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Abstract

In the present paper, we propose and analyze a novel method for estimating a

univariate regression function of bounded variation. The underpinning idea is to

combine two classical tools in nonparametric statistics, namely isotonic regression

and the estimation of additive models. A geometrical interpretation enables us

to link this iterative method with Von Neumann’s algorithm. Moreover, making

a connection with the general property of isotonicity of projection onto convex

cones, we derive another equivalent algorithm and go further in the analysis. As

iterating the algorithm leads to overfitting, several practical stopping criteria are

also presented and discussed.

Index Terms — Nonparametric estimation, Isotonic regression, Additive models,

Metric projection on convex cones.
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1 Introduction

In a statistical setting, consider the nonparametric regression model

Y = r(X) + ε (1)

1Corresponding author.
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whereX and Y are both real-valued random variables withX uniform in [0, 1], E [Y 2] < ∞
and E [ε|X ] = 0 (see for example [19]). Assume, in addition, that the regression function r
is right-continuous and of bounded variation. With this respect, the Jordan decomposition
asserts that such a function can be written as the sum of a non-decreasing function u and
a non-increasing function b

r(x) = u(x) + b(x).

Viewing this latter equation as an additive model involving the increasing part and the
decreasing part of r, we propose a new estimator which combines two well-established
tools in nonparametric regression: the isotonic regression related to the estimation of
monotone functions, and the backfitting algorithm devoted to the estimation of additive
models.

The estimation of a monotone regression function dates back to the 50’s and the early
work by Ayer et al. [2]. Given a sample of independent and identically distributed
(i.i.d.) random couples (X1, Y1), . . . , (Xn, Yn) following the general model (1), denoting
x1 = X(1) < . . . < xn = X(n) the ordered sample, and y1, . . . , yn the corresponding
observations, the Pool-Adjacent-Violators Algorithm (PAVA) determines a collection of
non-decreasing level sets solution to the minimization problem

min
u1≤...≤un

n
∑

i=1

(yi − ui)
2 . (2)

Since the cone
C+ = {u = (u1, . . . , un) ∈ R

n : u1 ≤ . . . ≤ un} (3)

is a closed convex set in R
n, there exists a unique solution to this minimization problem.

This solution, called the isotonic regression of y and denoted iso(y), is the metric projection
of y = (y1, . . . , yn) on C+ with respect to the Euclidean norm, that is

iso(y) = arg min
u∈C+

‖y − u‖2 = arg min
u∈C+

n
∑

i=1

(yi − ui)
2 . (4)

Correspondingly, the antitonic regression of y is the projection of y on the set of vectors
with non-increasing coordinates, that is

anti(y) = arg min
b∈C−

‖y − b‖2 = arg min
b∈C−

n
∑

i=1

(yi − bi)
2

where C− = −C+ = {b = (b1, . . . , bn) ∈ R
n : b1 ≥ . . . ≥ bn}. From now on, C+ and C− will

be called monotone cones.

A major attraction of isotonic regression procedures is their simplicity. Since they are
nonparametric and data driven (i.e., they do not require the tuning of any smoothing
parameter), these estimators have raised considerable interest since more than fifty years.
A comprehensive account on the subject can be found in [3], statistical properties have
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been studied in [6], [7], [34], [15], and extensions or improvements to more general order
of the PAVA approach can be found in [16], [27] and [5] for example.

Still in nonparametric statistics, but in a multidimensional context this time, the additive
models were suggested by Friedman and Stuetzle [18] and popularized by Hastie and
Tibshirani [21] as a way to get around the so-called “curse of dimensionality”. In brief,
this means that, in multivariate smoothing, nonparametric estimators have to consider
large neighborhoods of a particular point of the space to catch observations, and hence
large biases can result. The additive model assumes that the regression function can be
written as the sum of smooth terms in the covariates:

r(X) =

d
∑

j=1

rj(X
j). (5)

Since each variable is represented separately in (5), the additive model provides a logical
extension of the standard linear regression and once an additive model is fitted, one can
easily interpret the role of each variable in predicting the response.

Buja et al. [8] proposed the backfitting algorithm as a practical method for fitting additive
models. It consists in iterated fitting of the partial residuals from earlier steps until
convergence is reached. If the current estimates are r̂1, . . . , r̂d, then r̂j is updated by
smoothing y −

∑

k 6=j r̂k against Xj. While backfitting has attracted much attention and
is frequently applied, it has been somewhat difficult to analyze theoretically. Nonetheless,
when using linear smoothers in each direction, the convergence of the algorithm can be
related to the spectrum of the individual smoothing matrices (see, e.g., [8] and [32]), and
when all the smoothers are orthogonal projections, the whole algorithm can be replaced
by a global projection operator [20].

There exist other multivariate methods based on repeated fitting of the residuals. Some of
them, like L2-boosting [9], boosted kernel regression [14], iterative bias reduction [10, 11],
do not assume any particular structure for the regression function. The common principle
of these approaches is to start out with a biased smoother or a weak learner, and then
to estimate and correct the bias in an iterative manner. Hence, instead of smoothing
the partial residuals, one smoothes the global residuals y −

∑

k r̂k, and then correct the
previous smoother. Just as for the backfitting, the convergence of these algorithms as
well as the statistical properties of these estimators have mainly been studied in the case
of linear smoothers.

In our situation, however, it is noteworthy that projections on convex cones are not linear
operators. But considering our iterative estimator as the application of Von Neumann’s
algorithm (see for example [13]), we will show that iterating the procedure tends to
reproduce the data. Moreover, we manage to go further in the analysis by proving that
the individual terms of the sum converge as well to identified limits. This is in fact
possible thanks to a result which is rather unexpected from the statistical point of view:
iterating isotonic regression in a backfitting fashion or in a boosting fashion yield the same
estimators at each step.
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Interestingly, this result stems from a property of the projections onto monotone cones
which, in our case, reads as follows (recall that iso(y) is defined by (4)):

∀(y, ỹ) ∈ R
n × R

n, y − ỹ ∈ C+ ⇒ iso(y)− iso(ỹ) ∈ C+ (6)

From a more general perspective, one can see this equation as a particular case of the
property of isotonicity of the projection onto convex cones. Here isotonicity is considered
with respect to the order induced by the cone. The idea to relate the ordering induced
by a convex cone and the metric projection onto the convex cone goes back to the paper
by Isac and Németh [24], where a convex cone in the Euclidean space which admits an
isotone projection onto it (called by the authors isotone projection cone) was character-
ized. Thereafter, this notion was considered in the complementarity theory to provide
new existence results and iterative methods [25, 26, 31].

Yet, the notion of the cone in the above cited papers is used in the sense of “closed convex
pointed cone”. Confronted with the question if the monotone cones C− and C+, which
are not pointed, admit or not isotonic metric projections, we shall develop in Section 2 a
general theory in order to apply it to this special case. This seems to be the simplest way
to tackle this problem. Therefore, Theorem 1 below is interesting by itself. By using this
approach, Corollary 2 states that the monotone cones C− and C+ admit isotone metric
projections.

Then, we come back to the statistical framework, the remainder of the paper being orga-
nized as follows: the definitions, the analysis and the equivalence of the Iterative Isotone
Regression estimator and the Iterative Isotone Bias Reduction estimator are detailed in
Section 3. As iterating these algorithms tends to reproduce the data, we then explain
how the procedure might be stopped in practice (Section 4). Finally, most of the proofs
are gathered in the Appendix.

To conclude this introduction, we would like to make a few comments on the topics
that will not be addressed in the present document. Starting from a sample Dn =
{(X1, Y1), . . . , (Xn, Yn)} of i.i.d. random couples with the same distribution as a generic

pair (X, Y ), our estimator takes the form r̂
(kn)
n , where kn denotes the number of iterations

possibly depending on the sample size n. In this framework, an important aspect is
to specify conditions on the regression model (1) and on the sequence (kn) so that, for
example,

E

[

(

r(X)− r̂(kn)n (X)
)2
]

−−−→
n→∞

0,

where the expectation E[.] is considered with respect to the sample Dn and the generic

variable X . If this property is satisfied, we say that the regression function r̂
(kn)
n is

consistent. It is universally consistent if this property is true for all distributions of
(X, Y ) with E[Y 2] < ∞ (see for example [19]). This important issue will not be pursued
further here and will be addressed elsewhere by the authors.
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2 Isotonicity of the projection onto the monotone

cones

It turns out that the isotonicity of the projection, as defined in (6) for the specific case of
the cone C+, is in general a very strong requirement which implies the latticiality of the
order induced by the convex cone. Thus, the investigation of the isotone projection cones
becomes part of the theory of latticially ordered Euclidean and Hilbert spaces. A simple
finite method of projection onto isotone projection cones proposed in [30] has become
important in the effective handling of all the problems involving projection onto these
cones. Besides nonlinear complementarity, isotone projection cones have applications in
other domains of optimization theory. The method proposed in [30] has become important
in the effective handling of the problem of map-making from relative distance information
e.g., stellar cartography, see Section 5.13.2.4 in [13] and

www.convexoptimization.com/wikimization/index.php/Projection_on_Polyhedral_Cone

Although we shall not consider projection methods here, we stress that some of the results
developed in [30] will be useful in our proofs.

Let us first introduce some notations. If C is a non-empty, closed convex set in R
n, then

for each x ∈ R
n there exists a unique nearest point PCx ∈ C, that is, a point with the

property that
‖x− PCx‖ = inf{‖x− c‖ : c ∈ C},

where ‖.‖ stands for the Euclidean norm in R
n [35]. The mapping PC : Rn → C is called

the nearest point mapping of Rn onto C or simply the (metric) projection onto C. Let
C be a closed convex cone in R

n, i.e., a closed nonempty set with (i) C + C ⊂ C, and
(ii) tC ⊂ C, ∀ t ∈ R+ = [0,+∞). If C ∩ (−C) = {0}, then C is called a closed convex
pointed cone. In order to lighten the writings, and since all sets at hand in the following
will be closed and convex, we propose to call them respectively “cone” and “pointed cone”.

Lemma 1 Suppose that C is a cone, denote L = C∩(−C) the maximal subspace contained
in C, L⊥ its orthogonal complement, and K = L⊥ ∩ C. Then, K is a pointed cone in L⊥,

C = K ⊕ L (7)

where ⊕ stands for the orthogonal sum, and

PCx = PKxk + xl (8)

where x = xk + xl with xl ∈ L and xk ∈ L⊥.

By putting u ≤C v whenever u, v ∈ R
n and v − u ∈ C, the cone C ⊂ R

n induces a
semi-order ≤C in R

n which is translation invariant (i.e. u ≤C v implies u+ z ≤C v + z for
any z ∈ R

n) and scale invariant (i.e. u ≤C v implies tu ≤C tv for any t ∈ R+).

The projection PC is said C-isotone if u, v ∈ R
n, u ≤C v implies PCu ≤C PCv. If PC

is C-isotone, then C is called an isotone projection cone. At this point, we would like

5



to emphasize that in [24], the authors investigate isotone projection properties only for
pointed cones. Our purpose in this section is thus to generalize their results to cones
which are not necessarily pointed, hence introducing of the decomposition C = K ⊕ L in
Lemma 1, where K is a pointed cone.

Theorem 1 Let C ⊂ R
n be a cone,

C = K ⊕ L

with L = C ∩ (−C) and K = C ∩ L⊥. Then, C is an isotone projection cone if and only if
the pointed cone K ⊂ L⊥ is an isotone projection cone in L⊥.

A simple geometric characterization of the isotone projection (pointed) cones was given
in [24]. It uses the notion of the polar of a cone. If C ⊂ R

n is a cone, then the set

C⊥ = {y ∈ R
n : 〈x, y〉 ≤ 0, ∀ x ∈ C},

is called the polar of the cone C. The set C⊥ is obviously a cone. If the cone C is generating
in the sense that C − C = R

n, then the polar C⊥ is a pointed cone. We have the following
easily verifiable result:

Lemma 2 Suppose that C is a generating cone. Using the notations introduced in the
Theorem 1, and denoting the polar of the pointed cone K in the subspace L⊥ by K⊥, we
have the relation

C⊥ = iK⊥,

where i is the inclusion mapping of L⊥ into R
n.

Putting together the main result in [24], Theorem 1 and Lemma 2, we have the following
conclusion:

Corollary 1 The generating cone C is an isotone projection cone if and only if its polar
C⊥ is a cone generated by linearly independent vectors forming mutually non-acute angles.

Let us focus our attention on the monotone cone

C− = {b ∈ R
n : b1 ≥ b2 ≥ ... ≥ bn}

It is readily seen that C− is a generating cone, but not a pointed cone. Specifically, let

L = C− ∩ (−C−) = {x ∈ R
n : x1 = x2 = ... = xn},

then L ⊂ C−, the maximal subspace contained in C−, is of dimension one. We have also
that

K = L⊥ ∩ C− (9)

is an (n− 1)-dimensional pointed cone in the hyperplane L⊥ and

C− = C− ∩ (L⊥ ⊕ L) = K ⊕ L.

We will prove that the pointed cone K given by (9) is an isotone projection cone in L⊥,
hence the following result.
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Corollary 2 The monotone cones C− and C+ admit isotone projections.

This result will be the basic ingredient to show the equality between the algorithms I.I.R.
and I.I.B.R. presented in the next section (see Theorem 2).

3 Iterative Isotone Regression

In this section, we first present the algorithm called Iterative Isotonic Regression (I.I.R.
in short) which proceeds in alternating isotonic and antitonic regressions in a backfitting
fashion. The connection with Von Neumann’s algorithm and recent results in this topic
will allow us to exhibit the limit of this estimator when the number of iterations goes to
infinity.

Let us first briefly recall the statistical framework and the idea behind our algorithm. We
consider the nonparametric regression model

Y = r(X) + ε (10)

where the random variable X is, for example, uniform in [0, 1]. Classical hypothesis for
studying the consistency of an estimator of r are E [Y 2] < ∞ and E [ε|X ] = 0, but this
will not play a prominent role in the following since we will not investigate the statistical
properties of I.I.R. More important, we will assume that the regression function r is right-
continuous and of bounded variation. Then, the Jordan decomposition asserts that such
a function can be written as the sum of a non-decreasing and a non-increasing function:
r(x) = u(x)+b(x). Specifically, if we impose that u and b have singular associated Stieltjes
measures and, for example, that

∫ 1

0

u(x) dx =

∫ 1

0

r(x) dx, (11)

then the decomposition is unique. In this case, we adopt the following notation

∀x ∈ [0, 1] r(x) = u⋆(x) + b⋆(x), (12)

and we call this latter writing the Jordan minimum variation decomposition of r.

3.1 Framework, notations and convergence

In a statistical setting, we shall use a sample of i.i.d. random couples (X1, Y1), . . . , (Xn, Yn)
following the model (10) and try to estimate the regression function r. Viewing u⋆

and b⋆ as the components of an additive model involving two monotone terms, the
idea of I.I.R. is to apply alternatively isotonic and antitonic regressions. Recall that
x1 = X(1) < . . . < xn = X(n) denotes the ordered sample, that y1, . . . , yn are the cor-
responding observations and that iso(y) (resp. anti(y)) is the isotonic (resp. antitonic)
regression of y = (y1, . . . , yn)

′.

7



Besides, if z = (z1, . . . , zn)
′, the notation ∆(z) stands for the (n− 1) dimensional vector

defined as
∆(z) = (z2 − z1, . . . , zn − zn−1)

′ .

Considering two vectors z and z̃, we may write ∆(z) ◦ ∆(z̃) for their term-by-term (or
Hadamard) product, which means

∆(z) ◦∆(z̃) = ((z2 − z1)× (z̃2 − z̃1), . . . , (zn − zn−1)× (z̃n − z̃n−1))
′ .

If ∆(z) ◦∆(z̃) = 0, we will say that z and z̃ have singular variations.

We are now in a position to specify the Iterative Isotonic Regression algorithm.

Algorithm 1 Iterative Isotonic Regression (I.I.R.)

(1) Initialization:

b̂(0) =
(

b̂
(0)
1 , . . . , b̂(0)n

)′

= 0

(2) Cycle: for k ≥ 1

û(k) = iso
(

y − b̂(k−1)
)

b̂(k) = anti
(

y − û(k)
)

ŷ(k) = û(k) + b̂(k).

(13)

(3) Iterate (2) until a stopping condition to be specified.

We prove in the Appendix (see Section 5.5) that at each iteration k ≥ 1,











∆
(

û(k)
)

◦∆
(

b̂(k)
)

= 0

¯̂u(k) = ȳ
¯̂
b(k) = 0,

(14)

where ȳ := (
∑n

i=1 yi)/n stands for the empirical mean of y. These equations ensure the

identifiability of the decomposition ŷ(k) = û(k) + b̂(k). One might indeed consider them as
the translation of conditions (11) in a discrete context. In other words, given ŷ(k), both
vectors û(k) and b̂(k) are uniquely specified.

Figure 1 illustrates the application of the I.I.R. algorithm on the example of the fonction
r which is drawn on the top left hand side of the figure. Still on the top left hand side
of the figure, we have also plotted n = 100 points (xi, yi) to obtain our sample: for each
point, one has yi = r(xi) + εi, where εi is a Gaussian centered random variable. Besides
these sample points, the three other figures show the estimations ŷ(k) with k = 1, 10, 1000
iterations.
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Figure 1: Application of the I.I.R. algorithm for k = 1, 10, 1000.

One can see that for each iteration the method fits a piecewise constant function to the
data and that increasing the number of iterations leads to increase the number of level
sets (clusters). It also appears on this example that iterating the algorithm leads to the
interpolation of the original data. This property is always true, as established by the
following result.

Proposition 1 With the previous notations, one has

lim
k→∞

ŷ(k) = y.

Proof. In the following, y is held fixed and, as usual, y + C+ stands for the translated
cone

y + C+ = {y + u, u ∈ C+}.

All the notations are recalled on figure 2. To understand the geometrical forces driving
Proposition 1, this figure also provides a very simple interpretation of the algorithm, as
it illustrates that the sequences of vectors û(k) and y − b̂(k) might be seen as alternate
projections on the cones C+ and y + C+. In what follows, we justify this illuminating
geometric interpretation in a rigorous way, and we explain its key role in the proof of the
convergence as k goes to infinity.

First, by definition, we have û(1) = PC+(y), and a moment’s thought shows that

Py+C+(û(1)) = y + PC+(û(1) − y) = y − PC−(y − û(1)).

Then, coming back to the very definition of b̂(1) = PC−(y − û(1)) leads to

y − b̂(1) = Py+C+(û(1)).
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In the same manner, since û(2) = PC+(y − b̂(1)), we get

y − b̂(2) = y − PC−(y − û(2)) = y + PC+(y − û(2)) = Py+C+(û(2))

More generally, denoting b̂(0) = 0, this yields for all k ≥ 1

û(k) = PC+(y − b̂(k−1)) and b̂(k) = Py+C+(û(k)).

y

y − b̂(1)

y − b̂(2)

y − û(1)

y − û(2)

b̂(1)

b̂(2)
û(1)

û(2)

y − b̂(k)

û(k)

C
+
n

y + C
+
n

C
−

n

Figure 2: Interpretation of the I.I.R. method as a Von Neumann’s algorithm.

It remains to invoke Theorem 4.8 in [4] to conclude that

(y − b̂(k))− û(k) = y − ŷ(k) −−−→
k→∞

0,

which ends the proof of Proposition 1. ✷

A few remarks are in order:

1. The take-home message here is that iterating the algorithm leads to overfitting,
which is of course not desired in practice. Consequently, a stopping criterion must
be applied in order to avoid this phenomenon. In this aim, we have tested several
pratical rules, and this will be the object of Section 4.

2. Note that Proposition 1 ensures the convergence of the sum û(k) + b̂(k) but does not
say anything about the convergence of its individual terms û(k) and b̂(k). However,
Corollary 4.9 in [4] asserts that the sequences û(k) and b̂(k) are also convergent.
The specification of these limits will be possible in our situation thanks to the
introduction of another equivalent algorithm, called I.I.B.R. This will be the topic
of the next subsection.
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3. In [28], Mammen and Yu consider isotonic functions in the multivariate additive
model (5). They rely on the analysis of Dykstra’s algorithm sequences [17] to show
that for fixed n the backfitting procedure converges to the solution of

argmin

n
∑

j=1

(yj − uj)
2

where u is the sum of d vectors in C+. Hence, our case is rather comparable to the
one considered by these authors when d = 2. Correspondingly, in our setting, one
can see the vectors y − b̂(k−1) − û(k) and y − û(k) − b̂(k) as Dykstra’s sequences and
consider Mammen and Yu’s alternate projections on the polar cones of C+ and C− to
prove Proposition 1. However, as we are alternating projections onto opposite cones,
considering r̂(k) and y − b̂(k) yields the easier Von Neumann’s type interpretation
given in our proof.

3.2 The connection with Iterative Isotonic Bias Reduction

In this section we propose another algorithm inspired by bias reduction techniques in
regression [9][10]. In a nutshell, the idea here is to work on the updated residuals y− ŷ(k)

in order to refine the estimator at each step. Specifically, this algorithm takes the following
form.

Algorithm 2 Iterative Isotonic Bias Reduction (I.I.B.R.)

(1) Initialization:

ŷ(0) = 0

(2) Cycle: for k ≥ 1
ũ(k) = iso

(

y − ŷ(k−1)
)

b̃(k) = anti
(

y − ŷ(k−1) − û(k)
)

Updating:
ŷ(k) = ŷ(k−1) + ũ(k) + b̃(k)

(3) Iterate (2) until a stopping condition to be specified.

Interestingly, it turns out that algorithms I.I.R. and I.I.B.R. coincide. This remarkable
fact, which is the purpose of the next theorem, deeply relies on the property of isotonicity
of the projection onto the cones we consider. As a by-product, it will allow us to make
precise the individual limits of the sequences û(k) and b̂(k).
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Theorem 2 With the previous notations, for all k ≥ 1,

û(k) =

k
∑

j=1

ũ(j) and b̂(k) =

k
∑

j=1

b̃(j).

Proposition 1 ensures that ŷ(k) tends to y when k goes to infinity. Thanks to Theorem 2
we will go one step further and show in Corollary 3 that the individual terms û(k) and b̂(k)

tend to some explicit limits u⋆
y and b⋆y. These limits are simply the discrete analogous of

the Jordan minimum variance decomposition of a function with bounded variation (12)
for the vector y. As will be stated below, they are indeed characterized by y = u⋆

y + b⋆y
and

∆(u⋆
y) ◦∆(b⋆y) = 0,

the empirical means of y and u⋆
y being the same.

Before proceeding, let us illustrate this on the example of figure 3. The left-hand side
represents the vector y and the decomposition y = u⋆

y + b⋆y. One can see that

yi+1 − yi > 0 ⇒ u⋆
y,i+1 − u⋆

y,i = yi+1 − yi and b⋆y,i+1 − b⋆y,i = 0

and conversely,

yi+1 − yi < 0 ⇒ u⋆
y,i+1 − u⋆

y,i = 0 and b⋆y,i+1 − b⋆y,i = yi+1 − yi,

which, in the discrete case, amounts to say that u⋆ and b⋆ have singular associated Stieltjes
measures in equation (12). The right-hand side of the figure illustrates that when the
number of iterations k goes to infinity, û(k) and b̂(k) converge respectively to u⋆

y and b⋆y.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

k ↑

k ↑

y

u⋆
y

b⋆y

Figure 3: Respective convergences of û(k) and b̂(k) to u⋆
y and b⋆y.
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Corollary 3 The sequences
(

û(k)
)

k≥1
and

(

b̂(k)
)

k≥1
admit the following limits

lim
k→∞

û(k) = u⋆
y and lim

k→∞
b̂(k) = b⋆y

where u⋆
y and b⋆y are such that y = u⋆

y + b⋆y, ū
⋆
y = ȳ, b̄⋆y = 0 and ∆(y) = ∆(u⋆

y) ◦∆(b⋆y).

Proof. In order to lighten the notations a bit, let us assume that the empirical mean of
y is equal to zero. Consequently, all the intermediates of both algorithms have also zero
mean, as well as u⋆

y and b⋆y. This allows us to work in the hyperplane E , that means the
subspace of Rn consisting in all zero mean vectors. In this hyperplane, we introduce the
norm V to quantify the variations of a vector:

V : E → R
+

y 7→ V(y) =
∑n−1

i=1 |yi+1 − yi|

Then, it is routine to check that for any vector z ∈ E and any decomposition z = uz + bz
with uz and bz both in E , we have the following equivalence

∆(uz) ◦∆(bz) = 0 ⇔ V(z) = V(uz) + V(bz). (15)

Now, Corollary 4 in Section 5.5 ensures that for all k ≥ 1, û(k) and b̂(k) have singular
variations (one can also see that on figure 3) which implies that for all k ≥ 1

V(ŷ(k)) = V(û(k)) + V(b̂(k)).

Accordingly, we just have to justify that the limits u∞ := limk→∞ û(k) and b∞ := limk→∞ b̂(k)

satisfy V(u∞) + V(b∞) = V(y) to deduce that ∆(u∞) ◦∆(b∞) = 0, hence u∞ = u⋆
y and

b∞ = b⋆y. The existence of the limits implies that for all i ∈ {1, . . . , n},

u∞
i := lim

k→∞
û
(k)
i and b∞i := lim

k→∞
b̂
(k)
i

are well-defined. Then, the continuity of the norm V leads to

lim
k→∞

V(û(k)) = V(u∞) and lim
k→∞

V(b̂(k)) = V(b∞),

and the same relation holds for ŷ(k) and y. Thus,

V(y) = V
(

limk→∞{û(k) + b̂(k)}
)

= limk→∞V
(

û(k) + b̂(k)
)

= limk→∞

{

V(û(k)) + V(b̂(k))
}

= limk→∞V(û(k)) + limk→∞V(b̂(k))

= V
(

limk→∞ û(k)
)

+V
(

limk→∞ b̂(k)
)

= V(u∞) + V(b∞).

From equivalence (15), we deduce that u∞ = u⋆
y and b⋆y = b∞, where y = u⋆

y + b⋆y is the
Jordan minimum variance decomposition of y.

✷
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4 Discussion

As increasing the number of iterations leads to overfit the data, iterating the procedure
until convergence is not desirable. This brings up to the choice of a stopping rule which
could be used in practice. Viewing the latter question as a model selection issue suggests
stopping criteria based for example on Akaike Information Criterion (AIC, see [1]), mod-
ified AIC criterion (AICc, see [23]), Bayesian Information Criterion (BIC, see [33]) and
Generalized Cross Validation (GCV, see [12]).

For a linear smoother r̂λ = Sλ(y), with λ the smoothing parameter and Sλ the smoothing
matrix, these selectors can be written in the common form

argmin
λ

{

log
1

n
RSSλ +φ(pλ)

}

(16)

where RSS denotes the residual sum of squares and φ(.) is an increasing function of the
number of degrees of freedom pλ of the smoother. One usually takes pλ = tr(Sλ) or
pλ = tr(SλS

t
λ) (see [8], section 2.7.3) and according to the various criteria mentioned

above
φAIC(pλ) = 2pλ

n

φBIC(pλ) = pλ
n
logn

φAICc(pλ) = 1 + 2 pλ+1
n−pλ−2

φGCV (pλ) = −2 log
(

1− pλ
n

)

.

(17)

Thus, equation (16) leads to a tradeoff between the goodness of fit and a penalization of
high model complexity. Although isotonic regression is not a linear smoother, we refer
to Meyer and Woodroofe [29] to consider that the number of distinct values among the
fitted vector provides the effective dimension of the model. Taking this into account and
considering that increasing the number of iterations tends to reduce the residual sum of
squares but raises the complexity of the model, a natural extension for iterative isotonic
regression is to replace pλ by the number of sets of the fitted vector r̂(k) in (16) and solve

argmin
k∈K

{

log
1

n
RSSk +φ(pk)

}

(18)

over a grid K of iterations.

We have applied and compared these stopping rules for iterative isotonic regression
through simulated data. It appears that AICc shows the best performances among the
three other criteria for most investigated cases. Then, for this specific stopping criterion,
we have compared iterative isotonic regression with non parametric competitors, namely
local polynomial regression (R package locpol), and smoothing spline regression (R pack-
age stats, function smooth.spline). For further details on this topic, we refer the interested
reader to the R package dedicated to I.I.R. at the following address:

www.sites.univ-rennes2.fr/laboratoire-statistique/JEGOU/index.html

14



The take-home message is that I.I.R. can not compete with spline or local polynomial
regression for smooth functions. However, when the functions have discontinuities, our
estimator compares favorably with his competitors, in particular when the sample size
increases. This suggests that our method could be used to locate discontinuities in a
regression framework. Applications arise for example in genomic where the detection of
breakpoints from Array Comparative Genomic Hybridization (array CGH) profiles is of
crucial importance to identify genes involved in cancer progression [22].

5 Appendix

5.1 Proof of Lemma 1

The relation (7) follows directly from

C = C ∩ (L⊥ ⊕ L).

It is known (see [35]) that the projection PCx of x onto the cone C is characterized by the
couple of relations:

〈x− PCx, y〉 ≤ 0, ∀ y ∈ C, (19)

and
〈x− PCx, PCx〉 = 0. (20)

Hence, we have to verify the above relations for PKxk+xl instead of PCx. By the relation
(7), PKxk + xl ∈ C. Then, take an arbitrary y ∈ C represented by (7) in the form

y = yk + yl

with yk ∈ K and yl ∈ L. Then, we have

〈xk + xl − (PKxk + xl), yk + yl〉 = 〈xk − PKxk, yk〉 ≤ 0, ∀ y = yk + yl ∈ C,

because yl is perpendicular to xk−PKxk ∈ L⊥, and because of the relation similar to (19)
characterizing the projection of xk onto the pointed cone K in L⊥. Thus, relation (19)
holds for PKxk + xl in place of PCx. We further have

〈xk + xl − (PKxk + xl), PKxk + xl〉 = 〈xk − PKxk, PKxk〉 = 0

because xl is perpendicular to xk−PKxk and because of the relation similar to (20) applied
to xk ∈ L⊥ and its projection onto K. The obtained relation is exactly (20) for PKxk+xl

instead of PCx.
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5.2 Proof of Theorem 1

Take u, v ∈ L⊥. Then, u ≤K v is equivalent to u ≤C v. If PC is C-isotone, then u ≤C v
implies by Lemma 1

PKv − PKu = PCv − PCu ∈ C.

Since PKu, PKv ∈ L⊥, it follows that

PKv − PKu ∈ L⊥ ∩ C = K.

The obtained relation shows that PK is K-isotone, concluding the proof of the necessity
of the theorem.

Suppose now that PK is K-isotone and take u, v ∈ R
n with u ≤C v. If u = uk + ul and

v = vk + vl with uk, vk ∈ L⊥, and ul, vl ∈ L, then using formula (7)

v − u = vk − uk + vl − ul ∈ K ⊕ L

and hence vk − uk ∈ K, that is uk ≤K vk and by the K-isotonicity of PK it follows that

PKvk − PKuk ∈ K.

Hence, using formula (8) we have

PCv − PCu = PKvk + vl − PKuk − ul = PKvk − PKuk + vl − ul ∈ K ⊕ L = C.

That is PCu ≤C PCv, which concludes the isotonicity of PC.

5.3 Proof of Corollary 2

It clearly suffices to prove that the monotone cone C− = {b ∈ R
n : b1 ≥ b2 ≥ ... ≥ bn}

admits an isotone projection. For this, we have to introduce some notations. Let us first
take the following base in R

n:

e1 = (1, 0, ..., 0), e2 = (1, 1, 0, ..., 0), . . . , en−1 = (1, ..., 1, 0), en = (1, 1, ..., 1).

Then, an arbitrary element b = (b1, ..., bn) ∈ R
n can be represented in the form

b = (b1 − b2)e1 + (b2 − b3)e2 + ...+ (bn−1 − bn)en−1 + bnen, (21)

the relation b ∈ C− being equivalent with

bj−1 − bj ≥ 0, j = 2, ..., n. (22)

Let us consider further the following base in L⊥:

e′1 = (n− 1,−1,−1, ...,−1), e′2 = (n− 2, n− 2,−2, ...,−2), . . . , e′n−1 = (1, ..., 1,−(n− 1)).
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The following notation is standard in the convex geometry and ordered vector space
theory: If M ⊂ R

n is a non-empty set, then let

cone(M) = {t1n1 + ... + tknk : ni ∈ M, ti ∈ R+ = [0,+∞), i = 1, ..., k; k ∈ N}.

The set cone(M) is the minimal cone containing the set M and it is called the cone
generated by M . Denoting

L = C− ∩ (−C−) = {b ∈ R
n : b1 = b2 = ... = bn},

and K = L⊥ ∩ C−, we will see next that

K = cone({e′1, ..., e
′
n−1}). (23)

Since e′j ∈ C− ∩ L⊥, we have obviously that

cone({e′1, ..., e
′
n−1}) ⊂ K. (24)

Comparing the vectors ei and e′j we get

1

n− j + 1
(e′j + en) = ej , j = 1, ..., n− 1. (25)

By substitution of ej, j = 1, ..., n− 1, the representation (21) of b becomes

b = (b1−b2)
1

n
(e′1−en)+(b2−b3)

1

n− 1
(e′2+en)+ ...+(bn−1−bn)

1

2
(e′n−1+en)+bnen (26)

Suppose now that b ∈ C−, that is, relations (22) hold. Then, the coefficients of e′j , j =
1, ..., n− 1 in its representation (26) are non-negative. Thus, we have

b ∈ C− ⇔ b =
n−1
∑

j=1

tje
′
j + tnen, tj ∈ R+, j = 1, ..., n− 1, tn ∈ R. (27)

In particular, if b ∈ K, then, by (9), we have b ∈ L⊥. Hence, by multiplying (27) scalarly
by en and by using 〈b, en〉 = 0 (which follows from b ∈ L⊥ and en ∈ L) and 〈e′j, en〉 = 0
(which follows from e′j ∈ L⊥ and en ∈ L), we get tn = 0. This reasoning shows that

K ⊂ cone({e′1, ..., e
′
n−1}),

inclusion which together with (24) proves (23). We consider now the vectors

u1 = (−1, 1, 0, ..., 0), u2 = (0,−1, 1, 0, ..., 0), . . . , un−1 = (0, ..., 0,−1, 1).

Then, ui ∈ L⊥, i = 1, ..., n− 1, and we have

〈ui, e
′
j〉 = 0 if i 6= j, 〈ui, e

′
i〉 < 0, i, j = 1, ..., n− 1. (28)

According to the reasonings in [30] the relations (28) show that

cone({u1, ..., un−1})

is the polar of K in the subspace L⊥. Further, we have

〈ui, uj〉 ≤ 0 if i 6= j.

By the main result in [24] this shows that K is an isotone projection pointed cone in L⊥.
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5.4 Proof of Theorem 2

First we prove that for all k ≥ 1,

û(k+1) − û(k) ∈ C+ and b̂(k+1) − b̂(k) ∈ C−. (29)

For k = 1, we have
û(2) − û(1) = iso(y − b̂(1))− iso(y).

Since −b̂(1) ∈ C+ and as C+ is an isotone projection cone by Corollary 2, we deduce that
û(2) − û(1) belongs to C+. In the same manner,

b̂(2) − b̂(1) = anti(y − û(2))− anti(y − û(1)),

which is equivalent to

b̂(2) − b̂(1) = anti
(

y − û(1) − (û(2) − û(1))
)

− anti(y − û(1)).

Now, as was just noticed, −(û(2)− û(1)) belongs to C−, which is also an isotone projection
cone, so that b̂(2) − b̂(1) is indeed in C−. We can iterate this reasoning. For example, at
the next step:

û(3) − û(2) = iso(y − b̂(2))− iso(y − b̂(1)) = iso
(

y − b̂(1) − (b̂(2) − b̂(1))
)

− iso(y − b̂(1)),

and we may go on with the same arguments as before.

Next, we prove the desired result by induction on k. At the first step (k = 1), both
algorithms clearly coincide. Now let us assume that it is still true at step k ≥ 1, which
means

ŷ(k) = û(k) + b̂(k) with û(k) =

k
∑

j=1

ũ(j) and b̂(k) =

k
∑

j=1

b̃(j).

Our objective is to prove that û(k+1) =
∑k+1

j=1 ũ
(j). For this, let us show that

‖y − b̂(k) − û(k+1)‖ = ‖y − ŷ(k) − ũ(k+1)‖. (30)

Due to the fact that û(k+1) is the best non-decreasing approximation of y− b̂(k), and since
û(k) + ũ(k+1) itself is a non-decreasing sequence, we deduce that

‖y − b̂(k) − û(k+1)‖ ≤ ‖y − b̂(k) − (û(k) + ũ(k+1))‖ = ‖y − ŷ(k) − ũ(k+1)‖.

Now, as ũ(k+1) is the best non-decreasing approximation of y − ŷ(k), it is in particular a
better approximation than û(k+1)− û(k), this latter being itself non-decreasing as was just
established above (see (29)). Thus, we are led to

‖y − ŷ(k) − ũ(k+1)‖ ≤ ‖y − ŷ(k) − (û(k+1) − û(k))‖ = ‖y − b̂(k) − û(k+1)‖.
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Putting all the pieces together, (30) is proved, and we get

‖y − ŷ(k) − ũ(k+1)‖ = ‖y − b̂(k) − û(k+1)‖ = ‖y − ŷ(k) − (û(k+1) − û(k))‖.

This indicates that ũ(k+1) et û(k+1) − û(k) both realize the minimal distance to y − ŷ(k).
As a consequence,

ũ(k+1) = û(k+1) − û(k) ⇔ û(k+1) = û(k) + ũ(k+1),

and finally

û(k+1) =

k+1
∑

j=1

ũ(j).

The same arguments may be repeated to establish that b̂(k+1) =
∑k+1

j=1 b̃
(j). Details are

omitted.

5.5 Proof of identifiability conditions

The purpose of this section is to prove the identifiability conditions (14) for the I.I.R.

algorithm, that is, for all k ≥ 1 (see also figure 4)
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Figure 4: Illustration of identifiability conditions.

The two last equations rely on a characterization of metric projections which was already
mentioned in the proof of Lemma 1. From equations (19) and (20), we know that for any
y ∈ R

n, the vector u ∈ C+ (resp. C−) is the isotonic (resp. antitonic) regression of y if
and only if

〈y − u, u〉 = 0
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and
∀v ∈ C+(resp. C−), 〈y − u, v〉 ≤ 0. (31)

Taking successively v = (1/n, . . . , 1/n)′ ∈ C+ ∩ C− and v = (−1/n, . . . ,−1/n)′ ∈ C+ ∩ C−

in (31) leads to

1

n

n
∑

i=1

iso(y)i =
1

n

n
∑

i=1

anti(y)i = y,

which proves that for all k ≥ 1, ¯̂u(k) = ȳ and
¯̂
b(k) = 0. To prove that ∆

(

û(k)
)

◦∆
(

b̂(k)
)

= 0,

we will need the following result.

Proposition 2 Let y ∈ R
n, then

u = iso(y) and b = anti(y − u) ⇒ ∆(u) ◦∆(b) = 0 (32)

and
b = anti(y) and u = iso(y − b) ⇒ ∆(u) ◦∆(b) = 0. (33)

Proof. Let us prove for example that

ui < ui+1 ⇒ bi = bi+1.

We first establish that after an isotone regression, the last observation yi of a cluster Ai is
always lower than or equal to ui. For this, we use a proof by contradiction, arguing that
a situation like the one depicted in figure 5 is impossible.

i i + 1

Ai

Ai+1

yi

ui

ui+1

Figure 5: Notations for the clusters Ai and Ai+1.

Let us denote Ai the cluster with last element yi. For the sake of simplicity, ui stands for
the last common value to all elements of cluster Ai after the isotone regression. From the
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properties of the Pool Adjacent Violators Algorithm (see for example [3]), it is well-known
that ui satisfies the following equation

ui =
1

|Ai|

∑

yj∈Ai

yj,

where |Ai| is the cardinal of Ai. Equivalently, the next cluster is denoted Ai+1 and the
corresponding isotonic value ui+1.

Now, let us assume that ui < yi, and denote

ci−1 =
1

|Ai| − 1

∑

yj∈Ai,yj 6=yi

yj

so that, clearly, ci−1 < ui. Besides, it is readily seen that yi < ui+1, else yi would belong
to cluster Ai+1. Since ci−1 is the average of the yj’s belonging to Ai − {yi}, the following
inequality holds

∑

j∈Ai−{yi}

(yj − ci−1)
2 <

∑

j∈Ai−{yi}

(yj − ui)
2

so that

∑

j∈Ai−{yi}

(yj − ci−1)
2 + (yi − yi)

2 +
∑

j∈Ai+1

(yj − ui+1)
2

<
∑

j∈Ai−{yi}

(yj − ui)
2 + (yi − ui)

2 +
∑

j∈Ai+1

(yj − ui+1)
2

<
∑

j∈Ai

(yj − ui)
2 +

∑

j∈Ai+1

(yj − ui+1)
2.

This latter inequality indicates that the isotone regression with the values {ci−1, yi, ui+1}
would be better than the original one with {ui, ui+1}, which is in contradiction with the
very definition of the isotone regression, therefore yi ≤ ui.

We prove in the same way that:
yi+1 ≥ ui+1.

Hence, we obtain

ri = yi − ui ≤ 0 and ri+1 = yi+1 − ui+1 ≥ 0

so that ri ≤ ri+1, and bi = bi+1, which is the desired result. ✷

This result enables us to prove the so-called identifiability conditions for algorithms I.I.R.
and I.I.B.R.
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Corollary 4 For all k ≥ 1,
∆(ũ(k)) ◦∆(b̃(k)) = 0. (34)

and
∆(û(k)) ◦∆(b̂(k)) = 0. (35)

Proof. Equation (34) follows immediately from Proposition 2. On the other hand,
equation (35) requires more attention. We prove this by induction. This is obviously true
for k = 1 by Proposition 2. Let us fix k ≥ 1, and assume that

∆(û(k)) ◦∆(b̂(k)) = 0.

Since û(k+1) = û(k) + ũ(k+1) and b̂(k+1) = b̂(k) + b̃(k+1), we get

∆(û(k+1)) ◦∆(b̂(k+1)) = ∆(û(k)) ◦∆(b̃(k+1)) + ∆(ũ(k+1)) ◦∆(b̂(k)), (36)

and our objective is to prove that both terms on the right-hand side of this equation are
equal to zero. First notice that

b̃(k+1) = anti(y − ŷ(k) − ũ(k+1)) = anti(y − b̂(k) − û(k+1))

and by definition of û(k+1),
û(k+1) = iso(y − b̂(k)).

Then, Proposition 2 gives
∆(û(k+1)) ◦∆(b̃(k+1)) = 0

so that
{

∆(û(k)) + ∆(ũ(k+1))
}

◦∆(b̃(k+1)) = 0

and finally
∆(û(k)) ◦∆(b̃(k+1)) = 0.

Let us now turn to the second term on the right-hand side of equation (36). Just note
that

ũ(k+1) = iso(y − ŷ(k)) = iso(y − û(k) − b̂(k))

where
b̂(k) = anti(y − û(k)).

Invoking Proposition 2 again, we are led to

∆(ũ(k+1)) ◦∆(b̂(k)) = 0

and the right-hand side of equation (32) is equal to zero. ✷

Remark: One can notice that the proof of Corollary 4 uses the fact that algorithms I.I.R.
and I.I.B.R. coincide (Theorem 2), but of course the proof of this theorem did not make
any use of Corollary 4. A quick inspection shows that this last result is applied only in
the demonstration of Corollary 3.
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