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aFMF and IMFM, University of Ljubljana and PINT, University of Primorska,

Jadranska 19, Ljubljana, Slovenia
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Abstract

It is well known that the bivariate polynomial interpolation problem at uni-
formly distributed domain points of a triangle is correct. Thus the corre-
sponding interpolation matrix M is nonsingular. L. L. Schumaker stated the
conjecture that all principal submatrices of M are nonsingular too. Fur-
thermore, all of the corresponding determinants (the principal minors) are
conjectured to be positive. This result would solve the constrained interpola-
tion problem. In this paper, the conjecture on minors for polynomial degree
≤ 17 and conjecture for some particular configurations of domain points are
confirmed.
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1. Introduction

Positivity of determinants (or minors) of collocation matrices is important
in approximation theory. Nonsingularity of a collocation matrix implies exis-
tence and uniqueness of the solution of the associated interpolation problem.
Positivity of principal minors or even total positivity is used in the proofs of
some well-known results, see [1, 2, 3], e.g.

Recently, nonsingularity and principal minors of collocation matrices for
bivariate polynomial interpolation at Padua-like points and for interpolation
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by triangular Bézier patches were studied in [4] and [5]. A related problem
is a construction or an approximation of Fekete points for a given domain,
i.e., the interpolation points, which yield the maximal absolute value of the
Vandermonde determinant [6].

It is well-known that bivariate Bernstein polynomials {Bd
ijk}i+j+k=d of

degree d form a basis of the space of bivariate polynomials of degree ≤ d.
Let Id = {(i, j, k) : i, j, k ∈ N∪{0}, i+ j+k = d}. For every

(

d+2
2

)

points in
a domain, which do not lie on an algebraic hyper-surface of degree ≤ d, the
corresponding interpolation problem is correct [7]. In particular, the problem
is correct for uniformly distributed domain points

Dd,T := {(i/d, j/d, k/d) : (i, j, k) ∈ Id},

expressed in barycentric coordinates with respect to a triangle T . Thus the
corresponding interpolation matrix M := [Bd

η(ξ)]ξ∈Dd,T , η∈Id is nonsingular.
In [8], a theorem was stated that by choosing an arbitrary nonempty subset
J ⊂ Dd,T and the corresponding set of indices Γ, the submatrix MΓ :=
[Bd

η(ξ)]ξ∈J , η∈Γ is nonsingular for all d ≤ 7, and furthermore, detMΓ > 0.
The authors of [8] verified the theorem by computer only. In [5], a proof of
nonsingularity of principal matrices of the collocation matrix for some special
configurations of domain points is provided.

A straightforward way of verifying the conjecture by computing principal
minors of M is time consuming due to the exponential growth of the number
of subsets that need to be analysed, and cannot be done within a reasonable
time for d > 7 using current computational facilities. For example, for d = 10

one would need to compute 2(
10+2

2 ) − 1 ≈ 7.4 · 1019 minors.
Matrices with positive principal minors are called P-matrices. A lot of

their properties are known, see [9, 10], e.g. Unfortunately, this theory could
not be applied for the study of the problem at hand, so a different approach,
based on positive definiteness, is used.

In this paper, the conjecture on positivity of principal minors of the bi-
variate Bézier collocation matrix M is confirmed for arbitrary Γ ⊂ Id for
d ≤ 17. Thus the corresponding constrained Lagrange interpolation problem
has a unique solution. This covers all the cases useful in practice, since it
is well known that polynomials of high degrees have undesired properties.
Some particular configurations of domain points are analysed. A conjecture
for exact lower bound of detMΓ is stated. The paper is concluded by some
remarks and comments on future work.
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2. Main results

Let i be a weak 3–composition of an integer d, i.e., i = (i, j, k), such that
|i| := i+j+k = d and i, j, k ∈ N∪{0}. Let Id := {i}|i|=d be a set of all weak

3–compositions of the integer d. The set Id consists of
(

d+2
2

)

compositions.
Let T be a triangle in the plane P . Every point v ∈ P can be written in

barycentric coordinates v = (u, v, w), u+ v +w = 1, with respect to T . The
Bernstein basis polynomials of total degree d in barycentric coordinates are
defined as

Bd
i (v) := Bd

ijk(u, v, w) :=

(

d

i

)

vi :=
d!

i!j!k!
uivjwk, |i| = d.

Here the standard multi-index notation and a convention 00 = 1 are used.
Let us denote the subset of all compositions with z zeros by I

(z)
d ⊂ Id,

z = 0, 1, 2. Let ξi := ξijk := i/d be a domain point of the triangle T , repre-
sented in barycentric coordinates. A domain point ξi is boundary if at least
one of its barycentric coordinates is zero, i.e., i ∈ I

(1)
d ∪ I

(2)
d . An example of

domain points is shown in Figure 1.

ξ400 ξ310 ξ220 ξ130 ξ040

ξ301 ξ211 ξ121 ξ031

ξ202 ξ112 ξ022

ξ103 ξ013

ξ004

Figure 1: Uniformly distributed domain points on triangle for d = 4.

We are now ready to present the conjecture, stated in [5], that will be
tackled in this paper.

Conjecture 1 ([5], Conjecture 2.22). For a given triangle T and every
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nonempty set Γ = {i1, i2, . . . , in} ⊂ Id, the matrix

MΓ := [Bd
j (ξi)]i,j∈Γ =











Bd
i1
(ξi1) Bd

i2
(ξi1) . . . Bd

in
(ξi1)

Bd
i1
(ξi2) Bd

i2
(ξi2) . . . Bd

in
(ξi2)

...
...

. . .
...

Bd
i1
(ξin) Bd

i2
(ξin) . . . Bd

in
(ξin)











is nonsingular. Furthermore, detMΓ > 0.

A confirmation of Conjecture 1 would imply the following. Let Γ ⊂ Id

and let L({Bd
i }i∈Γ) be the given interpolation space. Then the interpolation

problem for the points {ξi}i∈Γ in the domain would be correct, i.e., a unique
interpolant would exist. Since some control coefficients of the sought poly-
nomial are predetermined, the problem is called constrained interpolation

problem. The conjecture is important for interpolation with spline functions,
since some degrees of freedom are determined by the smoothness conditions
and the rest by the interpolation conditions (see [5, 11], e.g.).

Note that the matrix MΓ is not symmetric. Its entries are non-negative
rational numbers and the largest element of every row and column of MΓ

are on the main diagonal of the matrix. Eigenvalues of MId are derived in a
closed form in [12],

λℓ :=
d!

(d− ℓ)! dℓ
, ℓ = 1, 2, . . . , d, (1)

with multiplicities 3, 3, 4, 5, . . . , d+ 1.
The determinant of MΓ is independent of the ordering of elements of Γ

since the same ordering for rows and columns of MΓ is used. It is common
to use the counter-lexicographical ordering ≻c-lex,

(d, 0, 0), (d− 1, 1, 0), (d− 1, 0, 1), (d− 2, 2, 0), . . . , (0, 0, d),

but a particular ordering of elements in Id, which yields a block lower trian-
gular matrix MId, will be more convenient [13]. The linear ordering ≻b on
Id is defined as: i ≻b j if one of the following holds true:

1. i ∈ I
(z1)
d and j ∈ I

(z2)
d for z1 > z2, zi ∈ {0, 1, 2},

2. i, j ∈ I
(z)
d for z ∈ {0, 1, 2} and sgn(i) ≻c-lex sgn(j),

3. i, j ∈ I
(z)
d for z ∈ {0, 1, 2} and sgn(i) = sgn(j) and i ≻c-lex j.
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Here sgn(i) = sgn(i, j, k) := (sgn(i), sgn(j), sgn(k)) and

sgn(ℓ) :=







1, ℓ > 0
0, ℓ = 0

−1, ℓ < 0

is the sign function.
Let us explain the ordering ≻b in more detail. Firstly, the elements of Id

are ordered with respect to the number of zeros in their 3–decompositions.
Then, the elements with the same number of zeros are sorted with respect
to the position of the zeros. Finally, the elements that we cannot distinguish
by the first two conditions are ordered counter-lexicographically.

The ordering ≻b implies that the matrix MId has a block lower triangular
structure

MId =







M
I
(2)
d

∗ M
I
(1)
d

∗ ∗ M
I
(0)
d






,

where

M
I
(2)
d

=





M{(d,0,0)}

M{(d,0,0)}

M{(d,0,0)}



 , M
I
(1)
d

=





Mǫ

Mǫ

Mǫ



 ,

and ǫ := {ξij0 ∈ Id : i, j ≥ 1}.
From the structure of the matrix MId it follows that the problem of

verifying the positivity of principal minors of the matrix is reduced to each
diagonal block matrix separately. The first three 1 × 1 blocks correspond
to domain points at the vertices of the triangle T . The next three blocks
are (d − 1) × (d − 1) matrices Mǫ that correspond to domain points lying
in the interior of the triangle edges. The matrix Mǫ is a univariate Bézier
collocation matrix and by [14] it is totally non-negative with positive principal
minors. Therefore, the interpolation problem reduces to the study of the
remaining

(

d−1
2

)

×
(

d−1
2

)

matrix M
I
(0)
d

that corresponds to interior domain

points. Unfortunately, this block represents a very large part of the matrix
MId for a large d. As an example, the matrix MI4 , is shown in Figure 2.

Now we are ready to present one of the main results of the paper.

Theorem 2. Let d ≤ 17. Then Conjecture 1 holds true, i.e., detMΓ > 0 for

every nonempty subset Γ ⊂ Id.
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MI4 =
1

256





















































256 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 256 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 256 0 0 0 0 0 0 0 0 0 0 0 0
81 1 0 108 54 12 0 0 0 0 0 0 0 0 0
16 16 0 64 96 64 0 0 0 0 0 0 0 0 0
1 81 0 12 54 108 0 0 0 0 0 0 0 0 0
81 0 1 0 0 0 108 54 12 0 0 0 0 0 0
16 0 16 0 0 0 64 96 64 0 0 0 0 0 0
1 0 81 0 0 0 12 54 108 0 0 0 0 0 0
0 81 1 0 0 0 0 0 0 108 54 12 0 0 0
0 16 16 0 0 0 0 0 0 64 96 64 0 0 0
0 1 81 0 0 0 0 0 0 12 54 108 0 0 0
16 1 1 32 24 8 32 24 8 4 6 4 48 24 24
1 16 1 8 24 32 4 6 4 32 24 8 24 48 24
1 1 16 4 6 4 8 24 32 8 24 32 24 24 48





















































Figure 2: Matrix MI4
with the linear ordering ≻b.

Proof. Every non-symmetric matrix M is positive definite, i.e., xTMx > 0
for all x ∈ R

n\{0}, n :=
(

d+2
2

)

, iff the symmetric matrix M +MT is positive
definite [15]. Hence the positive definiteness ofM can be verified by analysing
the later symmetric matrix.

Fix d, 1 ≤ d ≤ 16. By using a symbolic computational toolbox we can
compute Cholesky decomposition of MId +MT

Id
in exact arithmetics. It can

be verified that the decomposition exists for 1 ≤ d ≤ 16. Therefore the
matrix MId + MT

Id
is positive definite and so is MId . Thus all principal

submatrices MΓ of MId are positive definite too. Hence, all real eigenvalues
of every MΓ are positive. Since the determinant of a matrix is the product
of its eigenvalues, it follows that all principal minors of MId are positive.

For d = 17, the matrix MId + MT
Id

has three negative eigenvalues. The
matrices M

I
(2)
d

and M
I
(1)
d

are P-matrices, thus the problem reduces to the

study of the matrix M
I
(0)
d

. It can be verified that the Cholesky decomposition

of the matrix M
I
(0)
d

+MT

I
(0)
d

exists and the rest of the proof is similar to the

first part.

Note that instead of computing the Cholesky decomposition of MId+MT
Id
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it is equivalent to verify that all of
(

d+2
2

)

leading principal minors or all of
(

d+2
2

)

eigenvalues are positive. The exact expressions are too large to be
written in the paper but the reader can easily verify the results.

For d = 18, the smallest eigenvalue of MId +MT
Id

is approximately −1.1 ·
10−7. For d ≥ 18, the number of negative eigenvalues of the matrix MId +
MT

Id
increases with d. Therefore, this approach cannot be used to prove

the conjecture in general, since the positive definiteness is only a sufficient
condition for positivity of principal minors. However, our result covers all
the cases important in practice, since only Lagrange polynomial interpolants
of low degrees are useful.

The reason why the presented approach only works for d ≤ 16 forMId can
be explained by the following observation. Since the matrix is not symmetric,
its numerical range {(xTMIdx)/(x

Tx) : x ∈ R
n\{0}}, n :=

(

d+2
2

)

, is not
bounded by the largest and the smallest eigenvalue of MId. Eigenvalues of
MId are positive (see (1)) but the majority of them are closer and closer to
zero as we increase d. At d = 17, the eigenvalues are so dense around zero
that the numerical range passes the zero border. At that point the matrix is
no longer positive definite.

Theorem 3 confirms the second part of the Conjecture 2.22 in [5] for
d ≤ 17. The result follows straightforwardly from Theorem 2.

Theorem 3. Let Γ ⊂ Id and let d ≤ 17. Then for any {zi ∈ R}i∈Γ, there is

a unique polynomial of the form

p :=
∑

i∈Γ

ciB
d
i

that solves the constrained interpolation problem

p(ξi) = zi, i ∈ Γ.

Remark 1. Theorem 3 generalizes [8, Theorem 3]. Its proof avoids compu-
tation of all subdeterminants, as was the case in [8].

Remark 2. The approach for proving Theorem 2 can also be used to prove
a similar result for the trivariate case: the trivariate Bézier collocation ma-
trix for d ≤ 15 is positive definite, and thus the corresponding constrained
polynomial Lagrange interpolation problem is correct.
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Let us simplify the considered matrix MΓ. Let us construct a matrix NΓ

from MΓ in the following way:

• for every column, divide each element, that corresponds to a polynomial
Bd

i , by
(

d

i

)

,

• multiply the obtained matrix by dd.

Thus an element Bd
j (ξi) is transformed into ij. Therefore

detNΓ =
dd·|Γ|

∏

i∈Γ

(

d

i

) detMΓ. (2)

Clearly, the matrixNΓ is a principal submatrix ofNId. Since sgn(detMΓ) =
sgn(detNΓ), Conjecture 1 holds true for MΓ iff it holds true for NΓ.

The matrix NΓ has some nice properties. It consists only of non-negative
integers, thus determinant computations are exact. The matrix NId has a
simpler structure than MId and is closely related to combinatorial objects.
Therefore some properties of the matrix MId will be proven via NId. Note
that some of the properties are not preserved by the transformationMΓ → NΓ

(for example, see Remark 3).

Remark 3. The matrix NId is positive definite only for d ≤ 4.

Now let us consider some particular configurations of domain points (and
the corresponding choices of Γ) for d arbitrary.

Theorem 4. Let d be arbitrary and let Γ satisfy one of the following as-

sumptions:

1. |Γ| ≤ 2,

2. let one of the components of (i, j, k) be fixed for all elements in Γ,

3. Γ = Id,

4. Γ = {(i, j, k) ∈ Id : i ≥ i0, j ≥ j0, k ≥ k0} for fixed non-negative

integers i0, j0, k0,

5. Γ ⊂ I
(2)
d ∪ I

(1)
d ,

6. Γ = Γ1 ∪Γ2, where Γ1 is one of the sets, defined in 1., 2. or 4., and Γ2

is a set in 5.
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Then detMΓ > 0.

Proof. Case 1: For |Γ| = 1, the matrix MΓ is a positive number.
Now let Γ = {i1, i2}. Since the largest element of every column in MΓ is

on the diagonal of MΓ,

detMΓ =

∣

∣

∣

∣

Bd
i1
(ξi1) Bd

i2
(ξi1)

Bd
i1
(ξi2) Bd

i2
(ξi2)

∣

∣

∣

∣

> 0.

Case 2: Let one of the components of (i, j, k) be fixed. Without loss
of generality we may assume that iℓ = (iℓ, jℓ, k), iℓ + jℓ + k = d, ℓ ∈
{1, 2, . . . , |Γ|}. By dividing each element of NΓ by kk and multiplying each
column by a proper constant, the matrix NΓ transforms to a univariate Bézier
collocation matrix, which is a P-matrix by [14].

Case 3: It follows from [13] and (2) that

detMId = d−d(d+2
2 )
∏

i∈Id

(

d

i

)min{d,3}
∏

k=1

(

d(
d−1
k )

d−k+1
∏

i=1

i(d−i+1)(d−i−1
k−2 )

)(3k)

> 0. (3)

Case 4: Firstly, let us revise the proof of nonsingularity ofMΓ (see [5]). By
appropriately multiplying rows and columns of MΓ, we obtain a collocation
matrix M̃Γ consisting of all polynomials of total degree ≤ d0 := d−i0−j0−k0
and domain points that correspond to Γ. Note that the interpolation problem
remains correct if the domain points {ξi : i ∈ Id0} are translated and scaled
by a positive factor (see [16] or Theorem 1.10 in [5]). Let M(λ), λ ∈ [0, 1],
denote a homotopy that changes the domain points by such transformation
and M(0) = MId0

, M(1) = M̃Γ. Since detMId0
> 0 (see case 3 of this theo-

rem) and the matrix M(λ) is nonsingular for every λ ∈ [0, 1], it follows that
det M̃Γ > 0.

Case 5, case 6: For Γ ⊂ I
(2)
d ∪ I

(1)
d and Γ = Γ1 ∪ Γ2, the result follows

straightforwardly from the structure of the matrix MΓ.

Remark 4. The set Γ in Theorem 4, case 2 corresponds to domain points
in the triangle T , lying on a line parallel to some edge of T .
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Although the proof that detMId > 0 may seem easy, most of the paper
[13] is dedicated to the derivation of determinant formula in a closed form
(3).

The set Γ in case 4 corresponds to domain points that form a scaled
triangle of triangle T .

The subset of decompositions Γ in case 5 corresponds to the constrained
interpolation problem at boundary domain points of the triangle T .

3. New conjectures and open problems

In the rest of the paper we state some conjectures that expand the Con-
jecture 1 and present a small interpolation problem with three domain points
that may seem easy at first glance but the existence of the solution remains
unproven so far.

The following two conjectures state exact lower bounds for detMΓ and
detNΓ, respectively.

Conjecture 5. For d fixed,

min
Γ⊂Id
Γ6=∅

detMΓ = detMId,

where detMId is given in (3).

Conjecture 6. For ℓ ∈ N let

nd :=







ℓ3ℓ, d = 3ℓ
(ℓ+ 1)ℓ+1ℓ2ℓ, d = 3ℓ+ 1
(ℓ+ 1)2ℓ+2ℓℓ, d = 3ℓ+ 2

.

Then

min
Γ⊂Id
Γ6=∅

detNΓ = nd.

Conjectures 5 and 6 were verified by a computer for d ≤ 7. Let us prove
the latter conjecture for |Γ| ≤ 2 and arbitrary d. We will need the following
lemma.

Lemma 7. Let x = (x, y, z) ∈ R
3 and fix i = (i, j, k) ∈ Id. Let the function

f(x) := xi be defined on triangle

Ω := {x : x+ y + z = d, 0 ≤ x ≤ d, 0 ≤ y ≤ d− x} ⊂ R
3. (4)

10



Then f has a unique maximum at i and

max
x∈Ω

f(x) = ii.

Proof. Let T = 〈(0, 0), (d, 0), (0, d)〉 ⊂ R
2 be a triangle in the domain and

let us define Bernstein polynomial Bd
i on T . By interpreting barycentric

coordinates of Bd
i as points in R

3, Bd
i (x/d) =

(

d

i

)

/ddf(x). Since Bd
i has a

unique maximum in the barycentric point ξi = i/d, the proof is complete.

Proposition 8. Conjecture 6 holds true for |Γ| ≤ 2.

Proof. Let |Γ| = 1 and let g(x) := g(x, y, z) := xx be a function, defined on
the domain Ω as in (4). We are looking for

α := min
x∈Ω∩Z3

g(x).

A unique local minimum of g in the interior of Ω is obtained as the
solution of the normal system ∂g/∂x = 0, ∂g/∂y = 0, and it is reached at
(d/3, d/3, d/3). This is a global minimum since g(d/3, d/3, d/3) < g(x) for
all x at the boundary of Ω.

If d ≡ 0 (mod 3), then α = (d/3)d.
Let us examine the case d ≡ 1(mod 3). Then d = (ℓ + 1) + ℓ + ℓ for

ℓ ∈ N ∪ {0}. By the symmetry of the function g and since at least one
component of x ∈ Ω∩Z

3 is greater or equal to ℓ+1, it is enough to consider
the case ℓ+ 1 ≤ x only.

Let us define

Ωx := {x = (x, y, z) ∈ Ω : ℓ+ 1 ≤ x}.

Since g has no extreme point in Ωx, the minimum value is reached at the
boundary of Ωx. Then the minimum is α = (ℓ + 1)ℓ+1ℓ2ℓ and it is achieved
at (ℓ+ 1, ℓ, ℓ). For ℓ+ 1 ≤ y and ℓ+ 1 ≤ z, the derivation is analogous.

The case d ≡ 2 (mod 3) is similar to the previous one. Since N{i} = g(i),
i ∈ Id, and nd = α, the conjecture for |Γ| = 1 is proven.

Now let us consider the case |Γ| = 2. Let us show that

ii11 = detN{i1} ≤ detN{i1, i2} = ii11 i
i2
2 − ii12 i

i2
1

for every i1, i2 ∈ Id, i1 6= i2.

11



By Lemma 7 it follows that ii12 < ii11 and ii21 ≤ ii22 − 1, thus

detN{i1, i2} − detN{i1} = ii11 (i
i2
2 − 1)− ii12 i

i2
1 ≥ 0.

One of the most straightforward approaches to prove the Conjecture 1
would be by mathematical induction with respect to the number of domain
points and d arbitrary. For example, when |Γ| ≤ 2 the conjecture is easily
verified (see case 1 of Theorem 4). On the other hand, the case |Γ| = 3 is
considerably more complex.

To present entries in the matrix NΓ for |Γ| = 3 better, we use a slightly
different notation here. Let n ∈ N and let Γ := {(a, b, c), (d, e, f), (g, h, i)} ⊂
In be a set of three pairwise different weak 3–compositions. We would need
to show that the determinant of NΓ,

∣

∣

∣

∣

∣

∣

aabbcc adbecf agbhci

daebf c ddeef f dgehf i

gahbic gdheif gghhii

∣

∣

∣

∣

∣

∣

= aabbcc · ddeef f · gghhii − aabbcc · gdheif · dgehf i

− gahbic · ddeef f · agbhci − daebf c · adbecf · gghhii

+ daebf c · gdheif · agbhci + gahbic · adbecf · dgehf i,

is positive for arbitrary configurations of three elements. Since it is difficult
to quantify the sizes of the entries in the determinant and to compare them
for a general case, positivity of the determinant remains unproven.

4. Conclusions and future work

The presented results on positivity of the principal minors provide an
important theoretical background for solving constrained Lagrange interpo-
lation problems on a triangle. The latter is a significant step to construct
Lagrange interpolation splines on triangulations. Although the positivity of
the minors for uniformly distributed domain points remains an open prob-
lem for polynomial degree ≥ 18, the verified properties are satisfactory for
practical applications. Namely, the use of polynomials of higher degrees is
not recommended due to their tendency to oscillate. To prove the conjecture
for general d, our approach with positive definiteness fails since the condition
is only sufficient but not necessary.
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Other approaches to tackle the conjecture are by using mathematical in-
duction or by examining some special configurations of points regardless of
the polynomial dimension d. The latter technique is used in Theorem 4 where
some simple configurations of points are analysed. If Γ ⊂ Id does not meet
very strict conditions, the analysis of the determinant of MΓ for arbitrary d is
cumbersome. This can be observed from a small example from the previous
section where |Γ| = 3 and d is arbitrary.

A possible future work is to try to tackle the main conjecture and newly
derived conjectures from Section 3. Obtaining some partial results, new
properties of the studied collocation matrices or developing new mathemat-
ical tools to tackle the problems would also be helpful.

The Lagrange problem can be extended by studying generalised domain
points. Therefore the points need not be uniformly distributed anymore. In
those cases, the question of existence and uniqueness of the interpolation
problem can be upgraded by studying the optimal positions of interpolation
points (for example, the points that give the smallest maximum error of the
interpolation polynomial).

In the paper we only investigated bivariate collocation matrices. The
main conjecture can be straightforwardly generalised to trivariate case or to
higher dimensions. Tackling the conjecture in higher dimension remains a
possible work in the future.
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