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Nowadays, consumers look for minimally processed, additive-free food products that
maintain their organoleptic properties. This has led to the development of new technolo-
gies for food processing. One emerging technology is high hydrostatic pressure, as it proves
to be very effective in prolonging the shelf life of foods without losing its properties. Recent
research has involved modelling and simulating the effect of combining thermal and high
pressure processes (see Denys et al. (2000) [3], Infante et al. (2009) [5], Knoerzer et al.
(2007) [6], Otero et al. (2007) [9]). The focus is mainly on the inactivation of certain
enzymes and microorganisms that are harmful to food. Various mathematical models that
study the behaviour of these enzymes and microorganisms during a high pressure process
have been proposed (see Infante et al. (2009) [5], Knoerzer et al. (2007) [6]). Such models
need the temperature and pressure profiles of the whole process as an input. In this paper
we present two dimensional models, with different types of boundary conditions, to calcu-
late the temperature profile for solid type foods. We give an exact solution and propose
several simplifications, in both two and one dimensions. The temperature profile of these
simplified two and one dimensional models is calculated both numerically and analyti-
cally, and the solutions are compared. Our results show a very good agreement for all
the approximations proposed, and so we can conclude that the simplifications and dimen-
sional reduction are reasonable for certain parameter values, which are specified in this
work.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Classical industrial food conservation processes are based on thermal treatments, such as pasteurization, sterilization and
freezing. For classical heat application processes, temperature is in a range of 60 to 120 �C, and the processing time can vary
from a few seconds to several minutes. The main aim of these processes is to inactivate microorganisms and enzymes that
are harmful to food, in order to prolong its shelf life, to maintain or even to improve its natural qualities, and, perhaps most
importantly, to provide consumers with products in a safe condition. The problem of processing food via thermal treatments
is that it may loose a significant part of its nutritional and organoleptic properties. At present, consumers look for minimally
processed, additive-free food products that maintain such properties. Therefore the development of new technologies with
lower processing temperatures has increased significantly in the past years (see e.g., [10,11]). One of the technologies that
can be used in this field is High Pressure (HP) processing, which has proven to be very effective in inactivating enzymes and
amos).
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microorganisms in food, while leaving small molecules (such as flavor and vitamins) intact, and therefore not modifying sig-
nificantly the organoleptic properties (see e.g., [1,12]).

Two principles underlie the effect of HP: firstly, the Le Chatelier Principle, according to which any phenomenon (phase
transition, chemical reaction, chemical reactivity, change in molecular configuration) accompanied by a decrease in volume
will be enhanced by pressure. Secondly, pressure is instantaneously and uniformly transmitted independently of the size and
geometry of the food (isostatic pressure). This uniformity throughout the sample is one of the main advantages of HP when
compared to thermal processing. Nevertheless, pressurization (depressurization) induces a temperature increase (decrease)
due to the work of compression (expansion) inside the food. This change in temperature must be accounted for in a math-
ematical model. Furthermore, heat exchange between the walls of the pressure chamber, the pressure medium, packaging
material and the pressurised food induce a time and space dependent temperature field.

Securing temperature uniformity in HP processed products is crucial for assuring uniform distribution of the pursued
pressure effects (e.g., microbial and enzyme inactivation), and the prediction of thermal history within a product under pres-
sure is essential for optimising and homogenising HP process (see Otero et al. [10]). For this reason, research has focused (see
Otero et al. [9]) on heat transfer models that simulate the combination of HP and thermal treatments on food products. In-
fante et al. [5] analyse the temperature distribution and investigate its use as an input for the inactivation of certain en-
zymes. Both solid- and liquid-type foods are considered. The complexity needed to solve the models (which include heat
and mass transfer and non-constant thermo physical properties) can be very high. Knoerzer et al. [6] considered a model
that predicted flow and temperature fields inside a pilot scale vessel during the pressure heating, holding and cooling stages,
again the resulting model was very complex and so difficult to analyse. A numerical model for predicting conductive heat
transfer during batch HP processing of foods was developed by Denys et al. [3] and tested for a food simile (agar gel). Non-
linear and non-isotropic thermal properties were used, which also led to a complicated numerical scheme. Smith et al. [13]
presented a generalized enthalpy model for a HP Shift Freezing process based on volume fractions dependent on tempera-
ture and pressure.

In this paper we focus only on solid type foods, with a large filling ratio, where convection effects do not need to be taken
into account. We perform a dimensional analysis which highlights the dominant terms in the model, and shows that in some
cases the equations can be simplified (in dimension) and yet provide a good approximation. These models are much simpler
than those found in the literature [3,5,6], but still have the correct qualitative features, and hence would be very important
when designing suitable industrial equipments and optimizing the processes. Moreover, using the solutions we propose,
there is no need to have an FEM solver in order to simulate the process.

In Section 2 we describe the problem and present the governing equations to calculate the temperature distribution. A
dimensional analysis is then performed to simplify the model. Sections 3 and 4 contain a thorough investigation of the com-
plete and simplified models for the pressure up and pressure hold times, respectively, and we are able to find exact and
approximate solutions describing the whole process. In Section 5 we present some numerical results of a particular process,
comparing all the models to exact and numerical solutions. Section 6 briefly considers an extension to third class boundary
conditions and, finally, in Section 7 we give concluding remarks.

2. Problem description

When high pressure is applied in food technology, it is necessary to take into account the thermal effects that are pro-
duced by variations of temperature due to the compression/expansion occurring in the food sample and the pressurizing
medium. In practice, the pressure evolution, PðtÞ, is known as it is imposed by the user and the limits of the equipment.
The temperature of the processed food may change with time and space, therefore we need a heat transfer model capable
of predicting the temperature for the processed food. Following [5,9], a heat transfer model taking into account only conduc-
tion effects is presented (for models including convection effects see also [5,9]). As the model is both time and spatially
dependent, we also introduce a brief description of the domain describing the high pressure device considered in our
simulations.

2.1. Mathematical model

Usually HP experiments on food are carried out in a cylindrical pressure vessel (typically a hollow steel cylinder) that is
filled with the food and the pressurizing fluid. It is common to assume axial symmetry (see e.g., [3,5,6,9]), due to the char-
acteristics of this kind of processes, which allows the use of cylindrical coordinates, and to consider a two-dimensional do-
main with a half cross-section. In this paper we analyse a simplified geometry with only the food and the surrounding steel
(see Fig. 1). Other authors (see e.g., [5,9]) have analysed a more complex geometry that also includes the pressurizing fluid
and the rubber cap of sample holder, and even the carrier (see [6]). Our focus is on studying a solid type food with a large
filling ratio, where the pressure medium represents a low proportion of the vessel content, and so the pressurizing fluid can
be ignored.

The domain in the cylindrical ðr; zÞ-coordinates is the rectangle X ¼ ½0; L2� � ½�H2;H2� defined by �X ¼ �XF [XS, where
XF ¼ ½0; L� � ½�H;H� is the food domain, and XS is the domain of the steel that surrounds the food. We use X� to denote
the 3D domain generated by rotating X along the axis of symmetry (f0g � ð�H2;H2Þ). The boundary of X is denoted by



Fig. 1. Computational domain.
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C ¼ Cr [ Csym, where we can distinguish Cr on which the temperature is known, and Csym that has zero heat flux by axial
symmetry.

For the mathematical modelling two significantly different cases can be studied: solid and liquid type foods. Since we are
only concerned in analysing solid type foods with a large filling ratio, we only take into account conduction effects (and ne-
glect convection effects). This simplification has been shown to lead to quite accurate results (see [5,9]). Thus, when solid
type foods are considered, we start with the heat conduction equation for temperature T (K)
qCp
@T
@t
�r � ðkrTÞ ¼ b

dP
dt

T in X� � ð0; tf Þ; ð1Þ
where q is the density (kg m�3), Cp the specific heat (J kg�1 K�1), k the thermal conductivity (W m�1 K�1) and tf is the final
time (s). The right hand side of Eq. (1) is the heat production due to the change of pressure P ¼ PðtÞ (Pa) applied by the equip-
ment (chosen by the user within the machine limitations) and b is the thermal expansion coefficient defined by
b ¼ bF : thermal expansion coefficient ðK�1Þ of the food in X�F;

0; in the steel domain:

(

This term results from the following law (see [6])
DT
DP
¼ bTV

MCp
¼ bT

qCp
; ð2Þ
where DT denotes the temperature change due to the pressure change DP, V is the volume and M the mass.
By using cylindrical coordinates and taking into account axial symmetry, Eq. (1) may be re-written in 2D as
qCp
@T
@t
� 1

r
@

@r
rk
@T
@r

� �
� @

@z
k
@T
@z

� �
¼ b

dP
dt

T in X� ð0; tf Þ: ð3Þ
Eq. (3) must be completed with appropriate boundary and initial conditions depending on the HP machine and the prob-
lem we wish to solve. For simplicity we assume that the outer walls of the domain are kept at a constant temperature Tr, and
that the initial temperature T0 is constant in each region, therefore giving
@T
@r ¼ 0 on Csym;

T ¼ Tr on Cr;

T ¼ T0 at t ¼ 0:

8><
>: ð4Þ
In Section 6 we briefly discuss an extended model with third class boundary conditions. Several authors have considered
different boundary conditions to those described above. Infante et al. [5] and Otero et al. [9] assumed a boundary was kept at
a refrigerated temperature, as well as a boundary allowing for heat transfer with the room. Denys et al. [3] considered an
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overall heat transfer coefficient at the surface of the cylinder to account for heat transfer through the walls of the HP vessel.
Although our conditions (4) may seem overly simplistic from a practical consideration, it has been suggested in the literature
that keeping the walls of machine at a constant temperature may be good for avoiding heat loss [10]. There can be a problem
of heat loss through the wall of the high-pressure vessel, and by anticipating the temperature increase of the processed prod-
uct, resulting from compression, conductive heat transfer and temperature gradients can be avoided [3].

In the following sections we study exact and approximate solutions for the model with first class boundary conditions. It
is convenient to begin by non-dimensionalising the model to highlight whether any simplifications are possible.

2.2. Dimensional analysis

Given that the pressure function in Eq. (3) appears only in a derivative form, and that the pressure applied on these pro-
cesses is typically a piecewise linear function in time (hence such a derivative is usually piecewise constant) we do not non-
dimensionalise the pressure variable. Instead, we rewrite the pressure derivative dP

dt ðtÞ as
dP
dt
ðtÞ ¼

c
tp
; 0 < t 6 tp;

0; t > tp;

(
ð5Þ
where, for the sake of simplicity, we suppose that dP
dt ðtÞ ¼

c
tp
> 0 (P linear) for all t 2 ½0; tp�, and c (Pa) is the maximum pressure

reached (for the sake of simplicity we assume that atmospheric pressure is 0 MPa, instead of 0.1 MPa, which is typically the
real value). After time tp the pressure is maintained constant at the maximum value, and therefore the derivative is zero
(other cases can be also studied similarly). The release of pressure that takes place after tf can be modelled with the same
approach. Since it does not introduce any further difficulty we have not considered it here.

Therefore, for 0 < t 6 tp, Eq. (3) can be written as
qCp
@T
@t
� 1

r
@

@r
rk
@T
@r

� �
� @

@z
k
@T
@z

� �
¼ b

c
tp

T; ð6Þ
and for tp < t 6 tf the same equation holds, except with the right-hand side equal to zero.
The system is now non-dimensionalised by setting
r̂ ¼ r
R
; ẑ ¼ z

Z
; t̂ ¼ t

s
; T̂ ¼ T � Tr

DT
;

where DT , R, Z and s are suitable temperature, radius, height and time scales, respectively.
Thus, for 0 < t̂ 6 tp

s , Eq. (6) becomes
qCpDT
s

@T̂
@t̂
� kDT

R2 r̂

@

@r̂
r̂
@T̂
@r̂

 !
� kDT

Z2

@2T̂
@ẑ2
¼ bcDT

tp
T̂ þ Tr

DT

� �
: ð7Þ
For ease of notation we drop the ^ notation, and so T; z; r and t are now the non-dimensional variables.
We divide Eq. (7) by qCpDT=s, resulting in
@T
@t
� ks

R2qCp

1
r
@

@r
r
@T
@r

� �
� ks

Z2qCp

@2T
@z2 ¼

bcs
qCptp

T þ bcs
qCptp

Tr

DT
: ð8Þ
The dimensionless groups of parameters in Eq. (8) are
a ¼ ks
R2qCp

; b ¼ ks
Z2qCp

; c ¼ bcs
qCptp

; d ¼ bcs
qCptp

Tr

DT
: ð9Þ
The radius and height scales that we propose come from the dimensions of the food cylinder, giving R ¼ L and Z ¼ H. Note
that we are only considering half of the height of the domain as the z scale for the sake of simplicity. For the temperature
scale we set DT ¼maxfjT0 � Trj; bcT0

qCp
g, where q and Cp are the density and specific heat of the food sample, respectively.

The quantity bcT0
qCp

is the maximum increase of temperature in the food sample due to the increase of pressure (according

to (2)). The time scale s is chosen from Eq. (8). We wish to investigate what happens when the pressure is increased and
therefore balance the pressure term with the time derivative. This leads to
s ¼ qCptp

bc
min 1;

DT
Tr

� �
:

The system in non-dimensional form is therefore given by
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@T
@t � a 1

r
@
@r r @T

@r

� �
� b @2T

@z2 ¼ ðcT þ dÞvðtÞ in X̂� ð0; tf Þ;
@T
@r ¼ 0 on Ĉsym;

T ¼ 0 on Ĉr;

T ¼ T�0 at t ¼ 0;

8>>>><
>>>>:

ð10Þ
where X̂ ¼ ð0; L2
L Þ � ð

�H2
H ; H2

H Þ is the non-dimensional form of the whole domain X. The function vðtÞ is defined as
vðtÞ ¼
1; if t 2 ð0; tpÞ;
0; elsewhere:

�

Note that tp=s and tf=s have been redefined as tp and tf for convenience. The non-dimensional initial value is
T�0 ¼
T0 � Tr

DT
: ð11Þ
It should be pointed out that in (9), b ¼ a R2

Z2 and hence with the chosen scales b ¼ a L2

H2. This will mean that if the food sample
holder is narrow and tall (which is usually the case for the HP pilot scale machines), the conduction parameter in the z direc-
tion, b, will be smaller than that in the r direction, a. Thus we wish to investigate whether the heat transfer due to conduction
is dominant in the radial direction over the height direction, for a thin and tall machine. This will be studied in Sections 3.2
and 4.2.

System (10) is set in X̂, which involves the two regions to determine the temperature in the food, TF, and in the steel, TS.
Taking into account that parameters c and d defined in (9) are zero in the steel region, as b ¼ 0, (10) is defined as
@TF
@t � aF

1
r
@
@r r @TF

@r

� �
� bF

@2TF
@z2 ¼ ðcFTF þ dFÞvðtÞ in X̂F � ð0; tfÞ;

@TS
@t � aS

1
r
@
@r r @TF

@r

� �
� bS

@2TS
@z2 ¼ 0 in X̂S � ð0; tfÞ;

@TF
@r ¼ 0; @TS

@r ¼ 0 on Ĉsym;

kF
@TF
@r ¼ kS

@TS
@r ; TF ¼ TS on ĈFS;

TS ¼ 0 on Ĉr;

TF ¼ T�F0
; TS ¼ T�S0

at t ¼ 0;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð12Þ
where T�F0
and T�S0

are the non-dimensional initial temperatures in the food and steel, respectively. X̂F ¼ ð0;1Þ � ð�1;1Þ is the

non-dimensional food region, and X̂S ¼ X̂� X̂F the steel one. On the non-dimensional food-steel boundary,

ĈFS ¼ ð0;1Þ � f1g½ � [ ð0;1Þ � f�1g½ � [ f1g � ð�1;1Þ½ �, continuity of the solution and the fluxes has been imposed.
We begin by determining an approximate solution for the steel temperature. By assuming that the conductivity of steel is

much larger than that of the food, we can simplify the flux boundary condition on ĈFS
@TS

@r
¼ kF

kS

@TF

@r
� 0; on ĈFS: ð13Þ
If we also assume that we are working with a narrow and tall machine, i.e., that L	 H, and hence bS 	 aS, the equation
for the steel reduces to
@TS

@t
� aS

1
r
@

@r
r
@TF

@r

� �
¼ 0; in X̂S � ð0; tfÞ: ð14Þ
Since steel has a high thermal diffusivity, aS, the solution of (14) goes to steady state very rapidly, and the solution to the
steady state problem is zero (using the zero flux and zero temperature boundary conditions). Hence we can conclude that

TS � 0. Then the boundary condition for the food at ĈFS can be approximated by TF � 0.
Thus, we now only have the temperature in the food problem to solve, and (12) reduces to
@TF
@t � aF

1
r
@
@r r @TF

@r

� �
� bF

@2TF
@z2 ¼ ðcFTF þ dFÞvðtÞ in ð0;1Þ � ð�1;1Þ � ð0; tfÞ;

@TF
@r ¼ 0 on r ¼ 0;
TF ¼ 0 on r ¼ 1;
TF ¼ 0 on z ¼ �1;
TF ¼ 0 on z ¼ 1;
TF ¼ T�F0

at t ¼ 0:

8>>>>>>>>><
>>>>>>>>>:

ð15Þ
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One further simplification of system (15) can be made, and this is to divide the domain in half at z ¼ 0 and impose a zero
flux boundary condition. Due to symmetry we only need to solve the problem in the upper half of the domain. Finally we
have system for TF (that we will simply refer to as T henceforth)
@T
@t � a 1

r
@
@r r @T

@r

� �
� b @2T

@z2 ¼ ðcT þ dÞvðtÞ in ð0;1Þ � ð0;1Þ � ð0; tf Þ;
@T
@r ¼ 0 on r ¼ 0;
T ¼ 0 on r ¼ 1;
@T
@z ¼ 0 on z ¼ 0;
T ¼ 0 on z ¼ 1;
T ¼ T�0 at t ¼ 0:

8>>>>>>>>><
>>>>>>>>>:

ð16Þ
3. Analysis for the pressure up time 0 <t <tp

3.1. Exact solution

An exact solution can be found by solving the 2D system (16) using separation of variables. We can create a homogeneous
problem by setting
Tðr; z; tÞ ¼ uðr; z; tÞ þ vðr; zÞ þwðzÞ: ð17Þ
Then the problem to solve for u is
@u
@t ¼ a 1

r
@
@r r @u

@r

� �
þ b @2u

@z2 þ cu in ð0;1Þ � ð0;1Þ � ð0; tpÞ;
@u
@r ¼ 0 on r ¼ 0;
u ¼ 0 on r ¼ 1;
@u
@z ¼ 0 on z ¼ 0;
u ¼ 0 on z ¼ 1;
u ¼ T�0 � vðr; zÞ �wðzÞ at t ¼ 0;

8>>>>>>>>><
>>>>>>>>>:

ð18Þ
whilst the problem for v is
0 ¼ a 1
r
@
@r r @v

@r

� �
þ b @2v

@z2 þ cv in ð0;1Þ � ð0;1Þ � ð0; tpÞ;
@v
@r ¼ 0 on r ¼ 0;
v ¼ �wðzÞ on r ¼ 1;
@v
@z ¼ 0 on z ¼ 0;
v ¼ 0 on z ¼ 1;

8>>>>>><
>>>>>>:

ð19Þ
and the problem for w is
bw00ðzÞ þ cwðzÞ þ d ¼ 0; w0ð0Þ ¼ 0; wð1Þ ¼ 0: ð20Þ
This has solution
wðzÞ ¼ d
c

cosðlzÞ
cosl

� 1
� �

; ð21Þ
where l ¼
ffiffiffiffiffiffiffiffi
c=b

p
.

We use the method of separation of variables and set vðr; zÞ ¼ RðrÞZðzÞ. Then the boundary conditions imply that
R0ð0Þ ¼ Z0ð0Þ ¼ Zð1Þ ¼ 0. From (19) we deduce that
a
r ðR

0ðrÞ þ rR00ðrÞÞ þ cRðrÞ
bRðrÞ ¼ � Z00ðzÞ

ZðzÞ ¼ m2; ð22Þ
for suitable constants m 2 R, where ð�Þ0 denotes differentiation with respect to each variable. Solving the ODE for ZðzÞ leads to
ZpðzÞ ¼ AZp cosðmpzÞ; p ¼ 1;2; . . . ; ð23Þ
with AZp 2 R, and mp ¼ ðp� 1=2Þp. The solution of the ODE for RðrÞ, after satisfying the boundary condition R0ð0Þ ¼ 0, is
RpðrÞ ¼ ARpJ0ðaprÞ; ð24Þ
where Jn is the Bessel function of the first kind of order n;ARp 2 R, and
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ap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c � m2

pb
a

s
: ð25Þ
Hence we write
vðr; zÞ ¼
X1
p¼1

ApJ0ðaprÞ cosðmpzÞ; ð26Þ
and from integrating and applying the orthogonality condition it follows that
Ap ¼ �
2

J0ðapÞ

Z 1

0
wðzÞ cosðmpzÞdz; ð27Þ
where wðzÞ is defined in (21).
We finally turn to the problem for u in (18) and separate variables by setting uðr; z; tÞ ¼ RðrÞZðzÞCðtÞ. Then the boundary

conditions imply that R0ð0Þ ¼ Rð1Þ ¼ Z0ð0Þ ¼ Zð1Þ ¼ 0. From (18) we deduce that now
C0ðtÞ
CðtÞ ¼

a
r ðR

0ðrÞ þ rR00ðrÞÞZðzÞ þ bRðrÞZ00ðzÞ þ cRðrÞZðzÞ
RðrÞZðzÞ ¼ �k2: ð28Þ
and so the first equation is solved to give CðtÞ ¼ B expð�k2tÞ, for suitable constants k 2 R. The solutions of R and Z are found
in an identical manner to that described above, and so
ZmðzÞ ¼ CZm cosðmmzÞ; m ¼ 1; 2; . . . ; RnðrÞ ¼ CRnJ0ðdnrÞ; n ¼ 1; 2; . . . ; ð29Þ
where mm ¼ ðm� 1=2Þp and
dn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c þ k2

mn � m2
mb

a

s
: ð30Þ
These are found by solving J0ðdnÞ ¼ 0, in order to satisfy Rð0Þ ¼ 0, and then kmn can be determined from the formula

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ad2

n þ bm2
m � c

q
.

The combined solution for u is therefore
uðr; z; tÞ ¼
X1
n¼1

X1
m¼1

DmnJ0ðdnrÞ cosðmmzÞ expð�k2
mntÞ; ð31Þ
and coefficients Dmn are found using the initial condition in (18). Thus
T�0 � vðr; zÞ �wðzÞ ¼
X1
n¼1

X1
m¼1

DmnJ0ðdnrÞ cosðmmzÞ; ð32Þ
where wðzÞ and vðr; zÞ are defined in (21) and 26,27 respectively. Integrating with respect to r and z and using the orthog-
onality conditions leads to
Dmn ¼
2
R 1

0

R 1
0 T�0 � vðr; zÞ �wðzÞ
� �

rJ0ðdnrÞ cosðmmzÞdr dzR 1
0 rJ2

0ðdnrÞdr
: ð33Þ
The solutions for u;v and w are then added together to give the final solution for T in (17).

3.2. Approximation ignoring the z-dependence

If we assume that we are modelling a narrow and tall machine, and hence b	 a, it is reasonable to ignore the z depen-
dence in (16) and solve the 1D problem, which is therefore given by
@T
@t � a 1

r
@
@r r @T

@r

� �
¼ ðcT þ dÞ in ð0;1Þ � ð0; tpÞ;

@T
@r ¼ 0 on r ¼ 0;
T ¼ 0 on r ¼ 1;
T ¼ T�0 at t ¼ 0:

8>>><
>>>:

ð34Þ
We now consider various exact and approximate solutions to this simplified system.
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3.2.1. Separation of variables solution
A separation of variables solution to system (34) can be found following the analysis given in Section 3.1. To create a

homogeneous problem we substitute Tðr; tÞ ¼ uðr; tÞ þ vðrÞ into (34). Then the problem to solve for u is
@u
@t ¼ a 1

r
@
@r r @u

@r

� �
þ cu in ð0;1Þ � ð0; tpÞ;

@u
@r ¼ 0 on r ¼ 0;
u ¼ 0 on r ¼ 1;
u ¼ T�0 � vðrÞ at t ¼ 0;

8>>><
>>>:

ð35Þ
whilst the problem for v is
0 ¼ a
r

v 0ðrÞ þ rv 00ðrÞð Þ þ cv þ d; ð36Þ
with v 0ð0Þ ¼ 0 and vð1Þ ¼ 0. This has solution
vðrÞ ¼ � d
c
þ

dJ0ð
ffiffi
c
a

p
rÞ

cJ0ð
ffiffi
c
a

p
Þ
: ð37Þ
Following the procedure in Section 3.1 a straightforward calculation gives the solution for u as
uðr; tÞ ¼
X1
n¼1

�DnJ0ð�dnrÞ expð��k2
ntÞ; ð38Þ
where �dn 2 R satisfy J0ð�dnÞ ¼ 0; �kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�d2

n � c
q

, and coefficients �Dn are given by
�Dn ¼
2
R 1

0 T�0 � vðrÞ
� �

rJ0ð�dnrÞdrR 1
0 rJ2

0ð�dnrÞdr
; ð39Þ
with vðrÞ defined in (37). Finally, the solution T is simply the sum of u and v.

3.2.2. Boundary layer solution
Again the starting point is system (34). Let us assume that, as is true for some practical cases (an example of which will be

shown in Section 5), d ¼ Oð1Þ and b < a	 1. Then ignoring the terms involving a and b, we find
@T
@t
¼ cT þ d ð40Þ

Tð0Þ ¼ T�0; ð41Þ
which gives the leading order solution
TðtÞ ¼ � d
c
þ T�0 þ

d
c

� �
expðctÞ: ð42Þ
Note that since solution (42) only depends on t it does satisfy the zero flux condition at r ¼ 0, but it obviously cannot
satisfy the zero temperature condition at r ¼ 1. Thus we assume that (42) is an outer solution, T 
 ToutðtÞ, and that there
is a boundary layer at r ¼ 1. In this region different terms will form the dominant balance and so to highlight this we re-scale
the problem by introducing a boundary-layer coordinate as
�r ¼ 1� r
d

; ð43Þ
where d	 1 is to be determined. This change of variables has the effect of stretching the region near r ¼ 1 when d! 0,
which in practice means that the boundary-layer problem (also known as inner problem) is solved on a infinite domain.
If we let T inð�r; tÞ denote the solution of the problem when using the boundary-layer coordinate, then near r ¼ 1 the PDE
in (34) becomes
@T in

@t
þ a

d
1

1� d�r
@T in

@�r
� a

d2

@2T in

@�r2 ¼ cT in þ d: ð44Þ
To bring out the correct balance in the equation, we take d ¼
ffiffiffi
a
p

, and so coupled with boundary and initial conditions the
leading order problem is
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@T in
@t ¼

@2T in
@�r2 �

ffiffiffi
a
p @T in

@�r þ cT in þ d in ð0;1Þ� ð0; tpÞ;
T in ¼ 0 on �r ¼ 0;
T in ! ToutðtÞ as �r !1;
T in ¼ T�0 at t ¼ 0;

8>>>><
>>>>:

ð45Þ
where ToutðtÞ is the outer solution given in (42). For convenience we subtract off the outer solution to give a new variable
which decays to zero as �r !1. Thus, if we define
T inð�r; tÞ ¼ ToutðtÞ þ Fð�r; tÞ; ð46Þ
the system to solve for F reduces to
@F
@t ¼ @2F

@�r2 �
ffiffiffi
a
p

@F
@�r þ cF in ð0;1Þ� ð0; tpÞ;

F ¼ �ToutðtÞ on �r ¼ 0;
F ! 0 as �r !1;
F ¼ 0 at t ¼ 0:

8>>>><
>>>>:

ð47Þ
It is first convenient to transform the PDE in (47) into a standard heat equation by setting
Fð�r; tÞ ¼ exp
ffiffiffi
a
p

�r
2
þ ct � at

4

� �
Gð�r; tÞ: ð48Þ
Then (47) becomes
@G
@t ¼ @2G

@�r2 in ð0;1Þ� ð0; tpÞ;
G ¼ �ToutðtÞ expð�ct þ at

4Þ on �r ¼ 0;
G! 0 as �r !1;
G ¼ 0 at t ¼ 0:

8>>>><
>>>>:

ð49Þ
At first glance it appears that this system can be solved using Laplace transforms. However, the resulting transformed
solution is not easy to invert using standard tables and so the solution would have to be given as a complex integral. To avoid
this we instead use Fourier sine transforms, which is appropriate because there is a fixed boundary condition at �r ¼ 0. Given
a function f ðxÞ;0 6 x <1, the Fourier sine transform pair is defined as
f̂ ðxÞ ¼ 2
p

Z 1

0
f ðxÞ sinðxxÞdx; f ðxÞ ¼

Z 1

0
f̂ ðxÞ sinðxxÞdx: ð50Þ
Now if
Ĝðx; tÞ ¼ 2
p

Z 1

0
Gð�r; tÞ sinðx�rÞd�r; ð51Þ
then the PDE in (49) becomes
@Ĝ
@t
þx2Ĝ ¼ �

2xToutðtÞ exp at
4 � ct
� �

p
: ð52Þ
Note that when differentiating Ĝ with respect to r twice, we have used the additional condition @G
@�r ! 0 as �r !1, which

follows from matching with the outer solution, that only depends on t.
The initial condition in (49) implies that Ĝðx;0Þ ¼ 0 and so Eq. (52) has solution
Ĝðx; tÞ ¼ 2xd
pcðx2 þ a=4� cÞ expðat=4� ctÞ � expð�x2tÞ

	 

� 2xðT�0 þ d=cÞ

pðx2 þ a=4Þ expðat=4Þ � expð�x2tÞ
	 


; ð53Þ
after substituting ToutðtÞ from (42). Finally the solution for G is given by
Gð�r; tÞ ¼
Z 1

0
Ĝðx; tÞ sinðx�rÞdx; ð54Þ
and so
T inð�r; tÞ ¼ ToutðtÞ þ exp
ffiffiffi
a
p

�r
2
� at

4
þ ct

� �
Gð�r; tÞ: ð55Þ
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After adding the inner and outer solutions and subtracting the common part, we can write down the final solution in the
whole domain as
Tðr; tÞ ¼ � d
c
þ T�0 þ

d
c

� �
expðctÞ þ exp

1� r
2
þ ct � at

4

� �
G

1� rffiffiffi
a
p ; t

� �
: ð56Þ
3.3. Approximation including the z-dependence

Since the approximate solutions in Section 3.2 only depend on r and t it is clear that the boundary condition at z ¼ 1 is not
satisfied (unlike the zero flux boundary condition at z ¼ 0, which is satisfied). We need to consider a boundary layer analysis
near z ¼ 1, and therefore follow a similar analysis to that given in Section 3.2.2. Thus we set z ¼ 1�

ffiffiffi
b
p

�z and denote T inðr;�z; tÞ
as the inner solution. Then, for leading order terms, system (16) becomes
@Tin
@t � a 1

r
@
@r r @T in

@r

� �
� @2T in

@�z2 ¼ ðcT in þ dÞ in ð0;1Þ � ð0;1Þ � ð0; tpÞ;
@Tin
@r ¼ 0 on r ¼ 0;

T in ¼ 0 on r ¼ 1;
T in ! Tout as �z!1;
T in ¼ 0 on �z ¼ 0;
T in ¼ T�0 at t ¼ 0;

8>>>>>>>>>><
>>>>>>>>>>:

ð57Þ
where Tout is the outer solution of the PDE, i.e., the solution that we solved in Section 3.2. We will use the series solution
found in Section 3.2.1, namely
Toutðr; tÞ ¼ vðrÞ þ
X1
n¼1

�DnJ0ð�dnrÞ expð��k2
ntÞ; ð58Þ
where vðrÞ is given in (37). Whilst we could use the boundary layer solution (56), this form is simpler as it avoids a solution
involving several integrals.

Using the same approach as in Section 3.2.2, if we set
T inðr;�z; tÞ ¼ Toutðr; tÞ þ Fðr;�z; tÞ; ð59Þ
then the PDE in (57) becomes
@F
@t
¼ a

1
r
@

@r
r
@F
@r

� �
þ @

2F
@�z2 þ cF; ð60Þ
which follows since Toutðr; tÞ satisfies the outer PDE. If, as at the start of Section 3.2.2, we assume a	 1 and then ignore this
term here, system (57) reduces to the following 1D problem:
@F
@t � @2F

@�z2 ¼ cF in ð0;1Þ� ð0; tpÞ;
F ! 0 as �z!1;
F ¼ hðtÞ on �z ¼ 0;
F ¼ 0 at t ¼ 0;

8>>>><
>>>>:

ð61Þ
where for convenience we have defined hðtÞ ¼ �Toutðr; tÞ (considering r as a constant value and the solving the system for
each r). Again using Fourier sine transforms we can find the exact solution to (61). This is given by
Fð�z; tÞ ¼
Z 1

0

2
p

Z t

0
hðt0Þ expððx2 � cÞðt0 � tÞÞdt0

� �
sinðx�zÞdx; ð62Þ
or
Fð�z; tÞ ¼
Z 1

0
f1ðx; tÞ þ f2ðx; tÞð Þ sinðx�zÞdx; ð63Þ
where
f1ðx; tÞ ¼ �
2xvðrÞ

pðc �x2Þ expððc �x2ÞtÞ � 1
	 


; ð64Þ

f2ðx; tÞ ¼
2
p
X1
n¼0

�DnJ0ð�dnrÞ
expð��k2

ntÞ � expððc �x2ÞtÞ
	 


�k2
n þ c �x2

: ð65Þ
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Thus, the inner solution is simply the sum of F and Tout. After adding the inner and outer solutions and subtracting the
common part, we can write down the final solution in the whole domain as
Tðr; z; tÞ ¼ � d
c
þ

dJ0ð
ffiffi
c
a

p
rÞ

cJ0ð
ffiffi
c
a

p
Þ
þ
X1
n¼1

�DnJ0ð�dnrÞ expð��k2
ntÞ þ

Z 1

0
f1ðx; tÞ þ f2ðx; tÞð Þ sin

1� zffiffiffi
b
p x

� �
dx: ð66Þ
4. Analysis for the pressure hold time tp < t <tf

For t P tp, heating no longer occurs due to the increase in pressure, and hence the right-hand side of the PDE in system
(16) is zero. Rescaling time as f ¼ t � tp, we have
@T
@f � a 1

r
@
@r r @T

@r

� �
� b @2T

@z2 ¼ 0 in ð0;1Þ � ð0;1Þ � ð0; tf � tpÞ;
@T
@r ¼ 0 on r ¼ 0;
T ¼ 0 on r ¼ 1;
@T
@z ¼ 0 on z ¼ 0;
T ¼ 0 on z ¼ 1;
T ¼ Tupðr; zÞ at f ¼ 0;

8>>>>>>>>><
>>>>>>>>>:

ð67Þ
where Tupðr; zÞ is the solution Tðr; z; tÞ of the problem (solved in Section 3.1) in the time interval 0 < t < tp, at time t ¼ tp,
namely
Tupðr; zÞ ¼
d
c

cosðczÞ
cos c

� 1
� �

þ
X1
p¼1

ApJ0ðaprÞ cosðmpzÞ þ
X1
n¼1

X1
m¼1

DmnJ0ðdnrÞ cosðmmzÞ expð�k2
mntpÞ: ð68Þ
We now describe how to extend the analysis given above, for the pressure up time, to the system in the pressure hold
time.

4.1. Exact solution

The analysis here is similar to that described in Section 3.1, but is in fact simpler because the right-hand side of the PDE is
zero and so the problem is already homogeneous. Thus the solution is
Tðr; z; tÞ ¼
X1
j¼1

X1
k¼1

EkjJ0ðgjrÞ cosðmkzÞ expð�u2
kjðt � tpÞÞ; ð69Þ
where gj 2 R satisfy J0ðgjÞ ¼ 0; mk ¼ ðk� 1=2Þp, and ukj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ag2

j þ bm2
k

q
. To determine coefficients Ekj we use the initial condi-

tion in (67), where Tup is defined in (68). Thus, after integrating and applying the orthogonality conditions, we have
Ekj ¼
2
R 1

0

R 1
0 Tupðr; zÞrJ0ðgjrÞ cosðmkzÞdr dzR 1

0 rJ2
0ðgjrÞdr

: ð70Þ
4.2. Approximation ignoring the z-dependence

Again, assuming b	 a, we ignore the z-dependence in (67) and solve the 1D problem, which is
@T
@f � a 1

r
@
@r r @T

@r

� �
¼ 0 in ð0;1Þ � ð0; tf � tpÞ;

@T
@r ¼ 0 on r ¼ 0;
T ¼ 0 on r ¼ 1;
T ¼ TupðrÞ at f ¼ 0;

8>>>><
>>>>:

ð71Þ
where TupðrÞ is the 1D pressure up solution given in Section 3.2.1 at t ¼ tp, i.e.,
TupðrÞ ¼ �
d
c
þ

dJ0ð
ffiffi
c
a

p
rÞ

cJ0ð
ffiffi
c
a

p
Þ
þ
X1
n¼1

�DnJ0ð�dnrÞ expð��k2
ntpÞ: ð72Þ
A separation of variables solution to system (71) can be found using the same analysis as in previous sections. Thus we
simply quote the solution as
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Tðr; tÞ ¼
X1
j¼1

�EjJ0ð�gjrÞ expð��u2
j ðt � tpÞÞ; ð73Þ
where �gj 2 R satisfy J0ð�gjÞ ¼ 0, and �uj ¼
ffiffiffi
a
p

�gj. To determine coefficients �Ej we use the initial condition in (71). After integrat-
ing and applying the orthogonality condition, we have
�Ej ¼
R 1

0 TupðrÞJ0ð�gjrÞr drR 1
0 rJ2

0ð�gjrÞdr
; ð74Þ
where TupðrÞ is defined in (72).
A boundary layer solution in 1D, like the one described in Section 3.2.2, was not given here because a boundary layer near

r ¼ 1 is no longer expected. This is due to the fact that the PDE in (71) has a right-hand side equal to zero, so now the a term
becomes more important than in the pressure up time, where the c and d terms were dominant.

4.3. Approximation including the z-dependence

Following Section 3.3 we consider a boundary layer analysis near z ¼ 1 by setting z ¼ 1�
ffiffiffi
b
p

�z and denote T inðr;�z; fÞ as the
inner solution. Then system (67) becomes
@Tin
@f � a 1

r
@
@r r @T in

@r

� �
� @2T in

@�z2 ¼ 0 in ð0;1Þ � ð0;1Þ� ð0; tf � tpÞ;
@Tin
@r ¼ 0 on r ¼ 0;

T in ¼ 0 on r ¼ 1;
T in ! Toutðr; tÞ as �z!1;
T in ¼ 0 on �z ¼ 0;
T ¼ TupðrÞ at f ¼ 0;

8>>>>>>>>>><
>>>>>>>>>>:

ð75Þ
where TupðrÞ is given in (72), and Toutðr; tÞ in (73). Following the same setps as in Section 3.3 the solution is found to be
Tðr; z; tÞ ¼ Toutðr; tÞ þ
X1
j¼1

Z 1

0

2x
p

�EjJ0ð�gjrÞ
expð��u2

j fÞ � expð�x2fÞ
h i

�u2
j �x2

sin
1� zffiffiffi

b
p x

� �
: ð76Þ
5. Numerical tests

For the numerical tests we consider similar dimensions to those of the pilot unit (ACB GEC Alsthom, Nantes, France), used
by other authors [5,9], but we ignore the pressurizing fluid domain and the rubber cap and focus on the food and surround-
ing steel domains. The dimensions for these are given in Table 1. Following [5,9] we have chosen tylose (a food simile) as an
example of solid type food. In order to reduce computational complexity, and following [5], we assume that the thermo-
physical properties of the food sample are constant (and set them to their mean value in the range of temperature and pres-
sure considered in the process). The thermo-physical properties of the steel remain constant during the whole process.

The initial temperature is T0 ¼ 313 K ¼ 39:85 �C in both the food and the steel, and the pressure is linearly increased dur-
ing the first 183 s until it reaches 360 MPa. Then the pressure is maintained constant until the final time (900 s) is reached.
Thus, the pressure generated by the equipment satisfies Pð0Þ ¼ 0 and
dP
dt
ðtÞ ¼

360
183 � 106 Pa s�1; 0 < t 6 183;
0 Pa s�1; 183 < t < 900:

(
ð77Þ
Following the procedure described in Section 2.2, and considering the values given in Table 1, the scales used to non-
dimensionalise the variables are: R ¼ 0:045 m, Z ¼ 0:091 m, DT ¼ 20:7 K and s ¼ 325 s. The values of a, b, c and d are shown
in Table 2 (we point out that they satisfy the assumptions considered in the previous sections). The non-dimensional initial
condition is T�0 ¼ 1.
ter values for numerical simulations. The food properties are those of tylose. Data is obtained from [2,5,8].

1006 qS 7833 CpF 3780 CpS 465
0.49 kS 55 bF 4:217 � 10�4 c 360 � 106

0.045 L2 0.09 H 0.091 H2 0.327
313 Tr 292.3 tp 183 tf 900



Table 2
Non-dimensional parameter values for system (10).

a b c d

X̂F 0.02 0.005 0.07 1

X̂S 2.423 0.593 0 0
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In Sections 3 and 4 we have given an exact solution and several simplifications to our problem. In order to check the valid-
ity of such simplifications we compare them to the reference models, which are considered to be the exact solution given in
Section 3.1 for the pressure up time, and the one given in Section 4.1 for the pressure hold. Also a numerical solution in both
1D (using radial coordinates) and 2D (using cylindrical coordinates) is calculated using the FEM solver COMSOL Multiphysics
3.5a. In [5,9] similar, although more complex, models were solved numerically using this commercial software, and validated
by comparing to experimental data. Our model is a simplification of the models proposed in those papers, and not based on a
real experiment, so we chose a numerical solution solved with COMSOL rather than a comparison to experimental data.

All of our solutions were calculated using MATLAB 7.12.0.635 (R2011a) without requiring an FEM solver. For the separa-
tion of variables solutions, the transcendental equation J0ðxÞ ¼ 0, which appears in Sections 3.1, 3.2.1, 4.1 and 4.2, was solved
using this software, whose roots correspond to dn, �dn, gj, �gj for each section, respectively. Coefficients �Dn and �Ej that appear in
Eqs. (39) and (74), respectively, were calculated using integration formulas for Bessel functions. Coefficients Dmn and Ekj in
Eqs. (33) and (70) were calculated using a double trapezoidal rule for for the sake of simplicity, although the same rules for
Bessel functions plus some for trigonometric functions could have been used for calculating it directly, or any other quad-
rature rule could also be used. We truncated each infinite sum and took as many terms as necessary to obtain a solution
which did not vary to 16 decimal places from the solution with one term less. Thus, for Eqs. (31) and (38) we took
N ¼ 20 terms, and for (69) and (72), J ¼ 20 terms. For Eqs. (26), P ¼ 35 terms, for (31), M ¼ 35 terms and for (69), K ¼ 35
terms.

For the boundary layer solutions described in Sections 3.2.2 and 3.3, in which there are a semi-infinite integrals (namely
(54) and (66)) to calculate, we followed [7], where a method to approximate integrals of the form

R1
a f ðxÞ/ðxÞdx is proposed,

with /ðxÞ being either sinðxxÞ or cosðxxÞ is proposed. The integral is approximated by a numerical integration over a finite
domain ða; bÞ, leaving a truncation error equal to the tail integration

R1
b f ðxÞ/ðxÞdx, plus the discretization error. Luo and

Shevchenko [7] describe a very simple end-point correction to approximate the tail integration, which significantly reduces
the truncation error, and which we have used in our calculations.

5.1. Results

Fig. 2 shows the dimensionless temperature profiles given by the models presented in Section 3 for pressure up time. We
have plotted the results of the 2D models at a fixed time (t ¼ 0:12 on the left, t ¼ 0:56 ¼ tp on the right) for different heights
and for all r. As can be seen for all heights z 2 ð0; 0:95Þ the solution is almost the same, and also matches perfectly with the
1D results from Sections 3.2.1 and 3.2.2. Then for the rest of heights up to z ¼ 1, where the boundary layer is, it is clear that
the solutions differ from the 1D model for the points very close to the top right corner of the 2D domain. There is a slight
difference between the boundary layer solution given in Section 3.3 and the exact solution given in Section 3.1, especially
near r ¼ 1. This is because in (60) we are ignoring the a term, and therefore no heat conduction in the r direction is taken
0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

r

T

1D and 2D models − Pressure up at t=0.12 

(−) Exact solution 2D(−−) Comsol 2D (:) Bdy Lyr 2D

(*) Sep Var 1D (+) Comsol 1D (o) Bdy Lyr 1D

z=0.96

z=1

z ∈ (0,0.95)

z=0.98

z=0.97

z=0.99

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

r

T

1D and 2D models − Pressure up at t=tp=0.56

(−) Exact solution 2D (−−) Comsol 2D(:) Bdy Lyr 2D

(*) Sep Var 1D (+) Comsol 1D (o) Bdy Lyr 1D

z ∈ (0,0.95)

z=0.99

z=1

z=0.98 z=0.97 z=0.96

Fig. 2. Dimensionless temperature profiles calculated with different methods in 1D and 2D for pressure up at t ¼ 0:12 (left) and t ¼ tp ¼ 0:56 (right).
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into account in this solution. Including this term leads to a problem which is more difficult to solve than the original one, and
so the approximation would no longer be a simplification.

Fig. 3 shows the dimensionless temperature profiles given by the models presented in Section 4 for pressure hold time. In
this case the plots are at times t ¼ 1:50 on the left and t ¼ 2:76 ¼ tf on the right. For all heights z 2 ð0;0:94Þ the solution is
almost the same and again matches perfectly with the 1D results from Section 4.2. In this case, however, for the rest of height
up until z ¼ 1 which are in the boundary layer, the approximation proposed in Section 4.3 differs more from the exact solu-
tion given in Section 4.1 than in the pressure up time case. This is because the conduction term in the r direction was ignored
again, and, because there is no source term for the pressure hold case, this difference is more noticeable. We remark again
that this slight discrepancy is for points that are very close to the top of the 2D domain.

Looking at the results we can see that the temperature profiles inside the food can be approximated very well by the 1D
solution at nearly all heights inside the machine, except those very near the top, where a boundary layer exists. We point out
that these are the results for the upper half of the domain (after our simplification in Section 2.2) and and therefore by sym-
metry the same results hold for the lower half of the machine, i.e., the temperature profile for all heights except those near
the bottom boundary can be approximated very well by a 1D model.

6. Extension to third class boundary conditions

We now consider a model where only the food domain is included, and assume that there is heat exchange between the
walls of the food domain and the outside. Hence now the boundary and initial conditions for (3) are
Fig. 3.
@T
@r ¼ 0 on Csym;

k @T
@n ¼ hðTr � TÞ on Cexc ¼ CF n Csym;

T ¼ T0 at t ¼ 0;

8><
>: ð78Þ
where CF is the boundary of XF;h (W m�2 K�1) is the heat transfer coefficient with the environment, and n is the outward
unit normal vector on the boundary of the domain, Cexc.

Proceeding as in Section 2.2, we now have the following non-dimensional system to solve
@T
@t � a 1

r
@
@r r @T

@r

� �
� b @2T

@z2 ¼ ðcT þ dÞvðtÞ in ð0;1Þ � ð0;1Þ � ð0; tf Þ;
@T
@r ¼ 0 on r ¼ 0;
�r

@T
@r ¼ �T on r ¼ 1;

@T
@z ¼ 0 on z ¼ 0;
�z

@T
@z ¼ �T on z ¼ 1;

T ¼ T�0 at t ¼ 0;

8>>>>>>>>><
>>>>>>>>>:

ð79Þ
where �r ¼ k
hR and �z ¼ k

hZ.
A similar analysis to that given for system (16), as described in Sections 3 and 4, can be performed also for (79). Here we

present only the results for the one dimensional approximation, ignoring the z-dependence for pressure up time.

6.1. Approximation ignoring the z-dependence for pressure up time

Following 3.2, if we assume that we are modelling a narrow and tall machine, and hence b	 a, it is reasonable to ignore
the z dependence in (79) and solve the 1D problem, which is given by
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@T
@t � a 1

r
@
@r r @T

@r

� �
¼ ðcT þ dÞ in ð0;1Þ � ð0; tpÞ;

@T
@r ¼ 0 on r ¼ 0;
�r

@T
@r ¼ �T on r ¼ 1;

T ¼ T�0 at t ¼ 0:

8>>><
>>>:

ð80Þ
We now consider an exact and an approximate solution to this simplified system.

6.1.1. Separation of variables 1D
The analysis here is similar to that described in Section 3.2.1 but with a different boundary condition. To create a homo-

geneous problem we substitute Tðr; tÞ ¼ uðr; tÞ þ vðrÞ into (80). Then the problem to solve for u is
@u
@t ¼ a 1

r
@
@r r @u

@r

� �
þ cu in ð0;1Þ � ð0; tpÞ;

@u
@r ¼ 0 on r ¼ 0;
�r

@T
@r ¼ �T on r ¼ 1;

u ¼ T�0 � vðrÞ at t ¼ 0;

8>>><
>>>:

ð81Þ
whilst the problem for v is
0 ¼ a
r

v 0ðrÞ þ rv 00ðrÞð Þ þ cv þ d; ð82Þ
with v 0ð0Þ ¼ 0 and �rv 0ð1Þ ¼ �vð1Þ. This has solution
vðrÞ ¼ d
c

J0ð
ffiffi
c
a

p
rÞ

J0ð
ffiffi
c
a

p
Þ � �r

ffiffi
c
a

p
J1ð

ffiffi
c
a

p
Þ
� 1

" #
: ð83Þ
A straightforward calculation gives the solution for u as
uðr; tÞ ¼
X1
n¼1

��DnJ0ð��dnrÞ expð���k2
ntÞ; ð84Þ
where ��dn 2 R satisfy
�r
��dJ1ð��dnÞ ¼ J0ð��dnÞ; ð85Þ
��kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a��d2

n � c
q

and coefficients ��Dn are given by
��Dn ¼
2
R 1

0 T�0 � vðrÞ
� �

rJ0ð��dnrÞdrR 1
0 rJ2

0ð��dnrÞdr
; ð86Þ
with vðrÞ defined in (83). Finally, the solution T is simply the sum of u and v.

6.1.2. Boundary layer in r
To consider a boundary layer in r we start with system (80). Analogously to Section 3.2.2 we assume d ¼ Oð1Þ and

b < a	 1. Then ignoring the terms involving a and b, we again have at leading order the outer solution given by (42), i.e.,
TðtÞ ¼ � d
c
þ T�0 þ

d
c

� �
expðctÞ: ð87Þ
It is clear that since solution (87) depends only on t it does satisfy the zero flux condition at r ¼ 0, but it obviously cannot
satisfy the third class boundary condition at r ¼ 1. Therefore we consider a boundary layer near r ¼ 1. Following the exact
steps as in Section 3.2.2, we introduce the boundary-layer coordinate given by (43), take d ¼

ffiffiffi
a
p

to bring out the correct bal-
ance in the equation, which at leading order is
@T in
@t ¼

@2T in
@�r2 �

ffiffiffi
a
p @T in

@�r þ cT in þ d in ð0;1Þ� ð0; tpÞ;
@T in
@�r ¼ d

�r
T in on �r ¼ 0;

T in ! ToutðtÞ as �r !1;
T in ¼ T�0 at t ¼ 0;

8>>>><
>>>>:

ð88Þ
where ToutðtÞ is the outer solution given by (87). We define
T inð�r; tÞ ¼ ToutðtÞ þ exp
ffiffiffi
a
p

�r
2
þ ct � at

4

� �
Gð�r; tÞ; ð89Þ
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and so the system for G reduces to
@G
@t ¼ @2G

@�r2 in ð0;1Þ� ð0; tpÞ;
� @G

@�r þ aG ¼ hðtÞ on �r ¼ 0;
G! 0 as �r !1;
G ¼ 0 at t ¼ 0;

8>>>><
>>>>:

ð90Þ
where
a ¼
ffiffiffi
a
p

�r
�

ffiffiffi
a
p

2
; hðtÞ ¼ �

ffiffiffi
a
p

�r
ToutðtÞ expð�ct þ at=4Þ: ð91Þ
From [4] we know that (90) can be solved by taking the following integral transform
Ĝðx; tÞ ¼
Z 1

0
Gð�r; tÞKðx;�rÞd�r; ð92Þ
where Kðx;�rÞ is the solution of
d2Rð�rÞ
d2�r2

þx2Rð�rÞ ¼ 0;

aRð�rÞ � dRð�rÞ
d�r
¼ 0on�r ¼ 0;

ð93Þ
namely
Kðx;�rÞ ¼
ffiffiffiffi
2
p

r
x cosðx�rÞ þ a sinðx�rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p

 �
: ð94Þ
Applying the integral transform (92) to the PDE in (90) gives
Z 1

0

@Gð�r; tÞ
@t

Kðx;�rÞd�r ¼
Z 1

0

@2Gð�r; tÞ
@�r2 Kðx;�rÞd�r: ð95Þ
Now
 Z 1

0

@2Gð�r; tÞ
@�r2 Kðx;�rÞd�r ¼ �K

@G
@�r

����
�r¼0
þ dK

d�r
G
����
�r¼0
�x2

Z 1

0
Gð�r; tÞKðx;�rÞd�r: ð96Þ
From (90) and (93) it follows that at �r ¼ 0
�K
@G
@�r
þ dK

d�r
G ¼ �KðaG� hðtÞÞ þ aKG ¼ hðtÞKðx; 0Þ: ð97Þ
Hence
Z 1

0

@2Gð�r; tÞ
@�r2 Kðx;�rÞd�r ¼ �x2Ĝþ hðtÞKðx;0Þ ¼ �x2Ĝþ

ffiffiffiffi
2
p

r
hðtÞ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p ; ð98Þ
and so the PDE in (90) becomes
@Ĝ
@t
þx2Ĝ ¼

ffiffiffiffi
2
p

r
hðtÞ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p ; ð99Þ
where hðtÞ and a are defined in (91). The initial condition in (90) implies Ĝðx;0Þ ¼ 0, and so Eq. (99) has solution
Ĝðx; tÞ ¼
ffiffiffiffi
2
p

r
x

ffiffiffi
a
p

d

�rc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2
p expðat=4� ctÞ � expð�x2tÞ

x2 þ a=4� c
�x

ffiffiffi
a
p
ðT�0 þ d=cÞ

�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2
p expðat=4Þ � expð�x2tÞ

x2 þ a=4

 �
; ð100Þ
after substituting ToutðtÞ from (87). Finally the solution for G (see [4]) is
Gð�r; tÞ ¼
ffiffiffiffi
2
p

r Z 1

0
Ĝðx; tÞ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p cosðx�rÞdxþ

Z 1

0
Ĝðx; tÞ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p sinðx�rÞdx

 �
; ð101Þ
and T inð�r; tÞ is given by (89). After adding the inner and outer solutions ans subtracting the common part, we can write down
the final solution in the whole domain as
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Fig. 4. Dimensionless temperature profiles calculated with different methods in 1D for the third class (left) and first class (right) boundary conditions.
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Tðr; tÞ ¼ � d
c
þ T�0 þ

d
c

� �
expðctÞ þ exp

1� r
2
þ ct � at

4

� �
G

1� rffiffiffi
a
p ; t

� �
: ð102Þ
6.2. Results

We perform numerical tests for the problem with third class boundary conditions, using the same data and parameters as
in Section 5. The heat transfer coefficient used in the tests is h ¼ 28 W m�2 K�1. Fig. 4 shows the dimensionless temperature
profiles that result from solving the pressure up time problem in 1D for boundary conditions of the third and first class (Sec-
tions 6.1 and 3.2, respectively). The temperature has been calculated using separation of variables in 1D (Sections 6.1.1 and
3.2.1, respectively), by a boundary layer in 1D approximation (Sections 6.1.2 and 3.2.2, respectively). Observe that both solu-
tions match perfectly for all times, and also to the 1D COMSOL solution, which has been taken as a reference model. For the
first class boundary conditions, an exact solution in 2D was given in Section 3.1. However, for the third class boundary con-
dition we do not give all the possible solutions, as it is analogous to the ones derived throughout Sections 3 and 4, and we
just concentrate on the one dimensional approximation.

7. Conclusions

We have presented heat transfer models for predicting temperature profiles inside a solid type food undergoing HP treat-
ment. Two different kinds of boundary conditions have been considered depending on whether only the food holder is taken
into account, or whether the surrounding steel is included. We have given a thorough analysis describing an exact 2D solu-
tion as well as several simplifications in both 2D and 1D. It has been shown that for the case of a tall and narrow HP machine,
the temperature profile inside the food is approximated very well by a 1D model, except at points very close to the top and
bottom boundaries. The reduction to 1D is extremely useful from a computational point of view because optimization of
these processes is easier, thus leading to faster simulations. In addition, the simplified model can help to calculate ther-
mo-physical properties as a function of pressure, via inverse problems, which is an increasing need nowadays for food tech-
nologists. From an experimental point of view, results can be used also to determine where to place the thermocouples
inside the food sample in order to measure the temperature experimentally. Finally, we point out that the solutions given
here do not require the use of a ‘‘black-box’’ FEM solver and our approximations allow us to qualitatively describe the phys-
ical features involved.
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