and C[t] the set of formal polynomials with complex coefficients
in the indeterminate t.

Definition 2.1. Let A = {a;},.y be a non-zero complex sequence of numbers not necessarily periodic. We define a 2 x 2
Fibonacci matrix A; € C**? as the following

a; 1
[ ]]

Notation 2.2. Let us use the vector notation a;; = (a;, i1, ..., a1, aj)T, for some i < j,i,j € N. In the sequel, it will be evident
that we need to indicate both the first index and the last index in this notation. When this vector has only one component the
notation will be naturally simplified to a; = (a,-)T = a;. Moreover, all the usual conventions about summations and products
will be used.
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Notation 2.3. To simplify the expressions with summations that we have in the following discussion we define for n and p
even the multi summation operation

pterms
P P+ —P+1 1521 n21 n2 £2
. 6
. Z Zzg OZII 10212 11+1Z pr 4=ip_5+1 ip_3=ip_4 ip_g=ip_ 3+1Zzp 1=lp_3 ’ ( )
ig,-onsip_1
when n and p are odd we write
pterms

—

n1<1 7!1] n-1

<L P+ —+1 -l ol ol
; Z: Zlg OZII 10212 ip+1 i3 o i:,3:ip,4+1 i:,zzip,3 i:,lzip,zﬂ () (7)
0:--p—1

In both cases the number of sums in each operator is p. Please note that the upper bound on the innermost summation deter-
mines the other upper bounds and not the other way around.

The introduction of this notation facilitates a great deal the writing of the proofs since large consecutive sums appear in
the entries of the product of matrices. With this non-standard notation the lower indices and higher indices appear in con-
secutive pairs, starting at O for the pair iy = 0 and i; = ip, having successfully pairs of the type iz = iam_1 + 1 and iz, 1 = iom;
each pair of upper and lower indices increases by one at each transition from odd indexed i,,,_; indices to even indexed iy,
indices. Clearly, in the case of odd n and p the innermost sum has only one term instead of a pair of sums. Please check exam-
ples 2.5 and 2.7, or the last sections of this paper, to see practical evaluations.

Definition 2.4. Let n € N be even. We write x,, (ag,n—1)tP € C[t], with even degree p such that 0 < p < n, as the following
formal monomial in the indeterminate t

_,1 E,

an(aon 1 tP =4 Z Haz'lea1+2‘Zl+l (8)

Finally, when we do not restrict the indices in a to start at 0 but at L € N, we have y, ,(ar11n-1) such that

L1

Ynp(aLLin-1)t" £ 6P Z H0L+212,H‘1L+1+212, 1

When p = 0, we consider by definition that y, o(2) £ 1, for every even n and any vector v. Moreover, () = %00 = 1.

The apparently complicated expression (8) is nothing but the sum of all possible products g;, ...q;, with p factors, such
that the first factor a;, has even index j;, the second factor has odd index j, and so on, ending each product with an odd index
factor a;, where j, is odd.

Example 2.5. One can see that

Xs4(a05) Z HamthaHZ'zm ZZ Z ZHamtha]ﬂlzm

ig,i1,iz.i3 I=0 i0=0i =ipiy=i; +1i3=iy I=0
= 0op010,03 + Apa1 0205 + ApA10405 + Apd30405 + A2030405.
Obviously, when we shift the indices in a by one unit, we have
Ye.4(016) = 1020304 + 01020306 + 01020506 + 0104050 + A3040506.
From a practical point of view, one can see that the construction of the number yg4(ags) is equivalent to the combinatorial

problem of finding all the possible configurations obtained from (0, 1,2,3,4,5) when we cut a pair of consecutive numbers
(not considering as and a, consecutive) in the sequence of elements of the set .A. In this case, we have the configurations

{(0,1,2,3),(0,1,2,5),(0,1,4,5),(0,3,4,5),(2,3,4,5)}.
One can formulate this problem, for example, as the possible configurations of people remaining when a pair of persons
seating together leave a counter or the possible configurations of a row of distinguishable balls when two adjacent balls are
taken.

Definition 2.6. Consider n € N an odd number and L € N. Similarly to the even case, we define the p-degree formal
monomial Xn,p(aL,HnA)f” € Clt], with1 < p<n,as

2
p A p )
Xn.p(a’--,’ﬁrn*])t =t H L+2iy; AL 1420y, -
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We remark again that the apparently complicated expression of x, (a0 1) is the sum of all possible products g, ...a;,
with p factors, such that the first factor has even index, the second factor has odd index and so on, ending on a;, where j,
is an even index.

Example 2.7. For instance, one can see that

Xs.3(004) Z Hamz,HaHziM ZZ Z 1_[(1212,1_161“2:2”1 o010y + ApA104 + Aod304 + A20304.

ig,iq,ip =0 ig=0iy =igiy =i +11=0

Again, this is the same combinatorial problem of finding all the possible configurations obtained from (0, 1,2, 3,4) when
we cut a pair of consecutive numbers. In this case the possible configurations are
{(0,1,2),(0,1,4),(0,3,4),(2,3,4)}.
Other easy cases are ys,(ag4) = do + 2 + 4 OT Y5, (a15) = 4 + A3 + 0s.

Definition 2.8. For the natural numbers n and L, we define the formal polynomial Q(t) € C[t] by
% .
ZXn.Zj(aL,L+n—l )t neven,

j=0
Qn(ﬁ 0L,L+n—1) £ Jn;l (9)
2

ZXH‘ZHJ (QL,L+n—1 )tz'iﬂ ,n odd.
=
The polynomial Q,(t, apn_1) has degree n and when n = 0 we write Qq(t) = Xo,ofo = 1. The construction of Q,(t, apn_1) cor-
responds to the combinatorial problem of finding all the possible configurations when we cut all the possible pairs, from zero
pairs to |2| pairs, of consecutive numbers from a row of n integers.

Example 2.9. As an example, let us illustrate how to compute Q; (t, ag1). Since

Qa(t,a01) = 250(01) + Y22(a0.1)t?,

it follows that

—

22 0
Yo2(a01) ZH02121H01+2121+1 = Qo1
ig,iy 1=0 =
and
Y20(001) = 1.

Hence, Q,(t,a01) = 1 + apa; t2. Notice that Q; (t, ap) = aot and Qy(t) = 1. Finally we note that in the case of i = 1 the indices in
Y2.2(a01) are increased by 1, so Qy(t, a12) = 1+ a;a,t?
In the next result we show how to compute the product matrix C, defined in (5).

Theorem 2.10. Consider the formal polynomials Q; (t, agn_1),Qn-1(t,a1.n-1), Qu_1(t,a00-2), Qn_2(t, a1 n_2) € C|t]defined in (9).
For any n > 2 and t = 1, the product matrix of Fibonacci matrices defined in (5) is given by

:’ﬁ|:an—l—i 1:| _ |:Qn(1~,a0.n—]) Qn—l(]va],n—l):|
Qn—](LaO,n—Z) Qn72(1701,n72) '

Proof. The proof is by induction in n. When n = 2 we have
C, — {92(1700,1) 91(1701)} B {1 + Aoty (11}
2= - ’
Q(1,a0)  Qo(t) o 1
which is [T} A;_;. We notice also that

C _{93(1700.2) 92(1701,2)}_{Go+az+aoalaz 1+ala2:|
Tl @) 1+ aoay o |
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It is an easy computation to show that this matrix is HJ-ZZOAz,j.
Now we have the hypothesis

C, = |:Qn(1,00.n—1) Qn71(1701.n71)}
Q1 (17 aO,n—Z) sz(1 s al,n—Z)
One needs to show the induction step for the matrix C,,1,
G = [ o) L1 o
Automatically, the entries c,.1(2,1) and c,.1(2,2) are done. Now, we have to prove that
Qni1(1,a00) = Cri1(1,1) = anQn(1,a00-1) + Qn-1(1, a00-2),

for any n.
We note that

Qﬂ(17 aO.n) = Cn+1(1>2) = anQn—l(laaLn—l) + Qn—2(41~, al.n—Z)v

holds immediately if the condition (10) is true.
We make use again of the formal indeterminate t to tackle the polynomial

anth(t, aO,n—l) +Qq (t7 aOJ’l*Z)v

Qn(1~, ao_n,]) Qn71(1~, a].n—l)

computed for each degree of t. At the end of the proof, we will make ¢t = 1 to obtain the desired equality.
Supposing first that n is even we note that

anth(t, aO,n—l) + Q4 (t-, c(O‘n—z) =

n

%
{n tZXn,zj(QO.n—l )t + ZXn—l,2j+1 (aon2)t7*1.

j=0 j=0

The term with the highest degree is

1 1 1
ant%n,n(a().n 1 =t""a Hal =t Hal Kni1, n+1 (aon)t".

On the other hand, the term with lowest degree is given by

n
At Lo (@0n1) + Lo 11(Q0n2)t = At + Y @it = "ait = Y11 (aon)t.

i=0 i=0
Please note that n is even and p must also be even. We consider the sums in the same degree p in (11)

ant%n,p(ao-ﬂfl )tp + Xn—l.p+l (aO-H*Z)ﬂHl .

Consequently
T nipr 3 3
an/(np(‘IOn 1) + Xn- 1p+1(a0ﬂ 2 Z a”Ha2'21H01+2121+1 HaZlZIHa1+2le+1'
fovip1 120 =0 igrip 1=0 1=0
Consider now
n—l/.p\ﬂ 5 £
Xnt1p (agn) = Z Ha212,Hal+212,1
igrip 120

We split this last member in two terms, one with factor a, and the other without a,. Hence,

Ani1pi (apn) =S1 + S5,

where
np 1§ 51
2 Ha212, a1+212, 1
i, ip—1ip=ip_1+11=0 =0

and

Cn+1(1,])cn+1(1~,2):| _ |:an ]:| _ [anQn(‘lvaO,n—l) +Qn—1(17ao,n—2) anQn—] (17a1,n—1) +Qn—2(1;al,n—2)

(10)

(11)
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1 p_q p_q
n.p 2 2
$2= Z anHazzz,Haszzm = n)lnp(a00-1)-

ig,eeeslp_1
On the other hand

—
np 77

Si=3 > Hazzyl—[auzum (12)

i0yensip_1Ip=ip_1+11=0

Now p + 1 is odd. The innermost summation upper bound forces all the other upper bounds in all the summations to be
decreasing one unit by steps of two summations. The nominal upper bounds do not matter if bigger than the forced upper
bounds since the summations cannot be done due to the lack of possible summands when the upper bounds exceed the

forced ones. The nominal upper bounds of all summations >;” i 12,, 11p .1 in (12), from inner summation to outer sum-
mation, are
p+1
n n n pn—p
——1,——17——17....— —
2 2 2 ) 2

therefore the actual upper bounds that really matter for the computation, from innermost summation to the outermost sum-
mation, are

p+1

n n n n-p-2n-p-2
SRR R R L R

corresponding to odd values n — 1 and p + 1 in expression (7). This leads to the conclusion that

n—-1,p+1 %

Z HGZ‘ZIHaHz’ZHl Xn-1p+1 (agn-2)-

Adding all the possible values of %, ;5,1 (a0,)t¥*! and putting t = 1 we get
Qn+1 (1 5 ClO,n) = angn(lu ClO.n—l) + Qn—l (1 s Cl0,n—2)-

The reasonings for n odd and p odd are exactly the same. For sake of completeness we present here the corresponding induc-
tion step for odd n.
Let n be odd. Then, one can verify that

n_1
2

n-1
7

AntQn(t, agn-1) + Qn-1(t, a00-2) = Ant > Xy iq (agn-1)t7"" + ZXnA_zj(aO,n—Z)tzj- (13)
=0 =0

The term with the highest degree is
n-1 n
Ant L (001" = " ap [ Jar = " '] @1 = L1 pir (00)E™,
10 1=0
while the term with lowest degree is
Yn-10(00n2)t" =1 = 7,5 0(a0n)-
Let us consider the sums with the same degree p in (13)
nt Y p (@01t + X1 pi1 (apn-2)tP*".

Hence, we have to study the coefficients of tP*!

— 1 1 — 1 1
np B el niprify Py

n Y p(a0n-1) + Xn_1pe1(Qon-2) = Z an| |2, || Q14214 + iy | | G121, -
gy L0 L0 oy 0 1-0

Consider now

n+] p+l

Xn+1‘p+1(a0" = Z Haz 'zzHa1+2 PR
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Splitting this last member in two terms, one with factor a, and the other without this factor we have

Xn+].p+1 ((’lo‘n) =5+ 527
where
—_ - 1 1
_ np -1k e
S1= Z H 2 ilea“Z b
i,.ip_1ip=ip_11=0 1=0
and
w5 gk
S = Z an az iy, H 142 iy -

One can verify that §2 = aanp(ao,nq) and §1 can be written as

1-2

2
S] = Z Z Hazlz,Haszzma
I

wip_1ip=ip_11=0

a similar reasoning to the one used to simplify (12) gives

n— 1p+1
Z Ha2121 Ha1+2121+1 anl,pﬂ (a0‘n—2)~
ig,...,ip =0

Adding all the possible values of 7, 5 ; (a0)t¥*! and putting t = 1 we get
Qi1 (1 » aO‘n) = anQn(L aO.n—l) +Qp (1 ) aO‘n—2)7

as desired. O

Obviously, the result on general non-autonomous difference equations can be further developed for the general non-peri-
odic case. In the present work its main use is on the study of periodic systems. Anyway, we present here a very simple exam-

ple for the general non-autonomous case.

Example 2.11. Consider the sequence of Fibonacci matrices A = {a;};.,, with a; = 0 when i is odd. For n odd we have

n1
2

C. _ |:Qn(1;00.n—1) Qn—l(‘lﬂll.n—l)} _ a; 1
" Qi (Ta0n2) Qua(1,a102) =0 ’
L1 0]
where Q, >(1,a152) = Zﬁ)awzj = 0. For n even we have
1 01
C._ |:Qn(17a0.n—1) Qn71(1701,n71)} _ | =
" Qo 1(1,a00-2) Qu2(1,a10-2) (yj

o

=

In this simple example the asymptotic behavior of the solutions depends only on the convergence of the series Y ;a,;.

3. Periodic Fibonacci difference equation

In this section we study the periodic generalized Fibonacci difference Eq. 4 using the monodromy matrix and its Floquet

multipliers.

Definition 3.1. Consider the periodic non-zero sequence of complex numbers A = {a;},;.y such that a;,, = q; forany i e N,

some fixed k € Z* and a periodic sequence of 2 x 2 Fibonacci matrices

A 1}.

0
We define the monodromy matrix C, € C?*2 by

k-1
A
G = HAI(—1—1'~
i=0

a;
1
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Theorem 2.10 naturally applies to the monodromy matrix. The next step is to determine the Floquet multipliers, which
are the eigenvalues of C,. For that purpose we need to compute the determinant and trace of C.

Since Cy = H H" 1= (1)} it follows that det C, = (—1)". By Theorem 2.10 the trace? of the monodromy matrix Cy is

trCy = Qk(LQO‘kfl) + Q2 (1, a12).

To understand better this trace we use again the formal indeterminate t.

Definition 3.2. The formal polynomial T,(t) € C[t] is given by
Ti(t) £ Qi (t, apk-1) + Q2 (£, a1x2).
Ti(t) is defined such that the trace of Cy is Ti(1).

Notation 3.3. We write the polynomial T(t) as

Ti(t ZTZJ agk-1)

when k is even and

=~

1

Wit (agr-1) 7!,

o

T, (1)

T
o

when k is odd.
Consider the case of even k (similar reasonings hold for the odd case), we have

k_ 1 %
Tk Z)(k 2j {00 k— tzj + ZXk,z_zj(al.k—Z)tZJ = Z(Xk,zj(ao.k—]) + Xk,z‘zj(al‘k—z))tljv
j=0 Jj=0

subject to the convention that
Hi22i(¥) =0, if2j>k-2

Now we write

N

Ty (1) Z‘sz agk-1)

where Wy;(agx_1) is the coefficient of t¥ in T(t) such that
i (a0k-1) = Aaj(a0k-1) + Xi22i(a1k-2)-
Please note that the coefficient of the highest degree (t%) is

Fie(a0k-1) = Jiew(00k-1) + Yi-ase(a14-2) Ha,
—,_/

We focus our attention on the monomlals in the formal indeterminate t. We remember that k is even and 2j < k. Hence,
the coefficient of t¥ is

—

k2j j-1 k 2,2j j-1
‘{IZJ(QOk 1 E 1_[(1212,1_[(11+212,+1 + E HGHZxZ,Hazmzm
i0,-igj—1 =0 ig,...sigj_1 =0

We realize that this rather long expression is nothing but the sum of all possible products with 2j factors of coefficients ap,
such that the first factor can have index m; even or odd, the second factor has index odd or even, respectively, alternating
always the parity of the indices along the product of coefficients. For instance if k > 6 we have in the coefficient of t* sum-
mands which are products of the form apa;a,as, apa,a4as, apaza4as, a,asa,as or a;a,asdy, but we do not have the forbidden
products apa,asa, or a,a,asas, where we would have two even consecutive indices, in the first case, and odd, in the second
case.

We can obtain explicitly the Floquet multipliers in the following result.

2 The constant A in [4] is basically (—1)kter which is very dificult to compute without Theorem 2.10.
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Proposition 3.4. The Floquet multipliers of C;, are given by
1
0; =5 (10 = V) - 4-1)).
Proof. Since the eigenvalues of any 2 x 2 matrix A € C**? are given by

trA £+ 1/ (trA)* — 4detA
5 .

}vlz =
it follows that

2 k
op TDEVTDP 41

Now let Cy =JAJ™! be the Jordan canonical form of the monodromy matrix C;. Assume that when k is even we have
|trCy| # 2. Hence, we can write, without loss of generality, the matrices J.J' and A as

Jn el [ T o 0
= = A: .
/ {121 J22 ]7 / {]21] ]52] ] 7 {O (DJ

So, we have

AT - {Jn@k)"]l% +12( @) o1 (@) T + 1@ } _

T (@) 1290 Tt o1 (@) 13 +102(9F) "),
If k is even and |trCy| = 2, then the eigenvalues of Cy are either 1 or —1 with algebraic multiplicity 2. In this case the matrix A"
is either

1 on) =)' n=1)""
[0 l}or{o -1" }

In the following corollary of Theorem 2.10 and Proposition 3.4 we write explicitly the solution of Eq. (3).

Corollary 3.5. The solution of the k-periodic generalized Fibonacci difference Eq. (3) is given by

1. Case k odd or k even and |trC;| # 2:

Xk = Jo1 11 X1 +J51 X0) (@) + Joa U1 X1 + T35 %0) (@), Xnet = J11 (11 X1 + o1 X0) (@) + J12 (a1 X1 + J50 Xo) (@)
and
Xnket(i+2) = AiXnk+(i+1) + Xnk+i>i € {07 17 27 s >k - 3}7

foralln=0,1,2,...
2. Case k even and trCy, = 2:

Xak = (Jaul it + Wy + T2 )1 20+ (Jauid + (Wan 22 )Xo, X
= (it + (W 2t )%+ (Fdid + (s +J12)as ) o,
and
Xnker(i42) = AiXnkes (1) + Xnkein 1 € {0,1,2,..., k — 3},

foralln=0,1,2,...
3. Case k even and trC, = —2:

X = (=1)" (Joal i+ (=11 +J2)051 )+ (<1 (Jaid + (=g +J2 )23 ) o,

Xt = (1" (! + (=1l +Jilad )%+ (1" (s + (<11 +J12)as ) %o,
and

Xnke(i42) = AiXnkes (1) + Xnksir 1 € {0,1,2,...,k — 3},

foralln=0,1,2,...
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Remark 3.6. Notice that when xo = 0,x; = 1 and k = 1 we have @] = ¢, ®] =1 —¢,J,; = —¢,J71 = —%(1 —P)Jp=1—-9¢
and J;; = k- ¢ leading to

1w 4 _
xnfﬁ@; (1-¢)"), n=0,1,2,...

4. The structure of the solution

In this section we study the solutions of Eq. (3), namely we determine explicitly the conditions for the periodicity of the
solutions in the case of k-periodic Fibonacci equations. The sequence of quotients of consecutive iterates, such that
qo = j‘(—(‘), e Gy = "’;‘—:1 approaches a periodic cycle with period P, where P is a multiple of k (it depends on the Floquet multi-
pliers), which is related to the convergence to the golden ratio of the quotients of consecutive iterates in the classic auton-

omous Fibonacci equation.
4.1. Odd period

From Corollary 3.5 it follows that
Xoksr _ U(®)" + B(®;)"
Xk 3(@)" + p(@)"

where o = Ji; (/11 X1 +J31%0),  =J12 21 X1 +J22%0),6 = Jo1 (11 %1 +J21%0) and § = J (J1 X1 +J22%0)-
Let the period of Eq. (3) be odd, i.e., k is an odd number. Then

L G/ (trG)’ +4
k — 2 :
Let us assume first that rCy # 0. Hence, either

If i—ﬁ‘ =|r| < 1, we have
k

X1 _ o+ B

Xoo Oy ]

<1lor > 1.

D D
tl)k le

Let L—1Io Similarly, one can show that 2 %kil—], Analogously, %2 —@isl—[, More generally,
nk+

nk+1

0
M_,% =1Li1,i€{0,1,2,...,k—2}. Notice that L,.; = L;, for all i = 0,1,2,.... Hence, one can consider the following

Xnke-(i+1)

k-periodic cycle as the limit of the quotients of the solution of Eq. (3)
{Lo,L1, L2, L1} (14)

Remark 4.1. Notice that, if there exists ani € {0,1,2,...,k — 1} such that L; = 0, then the k-periodic cycle (14) is unbounded
since L;, ;1 — oo.
On the other hand, if

>1 one can show that i 2 Lo,z 0olotl _ T, and more generally
»

@
’ ? Xnk1 Lo

R

B bl T i€ {0,1,2,. ..,k — 2}, yielding the following k-periodic cycle as the limit of the quotients of the solutions

Xnk-+(i+1) L

(Lo, L1, Lo, ..., L1}

Secondly, if trC, = 0, then the eigenvalues of C; are 1 and —1. Hence, the solutions of Eq. (3) are given by

_1 -1 -1 1 -1 1 1 -1
Xin = Jo1 (11 X1 4051 %0) (= 1)" + Joa 51 X1 +J55%0),  Xknar =J1Uni %1 +J21 %) (=1)" + 12021 X1 +J 22 X0)
and
Xnk+(i+2) = AiXnk+(i+1) T Xnk+i ie€{0,1,2,...,k-3}

foralln=0,1,2,....
A simple computation shows that {Xo,X1,X2,...,X2_1} iS a 2k-periodic solution of Eq. (3), where

1 1 1 2
X0 = Jo1(J11 X1 +J31 %0) +Jo2 (51 %1 + 55 X0),
1 -1 -1 -1
X1 = —J1 U1 X1 +J31%0) +J12U51 %1 +J52 %o),
Xiv2 = AiXi1 +Xi7i € {0,172,...,k*3},
-1 1 _1 1
Xk = —Jn U1 X1 + ] %0) + ]2 a1 X1 + 12 X0),

1 1 1 1
X1 =Ju Ut X1 + 31 X0) +J12 U5 %1 + J32 Xo),
Xier(i42) = AiXpr(is) + Xpwis 1 € {0,1,2,... k= 3},
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4.2. Even period
Let the period of Eq. (3) be even. First let us assume that |trCy| < 2. Then

trCy + 31/4 — (trCy)?

2 bl
with |®] | = |®; | = 1 and J being the imaginary unit. Hence, the eigenvalues of C lie on the unit circle. Moreover, the matrix
A is periodic being

o

trCe £3\/4— (rC)*
= e
2 bl

with 0 = arctan trc"ck ,0 € [-Z,3]. Let P = 2% be the period of the monodromy matrix, i.e., Ch = C,. Hence, the solutions of

Eq. (3) are periodic. Let us now determine thlS period.
From Corollary 3.5 it follows that

Xo = Jo1 (71X1 +J31%0) +J22 (31 X1 +J52%0).
X1 =] Ui X1 +Jo1%0) +J15 U1 X1 +J 5 %),
Xis2 = QX1 +Xi,1 € {0,1,2,... k—3},
Xe = Joy i1 %1+ 51 %0) @ +J02 U1 %1 +J25%0) P
Xir =Ji Ui X + 11 X0) @y + T2 U1 %1 + I3 %0) D,
Xier(i42) = AiXps(is) + Xpris 1 € {0,1,2,... k= 3},

_ _ o _ _ P-1
X(P-1)k =]21(111]X1 +]211X0)((Dk )P ! +122(121]X1 +122]X0)(‘D;) )

P-1 -1 -1 P-1
X(P-1)k+1 =1 Un1 %1 + 151 %0) (@) + 1551 X1 + ]33 %0) (D)
X(p-1)kr(i+2) = @X(P-1yk+(i+1) + Xp-1)keiri € {0,1,2,... k= 3}

Since the monodromy matrix is P-periodic, it follows that (<I>,f)m = ((I)f)i, for all i =0,1,2,.... Hence, Xip,; = x;, for all
i=0,1,2,.... This implies that the minimal period of the cycle is kP.

In conclusion, if |trC,| < 2, the following cycle is a kP-periodic solution of Eq. (3)

{X0,X1,X2, ..., Xip_1}.

Second, if |trCy| =
solution.

Third, if |trCy| > 2, it follows that we will have either ‘J <lor dﬁ > 1. Following the same ideas as in the odd case we
will have a k-periodic cycle as the limit of the quotients of the solution of Eq. (3).

5. Applications and examples

In this section we study some examples of the periodic generalized Fibonacci difference Eq. (3). We start by a 3-periodic
equation.
Example 5.1. Let the period of Eq. (3) be 3, i.e., k = 3. The monodromy matrix is given by
Co Qo + 0y + agaa; 1+ aa;
T 1+ aoaq aq ’

yielding the following representation

n ny-1
Ct=JA"Y
with
n
_ 14apy A=2a;+V/4+A? A-\/4+A? 0
A-2a;—\/4+A%*  A-2a;+\/4+A? a2 2 2
2(1+apa 2(1+agay) -1 4a 2Va+A Al
J= (1+apay) (1+apay) J = o,k = a s
1 1 1+agay _ A-2a1 -V 4+A 0 A+ 4+A?
V 4+ 21/4+4? 2

where A = ag + a; + a; + apa; a.
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1. Case A = trC3 = 0. This occurs when ay = — fgﬂaz Hence, the general solution is given by
1D (- (=D, (1= () -a)
Xon = 2 ot TS At an)
1-(-1)" T+(=D)"-(1-()"a

Xani1 =~ (14 ajaz)xo + 5 X

and
X3n+2 = QoX3p41 + X3n,
foralln=0,1,2,.... It is straightforward to see that this general solution is, in fact, a 6-periodic solution of the form
{xo,xl,aoxl + Xo, A1X0 + ixh (1 4+ a1a)x0 — a1X1,a0((1 + a1a3)Xo — A1X1) + A1Xo + ixl }
21+ aap) 21+ aay)

Notice that this cycle can be not bounded if a;a, = —1. In Fig. 1 we can see an example of this situation. Using a 3-periodic
sequence of parameters we present in the plane (n,x,) a 6-periodic solution of Eq. (3).
2. Case A = trCs # 0. The general solution of the 3-periodic equation is given by

o _ 1+ a0 (@3)" — (@)")x + A- 2a1+\/4+A2( >n+_A+2a]+\/4+A2( ))X
3n — T /—/— - 1 0,
NZEW AN ’ 2V/4 + A 2V/4 + A? o

M ST ((q,+)n (CI)’)")x N A+2a1+\/4+A2( S A- 2a1+\/4+A2( 97 )x
3n+l — T Y/ - 0 1,
Y Ve 2ara Wara

and
X3p+2 = AoX3p+1 + X3p,

foralln=0,1,2,..., where & = Ai\/24+A2
e CaseA>0. lf the trace of the monodromy matrix is positive, then the limit of the quotients of the solution converge to

the following 3-periodic cycle

aolo +1 ai(aolo +1) + Lo
{Lm Ly 7 aolo +1 ’ (15)

where
_ 2014+ @)% + (A - 201 + V4 + A%
2(1 + aoa1)x; + (A +2a; + V4 + A*)xo
e Finally, A < 0. In this case we obtain a cycle as in (15) with
—2(1 + a1a2)Xo + (—A + 2a; + V4 + A*)x
—2(1 + aoa)x; + (A — 201 + V4 + A%)xo

In Fig. 2 we have an example of this case. Using a 3-periodic sequence of parameters we plot in the plane (n,
cycle for the quotients of the solutions.

a1 e
wi1) a 3-periodic

Xn

10F

M

Fig. 1. A 6-periodic solution ({5,1,4,5,—6,11}) of a 3-periodic equation. The values of the parameters are ap = —1,a; =1 and a, = —2 with initial
conditions xo = 5 and x; = 1. In this case the eigenvalues of C3 are 1 and —1 since trCy, = 0.
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Example 5.2. Let us now consider a 4-periodic equation. The monodromy matrix is given by

1+ apay + Apaz + axAz + ApA1AA3 A1 + A3 + 41003

Cy=
Qg + ay + Apa,a; 1+aa;

1. Consider the case trC4 = 2. This occurs when ag = — —2@+%)_ Hepce, the monodromy matrix can be simplified as

ay+a3-+a, 0,03
1-aia; a; + as + a;apas
Cy= a%a%

L as+aq(T+a,03) 1+aa,

yielding the following representation

[a1+03+0a10203  —a1—03—010,03
"= aa, a%ag 1 n 02 1
4= 0 1/|l=——Y9% __ g.q
L 1 0 a3+a; (1+a3a3) 142
It follows that
azain

Xan = (1 + nalaz)xo — X1,

as + aq (1 —+ (12(13)
Xani1 = (a1 + a3 + A10203)NX0 + (1 — a1a2n)X4,
a(ay + as)
X i . ¢ + X
4n+2 a4 + a3 + 410,03 4n+1 4n

Xan+3 = Q1Xani2 + Xani1-

i i il [ Tans2 ], —Gocod ] Mns ], — Gt Znid _, [o = G2t
With some computations we see that =t Lo, Xan:2 L Golo+1 Xans3 L @b+l and Xanss L Gly+1 where
X4n X4n+1 Lo X4n+2 Ly X4n+3 Ly

(a1 + a3 + 0103)*Xg — 102(Ay + 03 + 0103)X;

Ly =
2
a102(ay + a3 + a103)Xg — (A102) X1

Hence, {Lo,L1,L>,Ls} is a 4-periodic cycle of the limiting process of the quotients of the solution of the equation. See Fig. 3 for
a concrete example.

2. Consider trC4 = —2. This occurs when ag = — 2+%@1+43)

a;+as+ayaxaz”

The general solution is given by

n(z + a1a2)2

—cnfa-e _MEthid)
Xan = (=17 ( (+a1a2)n)x°+a3+a1(1+aza3)1

Xani1 = (=D)"(1 + 2 + a1a2)n)x; — (a1 + a3 + a10203)1Xg),

Xan+2 = QoXan1 + Xan
and

Xani3 = Q1 Xany2 + Xani1,

_ Xan+1 Xan+2 _ Golo+1 Xan:3 _ ol 1 Xan+4 _ Bl
foralln=0,1,2,.... Hence, el — Lo, o — L = T el — L, " and et — Ls r where

Ly

Fig. 2. A 3-periodic cycle {-3.61803,0.723607, —-0.618034} for the ratios of the solution of a 3-periodic equation. The values of the parameters are
ap = 1,a; = -2 and a, = —2 with initial conditions xo = 5 and x; = 1.

©w
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_ (a1 + a3+ 010,03)((2 + 102)X1 — (01 + 03 + 010203)X0)
(2 + 0102)%%1 — (2 + a103)(aq + A3 + a10203)Xo

With initial conditions xo=5 and x;=1, for instance, we can find a 4-periodic solution
{10.625,-0.211765,0.277775,1.60003} when ao=-5,a0y=5a,=-2 and a;=10 and an unbounded cycle
{1,0,00,—1} when ap = —1,a; = 1,a; = —1 and a5 = 2.

3. Consider |trC4| # 2. The general solution of the 4-periodic equation is given by

2(ao +az + aoalaz)((G)I)" - (‘DZ)")

Xan = 1
' 2V/A7 -
La-2- 2a1a2+\/A —4)(0;)" — (A-2 24, — VA* — 4)(D;)"
2VAZ_ o
2(a; +as + alazaz)((qﬁ)" - (‘DZ)")
Xany1 = Xo

2VA® -
L(A-2- 2a1a2+\/ 4)(@7)" — (A -2 - 2a1a, — VA* - 4)(D,)"

2V A2 -

X1,

Xani2 = QoXan1 + Xan
and
Xani3 = 1Xani2 + Xani1,

foralln=0,1,2,..., where A is the trace of C4, i.e., A = 2 + aoa; + 010y + ApQ3 + A203 + Ao 0203 and @ = AEVAA VZAZ"‘.
e Case |A| > 2. The quotients of the solution converge to a 4-periodic cycle of the form

agly +1 Lo aglo + 1
Ly, ,a ,a
{ 0 Lo ’ ]+C10L0+1' 2+a1(a0L0+1)+L0}

where Ly = llm"“';“ Notice that this cycle may be unbounded.
e Case|A| < 2. Since we have a pair of complex conjugated Floquet multipliers, the solution of the 4-periodic equation is

periodic with period 4P,P = 2Z where 6 = arctanm 6 € [-Z,%]. See SubSection 4.2 for the computations of this
cycle.

Let us present a concrete example to illustrate this case. Let us consider a 4-periodic sequence of parameters a, = a4,
foralln=0,1,2,... such that ap = —1,a; = 1,a; = —1 and a; = —1. With some computations we see that we have
0 = arctanv/3 = Zand P = 6. Hence the monodromy matrix Cy is 6-periodic. Consequently, we have a 24-periodic cycle
as the solution of this equation. A straightforward computation shows that this cycle is given by

{X0,X1,X0 — X1,X0, —X1,X0 + X1, —Xo — 2X1, —X1, —Xo — X1, X0, —2Xo — X1, —Xo — X1, —X0, —X1, —Xo + X1, —X0, X1, —Xo — X1, X0
+ 2X1,X1,X0 + X1, —Xo0, 2X0 + X1,X0 + X1 }.

Notice that any cyclic permutation of this last sequence of parameters leads necessarily to a 24-periodic solution.

00012 100014 00016 100018

Fig. 3. The 4-periodic cycle corresponding to the limit process of the ratios of the solution of a 4-periodic generalized Fibonacci equation. In this example
we consider ap = —1,a; = 1,a, = —1 and a; = —2 with initial conditions xo = 5 and x; = 1 originating the cycle {-1,-2,0.5,1}.
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