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A development quadratic model of the heterogeneous biological population consisting of a
few sub-populations is investigated. The classic stabilization problem of solutions for the
system of ordinary quadratic differential equations, which describing this model, is solved.
Examples are given.
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1. Introduction

The logistic equation

_xðtÞ ¼ axðtÞ 1� xðtÞ
k

� �
; xðtÞP 0; a > 0; k > 0 ð1Þ

is a very classical (but still actual) tool for description of population growth [1]. The equation is based on the use of two
fundamental population characteristics: a is the coefficient of productivity, which characterizes potential intensity of pop-
ulation’s growth, and k is the‘‘environment volume’’. This coefficient reflects an equilibrium size of the population, which can
be realized in considering environment. Naturally, the description of a population by two positive real numbers is an essen-
tial simplification. Nevertheless this simplification is quite useful and popular [2,3].

One of factors, which are not taken into account in the model (1), is heterogeneity of populations. It is clear that different
specimens have different abilities, both of growth rate and potential density. In (1) one considers average values; it is quite
correct if there is some normal distribution of the indices. The real situation is usually more complex: a population can be
divided for some more or less discrete groups (sub-populations) and indices within each of them are more similar each other
that between the groups. Forming the population these groups are not completely isolated; it is very important that they can
‘‘exchange’’ by specimens (both directly and through reproduction).

Each ith subpopulation is still characterized by one value ki (i ¼ 1; . . . ;n; n is a number of the groups) which means stable
size of the subpopulation in the environment (in the case of absence of other sub-populations!). In the same time the growth
coefficient should reflect possibility of production by this subpopulation of new members for other sub-populations. One
should consider a number of aij (i; j ¼ 1; . . . ;n), which reflects an intensity of production of specimens of jth subpopulation
by ith one (i – j). The coefficient aii; i ¼ 1; . . . ;n, describes the growth (‘‘self-support’’) of ith subpopulation. It is quite logical
to propose for the description of general dynamics of the heterogeneous biological population the following system
equations:
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_x1ðtÞ ¼
Xn

j¼1

a1jxjðtÞ 1� xjðtÞ
kj

� �
;

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ;

_xnðtÞ ¼
Xn

j¼1

anjxjðtÞ 1� xjðtÞ
kj

� �
:

8>>>>>><
>>>>>>:

ð2Þ

Here xiðtÞ is a vector of states; the vector of initial values xTð0Þ ¼ ðx10; . . . ; xn0Þ is given; aij and kj > 0 are real numbers;
i; j ¼ 1; . . . ;n.

Nature of the sub-populations can be quite different. They can be real sub-populations with genetic peculiarities and
essentially isolated geographically (and in this case the diagonal coefficients aii will be much bigger then other ones). System
(2) can also describe intensive interaction between representatives of different genetic lines, which can take place as a per-
manent component of population dynamics [4]. As example of such process one can mention interaction between human
races or a change of quantities of blondes and brunettes in the human population. The model can be applied for any kind
of heterogeneity, but in some case (for example, for age heterogeneity) it is transformed to very special degenerate kind.

Another possibility it is’t consider genetic, but ‘‘social’’ groups. An existence of ‘‘horizontal’’ hierarchy (a separation of
populations for families, bevies and so on) means the existence of ‘‘vertical’’ one (there are ‘‘social classes’’ of specimens:
ordinary specimens, heads of family, bevy leaders) [5]. Contrary to sex difference specimens can change their group mem-
bership, although this change is not as mechanistic as change of age. Big populations of ‘‘intellectual’’ animals ( particularly
primates, ungulates, cetaceans, and even insects and fishes [6,7]) often form multi-level social structures. There are quite
fundamental descriptions of social structures of several special species [8,9]. In some cases (for example, for Galapagos
sea-lion [9]) it was even possible to estimate the number of layers in population social structure. Number of the levels de-
pends on their both intellectual and ‘‘energetic’’ abilities [5].

Although model (2) has quite evident form and mentioned in scientific literature [10–12], it is not deeply discussed and
investigated. Partially, it can be explained by quit high level of its mathematical complexity and big number of its parame-
ters. Some first steps of investigation of the model was done in paper [13], where model (2) was called as ‘‘zygote elimination
model’’ (several group of cells were considered as sub-populations; it is another opportunity to interpret the model). In cur-
rent article we want to continue the investigation on quite formal mathematical level.

Let x10 > 0; . . . ; xn0 > 0. Then generally speaking there exists a finite time t� and i 2 f1; . . . ;ng such that xiðt�Þ < 0. If the
last inequality takes place, then from the biological point of view model (2) is improper. Nevertheless if 8t > 0, we have
xiðtÞ > 0; i ¼ 1; . . . ;n, then model (2) can correctly describe the dynamic behavior of some heterogeneous biological
population.

In [14–16] the existence conditions of the asymptotic stability cone for general quadratic systems were resulted. However
these conditions have a local character. A main task of the present paper is constructing of a global stability region for system
(2).

2. Preliminary results

In this section we remind some known results which are resulted in works [14–16].
Consider the homogeneous quadratic system of order n:

_x1ðtÞ ¼ xTðtÞB1xðtÞ;
� � � � � � � � � � � � � � � � � � ;
_xnðtÞ ¼ xTðtÞBnxðtÞ

8><
>: ð3Þ

with the vector of initial values xTð0Þ. Matrices B1; . . . ; Bn 2 Rn�n are real and symmetrical.
Notice that any quadratic form in the right-hand side of system (3) can be written as

xT Bix ¼ ðri1; . . . ; rinÞ � ðx1xT ; . . . ; xnxTÞT ;

where ri1; . . . ; rin 2 Rn are row-vectors of the matrix Bi; i ¼ 1; . . . ;n. Thus, any system (3) can be presented by the such form

_xðtÞ ¼ T � ðxðtÞ � xðtÞÞ; ð4Þ

where

T ¼

r11; . . . ; r1n

..

.
. . . ..

.

rn1; . . . ; rnn

0
BB@

1
CCA 2 Rn�n2

and T is a mixed tensor of rank 3 (once contravalent and twice covalent); x� x ¼ ðx1xT ; . . . ; xnxTÞT is a tensor product of the
vector x with itself. (Here the tensor T is realized as an element of the space matrices of sizes n� n2.)
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The tensor T can be presented by matrices T ¼ ðT1; . . . ; TnÞ, where

T1 ¼
r11

..

.

rn1

0
BB@

1
CCA 2 Cn�n; . . . ; Tn ¼

r1n

..

.

rnn

0
BB@

1
CCA 2 Cn�n:

Define the function (it is an invariant of the complete linear group GLðn;CÞ [14]):

IðT1; . . . ; TnÞ ¼ det
X

16j1 ;...;jn6n

ð�1ÞrTj1 Tj2 � . . . � Tjn

 !
; ð5Þ

where r ¼ 0, if a permutation ðj1; . . . ; jnÞ is even and r ¼ 1, if the permutation ðj1; . . . ; jnÞ is odd.

Definition 1. System (3) (or (4)) is called a regular if IðT1; . . . ; TnÞ– 0.

The importance of concept of the regularity will be shown below.
We return to system (2). Fulfill the following identical transformations:

xj 1� xj

kj

� �
� kj

4
� xjffiffiffiffi

kj

p �
ffiffiffiffi
kj

p
2

 !2

; j ¼ 1; . . . ;n:

Introduce new variables yj under the formulas:

yj ¼
xjffiffiffiffi
kj

p �
ffiffiffiffi
kj

p
2

; j ¼ 1; . . . ;n:

Then in variables yj system (2) can be represented in the form

_yðtÞ ¼ b� Cy2ðtÞ �

_y1ðtÞ ¼ b1 �
Xn

j¼1

c1jy2
j ðtÞ;

� � � � � � � � � � � � � � � � � � � � � ;

_ynðtÞ ¼ bn �
Xn

j¼1

cnjy2
j ðtÞ;

8>>>>>><
>>>>>>:

ð6Þ

where y ¼ ðy1; . . . ; ynÞ
T
; y2 ¼ ðy2

1; . . . ; y2
nÞ

T ,

b ¼
b1

..

.

bn

0
BB@

1
CCA ¼

ðk1Þ�1=2
=4 . . . 0

..

. . .
. ..

.

0 . . . ðknÞ�1=2
=4

0
BB@

1
CCA �

a11 . . . a1n

..

. . .
. ..

.

an1 . . . ann

0
BB@

1
CCA �

k1

..

.

kn

0
BB@

1
CCA;

C ¼
ðk1Þ�1=2

. . . 0

..

. . .
. ..

.

0 . . . ðknÞ�1=2

0
BB@

1
CCA �

a11 . . . a1n

..

. . .
. ..

.

an1 . . . ann

0
BB@

1
CCA:

Alongside with system (6), we will consider the system of ordinary quadratic differential equations

_yðtÞ ¼ �Cy2ðtÞ: ð7Þ

Introduce the matrices:

Ti ¼
0 . . . 0 c1i 0 . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 . . . 0 cni 0 . . . 0

0
BB@

1
CCA 2 Rn�n; i ¼ 1; . . . ;n:

Lemma 1. If IðT1; . . . ; TnÞ – 0, then det C – 0.

Proof. An elementary check shows that the following equality takes place:X
16j1 ;...;jm6n

ð�1ÞrTj1 Tj2 � . . . � Tjm ¼ C � FðCÞ;

where FðCÞ ¼ ðfijðCÞÞ is ðn� nÞ-matrix, coefficients of which depend on coefficients of the matrix C; fiiðCÞ ¼ 0; i ¼ 1; . . . ;n.
Hence IðT1; . . . ; TnÞ ¼ det C � det FðCÞ and if IðT1; . . . ; TnÞ – 0, then det C – 0 . h
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For example, for n ¼ 2 IðT1; T2Þ ¼ c12c21 det C. If n ¼ 3, then IðT1; T2; T3Þ ¼ ðc12c23c31Þ2 � ðc13c21c32Þ2
� �

det C.
Let system (7) be the regular. Using Lemma 1, we transform this system in the following way. Introduce variables

w1; . . . ;wn under the formula

w ¼
w1

..

.

wn

0
BB@

1
CCA ¼ C�1 �

y1

..

.

yn

0
BB@

1
CCA � C�1y:

Then system (6) can be written as

_wðtÞ ¼ C�1b�
ðc11w1ðtÞ þ � � � þ c1nwnðtÞÞ2

..

.

ðcn1w1ðtÞ þ � � � þ cnnwnðtÞÞ2

0
BB@

1
CCA ¼ 1

4

k1

..

.

kn

0
BB@

1
CCA�

ðd11w1ðtÞ þ � � � þ d1nwnðtÞÞ2

..

.

ðdn1w1ðtÞ þ � � � þ dnnwnðtÞÞ2

0
BB@

1
CCA; ð8Þ

where dij ¼ aij=
ffiffiffiffi
ki

p
and system (7) can be written as

_wðtÞ ¼ �
ðd11w1ðtÞ þ � � � þ d1nwnðtÞÞ2

..

.

ðdn1w1ðtÞ þ � � � þ dnnwnðtÞÞ2

0
BB@

1
CCA: ð9Þ

Definition 2. We call (3) a regular R-system if:

(1) system (3) is the regular;
(2) there exists a real nonsingular matrix S ¼ ðsijÞ 2 Rn�n such that the form xTðsi1B1 þ � � � þ sinBnÞx is negative for all

i ¼ 1; . . . ;n.

Let (3) be a regular R-system. Then there is a nonsingular matrix S 2 Rn�n such that variables
wðtÞ ¼ S�1xðtÞ ¼ ðw1ðtÞ; . . . ;wnðtÞÞT satisfy by equation

_w1ðtÞ
..
.

_wnðtÞ

0
BB@

1
CCA ¼ S�1

ðSwðtÞÞT B1ðSwðtÞÞ
..
.

ðSwðtÞÞT BnðSwðtÞÞ

0
BB@

1
CCA ¼ �

ðwðtÞÞT D1wðtÞ
..
.

ðwðtÞÞT DnwðtÞ

0
BB@

1
CCA; ð10Þ

where Di � Rn�n are symmetrical matrices and all quadratic forms �wT Diw, i ¼ 1; . . . ;n, are negative. (Thus, system (9) is the
regular R-system.)

Notice that by small perturbations of the matrix S it is possible to obtain that for the vector of initial data ðw10; . . . ;wn0ÞT of
system (10) the condition wn0 – 0 will be fulfilled. In addition, the regularity of system (10) will be preserved. Further, we
will consider that wn0 – 0.

Let z1 ¼ w1=wn; . . . ; zn�1 ¼ wn�1=wn. Then from (10) it follows that

_z1ðtÞ
..
.

_zn�1ðtÞ
_wnðtÞ

0
BBBB@

1
CCCCA ¼

_w1wn�w1 _wn

w2
n

� G1ðz1ðtÞ; . . . ; zn�1ðtÞÞwnðtÞ
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

_wn�1wn�wn�1 _wn

w2
n

� Gn�1ðz1ðtÞ; . . . ; zn�1ðtÞÞwnðtÞ

Gnðz1ðtÞ; . . . ; zn�1ðtÞÞw2
nðtÞ

0
BBBB@

1
CCCCA; ð11Þ

where Giðz1; . . . ; zn�1Þ are inhomogeneous cubic functions and Gnðz1; . . . ; zn�1Þ is an inhomogeneous negative quadratic func-
tion with respect to z1; . . . ; zn�1.

Consider the following equations

G1ðz1; . . . ; zn�1Þ � z1 � ðzT ;1ÞDnðzT ;1ÞT � ðzT ;1ÞD1ðzT ;1ÞT ¼ 0;
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
Gn�1ðz1; . . . ; zn�1Þ � zn�1 � ðzT ;1ÞDnðzT ;1ÞT � ðzT ;1ÞDn�1ðzT ;1ÞT ¼ 0:

8><
>: ð12Þ

Denote by z�1; . . . ; z�l 2 Rn�1;1 6 l 6 2n � 1, all real solutions of system (12). (It is clear that any real solution of system (12) is
positive.) It is known [14,15] that system (12) in the regular case has exactly 2n � 1 (it is odd number) complex solutions.
Consequently the real solutions exist.
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Notice that system (12) is equivalent to the algebraic system

w1 ¼ �wT D1w
� � � � � � � � � � � � � � �
wn ¼ �wT Dnw

8><
>: ð13Þ

in such sense: any nonzero solution w� of system (13) is connected with the solution z� of system (12) by the formula

w� ¼ ðw�1; . . . ;w�n�1;w
�
nÞ ¼ w�n � ðz�T ;1Þ ¼ w�n � ðz�1; . . . ; z�n�1;1Þ; w�n – 0:

Let W � Cn be an algebraic variety of all solutions of system (13) [17].

Definition 3. System (13) is called complete if degCW ¼ degCL, where L � Rn is the variety of all solutions of system (13), for
which it is supposed that all elements of matrices B1; . . . ;Bn are not numbers but independent parameters.

In [14,15] are proved that the regular system (13) is complete and degCW ¼ 2n � 1. Exactly on this fact all further reason-
ings are built.

For example, let’s consider system (7) for n ¼ 2. If IðT1; T2Þ – 0, then degCW ¼ 22 � 1 ¼ 3; if IðT1; T2Þ ¼ 0, then in this case
degCW 6 2.

3. An asymptotic stability cone of homogeneous quadratic system

Definition 4. A closed domain H � Rn containing the origin is called a cone if for all x 2 H and all k P 0 we have kx 2 H.
(Generators of this cone are the rays starting from the origin.) A cone is said to be trivial if there exists a proper subspace
D � Rn such that D# H.

Denote by xðx0; tÞ the solution of system (3) with a vector of initial values x0.

Definition 5. The trivial solution x � 0 of system (3) is said to be conditionally asymptotically stable with respect to the
nontrivial cone H if for all x0 2 H the following conditions hold:

(a) kxðx0; tÞk < M for all t P 0, where M > 0 is some constant;
(b) limt!1kxðx0; tÞk ¼ 0.

In this case, H is called an asymptotic stability cone.

We designate by Rnþ an orthant nonnegative coordinates (it is a cone) in the space Rn and we also designate by K � Rnþ

an asymptotic stability cone of system (10). (A vertex of this cone coincides with original of coordinates.)
Systems (10) were studied in [14–16]. However the geometry of the cone K was not investigated. The present work is

called to make clear a structure of this cone. Besides, it will be shown applications obtained results to system (2).
Let Pi be a set all real solutions of equation Giðz1; . . . ; zn�1Þ ¼ 0; i 2 f1; . . . ;n� 1g. (This is a surface in Rn�1.).
Consider a decomposition of the space Rn�1 by surfaces P1; . . . ;Pn�1 on regions Ri; i ¼ 1; . . . ; p.
Denote by R1 ¼ R1 [ S1; . . . ;Rp ¼ Rp [ Sp closed regions in Rn�1 of the same dimension n� 1 (Fig. 1). The boundaries

S1,. . .,Sp of regions R1,. . .,Rp are pieces of surfaces P1; . . . ;Pn�1 which describe by Eqs. (12). Thus, here boundaries
Si; i ¼ 1; . . . ; p, are ðn� 2Þ-dimensional varieties. Note that the number p of these boundaries generally speaking is more than
number n� 1 of Eqs. (12); it means that each of Eqs. (12) can represent a few boundaries.

Without loss of generality, we can consider that

Rn�1 ¼ R1 [ � � � [ Rp and if i – j; then Ri \ Rj ¼ ;:

It is clear that for any real solution z�k; k 2 f1; . . . ; lg, of system (12) there exists exactly r ¼ 2n�1
6 p regions

Rj1 ; . . . ;Rjr ; j1; . . . jr 2 f1; . . . ; pg, such that z�k ¼ Rj1 \ � � � \ Rjr .

Σ1

Σ2

Σ3

Σ4
Σ5 Σ6

Σ7 Σ8

Σ9

Σ10

Σ11 Σ12

z∗k

P1 P1

P2

P2

Fig. 1. The graphic interpretation of the region R for n ¼ 3.
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Denote by R ¼ Rj1 [ � � � [ Rjr . (Generally speaking the region R may be unbounded.) For example, let
n ¼ 3; p ¼ 12; r ¼ 2n�1 ¼ 4; j1 ¼ 4; j2 ¼ 5; j3 ¼ 8, and j4 ¼ 9. Then for the point z�k we have

R ¼ R4 [ R5 [ R8 [ R9:

In Fig. 1 it is shown the typical placement of regions Ri; i ¼ 1; . . . ;12, in the case n ¼ 3. (Here R is bounded.)
There are two lines P1 and P2 which form the boundaries of the region Ri; i ¼ 1; . . . ;12. For example, the boundary of the

region R8 composes from 4 pieces of lines P1 and P2.
Let Rnþ be an orthant of nonnegative coordinates. Denote by K ¼ fxR; xg � Rnþ a cone that has been constructed for the

region R with a vertex in original of coordinates. (Here x is passing the set of nonnegative numbers.)
Geometrically the cone K can be defined as follows.
In the system coordinates ðw1; . . . ;wnÞwe construct a plane wn ¼ 1 in parallel by the coordinate plane ðw1; . . . ;wn�1Þ. Then

the region R will represent a section of the cone K by the plane wn ¼ 1. Through every point ðz1; . . . ; zn�1Þ ¼ ðw1; . . . ;wn�1Þ of
the region R we lead a ray connecting this point with origin of coordinates. The set of all these rays forms the cone K . (Any
point of K is given by coordinates ðxz1; . . . ; xzn�1; xÞ, where x P 0 and ðz1; . . . ; zn�1Þ 2 R.)

Lemma 2. Let system (10) be a regular R-system. If the region R is bounded, then K is an invariant cone with respect to system
(10) and for any vector of initial values wð0Þ 2 K the solution wðt;wð0ÞÞ of system (10) is bounded.

Proof. We show that if z0 ¼ zð0Þ 2 R, then 8t > 0 zðtÞ 2 R. From here it will be follows that if w0 ¼ wð0Þ 2 K, then 8t > 0
wðtÞ 2 K.

Let wTðtÞ ¼ ðw1ðtÞ; . . . ;wnðtÞÞ be a bounded solution of system (10) such that limt!1wðtÞ ¼ 0. Then using L’Hospital’s rule
we will have

z�i ¼ lim
t!1

wiðtÞ
wnðtÞ

¼ lim
t!1

_wiðtÞ
_wnðtÞ

¼ lim
t!1

wðtÞT DiwðtÞ
wðtÞT DnwðtÞ

; i ¼ 1; . . . ;n� 1:

Thus, if limt!1wiðtÞ ¼ 0, then z�T ¼ ðz�1; . . . ; z�n�1Þ is a root of system (12).
To investigate system (10), we will use the iterative Euler method:

wjþ1 ¼ wj �

wT
j D1wj

..

.

wT
j Dnwj

0
BB@

1
CCADt; j ¼ 0;1; . . . ; ð14Þ

where w0 ¼ ðw10; . . . ;wn0ÞT and Dt > 0 is a integration step.
Remind that wn0 – 0. Then the vector

z0 ¼ ðz10; . . . ; zn�1;0ÞT ¼ ðw10=wn0; . . . ;wn�1;0=wn0ÞT

is correctly defined. Let us apply also the iterative Euler method to system (11):

zjþ1 ¼ zj þ

G1ðz1j; . . . ; zn�1;jÞwnj

..

.

Gn�1ðz1j; . . . ; zn�1;jÞwnj

0
BB@

1
CCADt;

wn;jþ1 ¼ wnj �wT
j DnwjDt; j ¼ 0;1; . . . :

8>>>>><
>>>>>:

ð15Þ

Note that for the asymptotic stability of the trivial solution of system (11) it is necessary that the condition 8i wi0 > 0 must
be fulfilled.

Really, let wn0 < 0 and limj!1wj ¼ w�, where w�k k <1. Then from (14) it follows that

ðw�ÞT D1w� ¼ 0; . . . ; ðw�ÞT Dnw� ¼ 0:

It means that forms wT D1w; . . . ;wT Dnw are linearly dependent (system (10) is not regular). We got the contradiction with
Definition 2. Consequently it should be either w�k k ¼ 0 or w�k k ¼ 1. Its obvious that the case w�k k ¼ 1 always takes place
if there exists a integer k 2 1; . . . ;nf g such that wk0 < 0. Thus, for the convergence of process (14) it must be 8i 2 1; . . . ;nf g
wi0 P 0.

Now if wn0 ¼ 0, then we have either

(a1) �wT
j Dnwj < 0

or

(a2) 8iwni ¼ wn0 ¼ 0; and wT
j Dnwj ¼ 0.
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It is clear that for some iteration under the number k > 0 case (a1) reduces to the inequality wnk < 0 and therefore, we
again have limi!1wni ¼ �1. The case (a2) means that the vector of solutions wðtÞ ¼ ðw1ðtÞ; . . . ;wnðtÞ � 0ÞT must belong to
some ðn� 1Þ-dimensional hyperplane in Rn which is defined by the equation ðw1; . . . ;wn�1ÞDðw1; . . . ;wn�1ÞT ¼ 0, where the
matrix D 2 Rðn�1Þ�ðn�1Þ is symmetrical. It means that in system (10) there are invariant subspaces and the last equation of
system (10) has the form: _wnðtÞ ¼ �ðdn1w1 þ � � � þ dnnwnÞwn. It means the irregularity of system (10). As a result we again
reduces to the contradiction.

Thus, 8i 2 f1; . . . ;ng, we have to have wi0 > 0. Then the vector z0 ¼ ðw10=wn0; . . . ;wn�1;0=wn0ÞT 2 Rn�1, all coordinates of
which are positive numbers, can be constructed.

According to (15) we define vectors

GðziÞ ¼ ðG1ðz1i; . . . ; zn�1;iÞ; . . . ;Gn�1ðz1i; . . . ; zn�1;iÞÞT 2 Rn�1; i ¼ 0;1; . . .

Let sets Rþ and R� be given by formulas

Rþ ¼ R1 [ � � � [ Rk;R� ¼ Rkþ1 [ � � � [ Rr ;

where without loss of generality we can consider that in domains R1; . . . ;Rk

G1ðz1; . . . ; zn�1ÞP 0 ð16Þ

and in domains Rkþ1; . . . ;Rr

G1ðz1; . . . ; zn�1Þ 6 0: ð17Þ

(Thus, R ¼ Rþ [ R�;Rþ \ R� ¼ ;.)
By virtue of boundedness of domains Rþ and R�, we can define the finite magnitudes

G1 max ¼max
Rþ

G1ðz1; . . . ; zn�1Þ > 0;G1 min ¼min
R�

G1ðz1; . . . ; zn�1Þ < 0:

Besides, we have

Giðz1; . . . ; zn�1ÞjPj
¼ 0; i ¼ 1; . . . ;n� 1: ð18Þ

(b) Assume that the point z0 2 Rþ is an initial value of the iterative process z0; . . . ; zi; . . ., which is defined by formulas (15).

Above it was shown that for convergence of iterative process (15) it is necessary that wni > 0. We will assume that the last
condition takes place. Then for the first coordinate of the vector zi, we have z1i � z1;i�1 > 0. Thus, we obtain the monotone
increasing sequence z10 < z11 < � � � < z1m < � � � and for small enough Dt, we have 0 < z1m � z1;m�1

< wn;m�1G1 maxDt < wn0G1 maxDt.

(c) Now suppose that the point z0 2 R� be an initial value of the iterative process z0; . . . ; zi; . . . which is defined by formu-
las (15). In this case we have z1i � z1;i�1 < 0 and the sequence z10 > z11 > � � � > z1k > � � � will be monotone decreasing
and for small enough Dt we have z1;k�1 � z1k < �wn;k�1G1 minDt < �wn0G1 minDt > 0 (remind that wnj > 0).

Regions R� and Rþ are defined by inequalities (16) and (17). By analogy with inequalities (16) and (17), the inequalities
Giðz1; . . . ; zn�1Þ 6 0 (and Giðz1; . . . ; zn�1ÞP 0) define regions Riþ � R (and Ri� � R) which are analogously by the regions R�
and Rþ. (Thus, R ¼ Riþ [ Ri�;Riþ \ Ri� ¼ ;.) Therefore as in items (b) and (c), we can prove that 8q 2 f1; . . . ;n� 1g the
sequence of coordinates with number q zq0; zq1; . . . ; zqi; . . . for the vectors z0; z1; . . . ; zi; . . . is monotone and bounded. From
here and (18) it follows that

lim
i!1

inf
z2Pj

kzi � zk ¼ 0; j ¼ 1; . . . ;n� 1:

Hence 8i all coordinates of the vector zi are positive, the sequence z0; z1; . . . ; zi; . . . 2 R, and limi!1zi ¼ P1 \ � � � \ Pn�1 ¼ z�k.
Thus, the domain R (which is a closed set) is an invariant set. Besides, for small enough Dt > 0 and Dt ! 0, we have
w0; . . . ;wj; . . . 2 K. Therefore the set K is invariant. h

Lemma 3. Let system (10) be a regular R-system. If the region R is bounded, then process (15) converges to the point z�k; otherwise
this process diverges.

Proof. For n ¼ 2 the first equation of system (11) has the form _z1ðtÞ ¼ ðg11z3
1 þ � � � þ g14Þw2ðtÞ, where g11; . . . ; g14 are real and

g11 > 0. Then system (12) consists on one equation Gðz1Þ ¼ g11z3
1 þ � � � þ g14.

Assume that the equation Gðz1Þ ¼ 0 has three real roots z�1 < z�2 < z�3. Then, Gðz1Þ ¼ g11ðz1 � z�1Þðz1 � z�2Þðz1 � z�3Þ and
Jacobi’s matrix of the function Gðz1Þ is Lðz�2Þ ¼ g11ðz�2 � z�1Þðz�2 � z�3Þ < 0. Thus, the point z�2 is a stable and at w20 > 0 process
(15) is starting from bounded region ðz�1; z�3Þ converges (Fig. 2).
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Now we will assume that Eq. (12) has only one real root z�1. Then, Gðz1Þ ¼ g11ðz1 � z�1Þðz2
1 þ pz1 þ qÞ and the polynomial

z2
1 þ pz1 þ q does not have real roots. From here it follows that Lðz�1Þ ¼ g11 � ððz�1Þ

2 þ pz�1 þ qÞ > 0. Therefore the point z�1 is
unstable. It means that at w20 > 0 iterative process (15) is starting from the unbounded region ð�1; z�1Þ [ ðz�1;1Þ will
divergence (Fig. 3).

Now let n > 2. That process (15) converges to the point z�k 2 R for the bounded region R it was proved in Lemma 2.
Introduce an n-dimensional real space V with coordinate axes z1; . . . ; zn�1; g. Let us consider an n-dimensional variety G � V

which defined by equations

g ¼ G1ðz1; . . . ; zn�1Þ; . . . ; g ¼ Gn�1ðz1; . . . ; zn�1Þ; ð19Þ

where deg Giðz1; . . . ; zn�1Þ ¼ 3 with respect to zi; i ¼ 1; . . . ;n� 1. (It is clear that a projection of G on the subspace g ¼ 0 con-
tains the boundary of region R .)

Denote by H any 2-dimensional plane passing through the point z�k ¼ ðz�k1; . . . ; z�k;n�1Þ
T ; k 2 f1; . . . ; lg; l 6 2n � 1, which is

parallel by the axis g. Let

z1 � z�k1

p1
¼ z2 � z�k2

p2
¼ � � � ¼

zn�1 � z�k;n�1

pn�1
; ð20Þ

be a system of equations generating this plane (here p1; p2; . . . ; pn�1 are real parameters).
From system (20) it can obtained such equations:

z1 ¼ q1ðzjÞ; . . . ; zj�1 ¼ qj�1ðzjÞ; zjþ1 ¼ qjþ1ðzjÞ; . . . ; zn�1 ¼ qn�1ðzjÞ; ð21Þ

where q1ðzjÞ; . . . ; qn�1ðzjÞ are linear functions.
Intersect the variety G by the plane H. System (19) consists on cubic equations. Therefore a projection of the intersection

of G on coordinate plane ðz1; gÞ will be presented by the cubic curve g ¼ G1ðz1; . . . ; qn�1ðz1ÞÞ � b11ðp1; . . . ; pn�1Þz3
1

þb12ðp1; . . . ; pn�1Þz2
1 þ � � � þ b14ðp1; . . . ; pn�1Þ, where b11ðp1; . . . ; pn�1Þ > 0.

Similarly, using the system Eqs. (21), we will obtain the projections g ¼ bi1ðp1; . . . ; pn�1Þz3
j þ bi2ðp1; . . . ; pn�1Þz2

j þ � � � þ
bi4ðp1; . . . ; pn�1Þ of the variety G on the coordinate plane ðzj; gÞ; bi1ðp1; . . . ; pn�1Þ > 0; i ¼ 2; . . . ;n� 1; j ¼ 1; . . . ;n� 1.

z1

g

1

z2*z1* z3*

Fig. 2. The region R ¼ ½z�1; z�3	.

z1

g

1

z1*

Fig. 3. The region R ¼ z�1 (the point z�1 is unstable).

z1

g

g= i 1

a

g= j 1 bzk*

Fig. 4. The intersection of the region G by the plane H in case (d1).
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Generally there exist two forms of these projections.

(d1) For some k there exist real parameters p1; . . . ; pn�1 such that 8i; j 2 f1; . . . ;n� 1g the equation
g ¼ bi1ðp1; . . . ; pn�1Þz3

j þ bi2ðp1; . . . ; pn�1Þz2
j þ � � � þ bi4ðp1; . . . ; pn�1Þ ¼ 0 has three real roots (Fig. 4):

In this case the projection R on any plane ðzj; gÞ (for example ðz1; gÞ) is equal
Tn
i¼1
½z�i1; z�i3	 ¼ ½a; b	– ;. Therefore from Fig. 4 it

follows that if an initial point z0 2 ða; z�kÞ � H or z0 2 ðz�k; bÞ � H, then the iterative process (15) converges to the point z�k.
Thus, if the region R is bounded, then process (15) converges.

(d2) For any real parameters p1; . . . ; pn�1;8k, and 8i 2 f1; . . . ;n� 1g at least one of equations
g ¼ bi1ðp1; . . . ; pn�1Þz3

j þ bi2ðp1; . . . ; pn�1Þz2
j þ � � � þ bi4ðp1; . . . ; pn�1Þ ¼ 0 has only one real root (Fig. 5):

In this case R ¼ z�k. Therefore from Fig. 5 it follows that if an initial point z0 2 ð�1; z�kÞ � H, then in the iterative process
(15), we have limi!1zi ¼ �1. If z0 2 ðz�k;1Þ � H, then in the iterative process (15), we have limi!1zi ¼ 1 and the iterative
process (15) diverges. h

Theorem 1. The regular R-system (10) has the nontrivial asymptotic stability cone K if and only if the region R is bounded. In
addition, if the number l of positive solutions of system (12) is exactly equal 2n � 1, then K always there exists.

Proof. Sufficiency. Let the region R ¼ Rj1 [ . . . [ Rjr be bounded. The regions Rj1 ; . . . ;Rjr have a unique point of intersection z�k.
Hence from Lemmas 2 and 3 it follows that z�k is attractor. This fact completes the proof of sufficiency.

Necessity. Assume that the region R is unbounded. Then from Lemma 3 it follows that at least for one coordinate zi0

ði 2 f1; . . . ;n� 1gÞ of the vector z0 2 R the case (d2) takes place. Therefore for any vector of initial values z0 the iterative
process (15) diverges. In other words, all coordinates of vectors w0; . . . ;wi; . . . in the iterative process (14) decrease
unbounded: 8j 2 f1; . . . ;ng limi!1wij ¼ �1. It completes the proof of necessity.

Now let l ¼ 2n � 1. Suppose that for any positive solution z�i ; i ¼ 1; . . . ; l, of system (12) the region R is unbounded. Then
from the proof of Lemma 3 it follows that the case (d2) takes place. It means that l < 2n � 1. The obtained contradiction
shows that for some k 2 f1; . . . ;2n � 1g the region R have to be bounded. This completes the proof of Theorem 1. h

For system (11) we define the system

_zðtÞ ¼ GðzðtÞÞðG ¼ ðG1ðz1; . . . ; zn�1Þ; . . . ;Gn�1ðz1; . . . ; zn�1ÞÞTÞ; ð22Þ

where G : Rn�1 ! Rn�1 is the same nonlinear operator that in (11).
Let

LðzÞ ¼ @GiðzÞ
@zj

� �
2 Rðn�1Þ�ðn�1Þ; i; j ¼ 1; . . . ;n� 1;

be the Jacobi matrix of the vector-function G. Denote by z�1; . . . ; z�l 2 Rn�1; 1 6 l 6 2n � 1, all real solutions of system (12).

Theorem 2. The regular R-system (10) has the nontrivial asymptotic stability cone K if and only if exactly one matrix from
matrices Lðz�i Þ; i ¼ 1; . . . ; l, is Hurwitz.

Proof. Necessity follows from the proof of Theorem 1. For system (22) an attractor point is the point z�k. Therefore the matrix
Lðz�kÞ have to be Hurwitz. (See Theorem 2 [15].)

Sufficiency. Let the matrix Lðz�kÞ be Hurwitz. We will take advantage of the proof of Lemma 3. Introduce the linear space V

and the variety G � V. Then the projection of G onto subspace g ¼ 0 is R and z�k 2 R. Intersect the variety G by the plane H.
Since the matrix Lðz�kÞ is Hurwitz, then the point z�k is an attractor. Therefore a situation represented on Fig. 4 have to takes
place (see case (d1)). It means that K is an asymptotic stability cone. h

z1

g
g= i 1

g= j 1

zk*

Fig. 5. The intersection of the region G by the plane H in case (d2).
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Remark. It is clear that if Theorems 1 and 2 are valid for the variables z1; . . . ; zn�1, then they will be valid for variables
z1 ¼ w1=wi; . . . ; zi�1 ¼ wi�1=wi, zi ¼ wiþ1=wi; . . . ; zn�1 ¼ wn=wi; i ¼ 1; . . . ;n� 1.

4. Examples

In this section the conditions of Theorem 1 are fulfilled.

Remark. Suppose that n ¼ 2 and for a regular system (9) system (12) has three real solutions. Then this condition is
necessity and sufficient for existence an asymptotic stability cone (see Fig. 6).

4.1. Let n ¼ 2 and system (9) is represented as

_w1 ¼ �ð�w1 þ 0:8w2Þ2;
_w2 ¼ �ð0:8w1 �w2Þ2:

(
ð23Þ

4.2. Let n ¼ 3 and system (9) has the form [15]

_w1 ¼ �ð�2w1 þw2 þw3Þ2;
_w2 ¼ �ð2w1 � 3w2 þw3Þ2;
_w3 ¼ �ðw1 þw2 � 3w3Þ2:

8><
>: ð24Þ

In Fig. 7 the digits 2, 3, 4, 6, and 7 represent respectively the roots z�2; z
�
3; z

�
4; z

�
6, and z�7 of system (12). (The roots z�1, and z�5 are

not included in the graph.) The cone K is shown on Fig. 8.

5. Stability cones for inhomogeneous systems

The main result of this section contains in the following theorem.

Theorem 3. Let K be the nontrivial asymptotic stability cone for the regular system (9) and let the vector k ¼ ðk1; . . . ; knÞT 2 K.
Then for system (8) K is a stability cone.

Proof. Again apply the iterative Euler method for the investigation of solutions of system (8):

wiþ1 ¼ wi þ
1
4

k � Dt �
ðc11w1i þ � � � þ c1nwniÞ2

..

.

ðcn1w1i þ � � � þ cnnwniÞ2

0
BB@

1
CCA � Dt; i ¼ 0;1; . . . ; ð25Þ

where w0 2 K is a vector of initial values; Dt > 0 is a sufficiently small number.
According to the conditions of Theorem 3 K is the nontrivial asymptotic stability cone for system (9). Then from condition

w0 2 K it follows that the vector

0

z11

1

2

2

3

3

K

w1

w2

z2 z3

Fig. 6. The asymptotic stability cone K and the domain of asymptotic stability R for system (23).
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h1 ¼ w0 �
ðc11w10 þ � � � þ c1nwn0Þ2

..

.

ðcn1w10 þ � � � þ cnnwn0Þ2

0
BB@

1
CCA � Dt 2 K:

Then by virtue of the condition k 2 K for a sufficiently small number Dt > 0, we have w1 ¼ h1 þ k � ðDtÞ=4 2 K.
From the iterative Euler method (25) for i ¼ 1;2; . . ., we derive that 8i wi 2 K. In other words, the cone K is an invariant

set for system (8) (if w0 2 K, then 8t > 0wðtÞ 2 K).
Now we will show that K is a stability cone. Since 8t P 0wðtÞ 2 K � Rnþ, then solutions wiðtÞ; i ¼ 1; . . . ;n are bounded

below by number 0. Hence we have wiðtÞP 0; i ¼ 1; . . . ;n. Besides, from condition 8t P 0wðtÞ 2 K it also follows that there
does not exist a point a > 0 such that limt!akwðtÞk ¼ 1.

Suppose that 9j 2 f1; . . . ;ng such that limt!1wjðtÞ ¼ 1 (the solution wjðtÞ is unbounded). Then by virtue of the regularity
system (8), 8i 2 f1; . . . ;ng limt!1wiðtÞ ¼ 1 (all solutions are unbounded). The last limit equality is possible only in the case if
9t� > 0 such that for t > t�

0:25ki � ðci1w1ðtÞ þ � � � þ cinwnðtÞÞ2 P 0; i ¼ 1; . . . ;n: ð26Þ

Summing of inequalities (26), we get (at t > t�) the inequality

Xn

i¼1

Xn

j¼1

pijwiðtÞwjðtÞ 6 d; ð27Þ

where d > 0.

Fig. 7. The domain of asymptotic stability R for system (24).

Fig. 8. The asymptotic stability cone K for system (24) (the cross-section of this cone is shown in Fig. 7).
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Further, by virtue of regularity of system (8), the quadratic form located in the left-hand side of inequality (27) is positive
definite. Consequently, at t > t� all solutions of system (8), it is situated in a closed ellipsoid which is defined by inequality
(27). Therefore all these solutions are bounded. It contradiction completes the proof. (It should be said that if all solutions
wiðtÞ are limited, then coordinates ðw�1; . . . ;w�nÞ of a limit point are solutions of the system of algebraic equations:
0:25ki � ðci1w1 þ � � � þ cinwnÞ2 ¼ 0; i ¼ 1; . . . ;n:Þ h

Remark. Theorem 3 is trivially generalized on systems (10).
We will return to the initial base of the space Rn. Then system (8) will return to system (2) and cone K will return to some

cone KN , the vertex of which already does not coincide with origin of coordinates. From the proof given above it follows that
this cone will be an invariant stability cone for system (2). Notice that the vertex of cone KN is the point N ¼ ðk1=2; . . . ; kn=2Þ.

5.1. Consider the following example. Assume that system (2) has the form

_x1 ¼ x1ð1� x1Þ � 0:8x2ð1� x2Þ;
_x2 ¼ �0:8x1ð1� x1Þ þ x2ð1� x2Þ:

�
ð28Þ

For system (28) we write system (8) as

_w1 ¼ 0:25� ðw1 � 0:8w2Þ2; _w2 ¼ 0:25� ð�0:8w1 þw2Þ2: ð29Þ

On next figures typical phase portraits and stability cones are represented. For system (28) the vertex of the stability cone is
the point Nð0:5; 0:5Þ (Fig. 9), and for system (29) the vertex of the stability cone coincides with origin of coordinates. We
mark that the asymptotic stability cone for the homogeneous system (23) (Fig. 6) completely coincides with the cone for
system (29) (Fig. 10).

5.2. Consider the following system

_x1 ¼ 7x1ð1� x1=k1Þ þ 6x2ð1� x2=k2Þ;
_x2 ¼ 1x1ð1� x1=k1Þ þ 12x2ð1� x2=k2Þ:

�
ð30Þ

Here the parameters k1; k2 are supposed by unknown controls.
For system (30) system (8) has the form

_w1 ¼ 0:25k1 � ð7w1 þ 6w2Þ2=k1; _w2 ¼ 0:25k2 � ðw1 þ 12w2Þ2=k2:

For system (30) Eq. (12) may be written as

k � zðzþ 12Þ2 � ð7zþ 6Þ2 ¼ 0; k ¼ k1=k2; z ¼ w1=w2: ð31Þ

We will gradually increase k beginning with 0. A process is stopped, when Eq. (31) will be to have three positive roots. In
accordance with Theorem 1 it means that at given k system (30) has the asymptotic stability cone.

Here k ¼ 1:2. Then we can take k1 ¼ 6; k2 ¼ 5. In this case Eq. (31) has three positive roots: z1 ¼ 0:45; z2 ¼ 7:50; z3 ¼ 8:88.
(We chose k ¼ 1:2 so that z1 < k < z3. In this case the conditions of Theorem 3 are fulfilled.).

0

0.5

0.5 1

1

1x

2x

Fig. 9. The phase portrait and the stability cone for system (28).
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Let us get back to variables x1; x2. Then boundaries of the stability cone (it are rays) are defined by equations

x2 ¼
a21z1 þ a22

a11z1 þ a12
x1 �

a21z1 þ a22

a11z1 þ a12
þ k2

2
¼ 1:36x1 � 1:58;

x2 ¼
a21z3 þ a22

a11z3 þ a12
x1 �

a21z3 þ a22

a11z3 þ a12
þ k2

2
¼ 0:31x1 þ 1:57:

The vertex of this cone is the point N ¼ ð3; 2:5Þ (see Fig. 11).

6. Conclusion

The generalization of results of paper [15], which allowed not only to establish the existence of stability cones for some
types of the quadratic systems, but also describe their forms, is offered in the present paper. In addition, Theorems 1–3 can
be used not only for analysis tasks, but also and for design problems. This fact was used for research of model (2). In this
model magnitudes aij describe the biological features of sub-populations. At the same time magnitudes ki determining sizes
of ecological niches can be considered as controls. In Example 4.2 it is shown as possible to construct the constant controls
ki ¼ fiðaijÞ; i; j ¼ 1;2, in order that to provide the coexistence of biological sub-populations x1; x2 are described by model (2).
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