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Abstract

The first order loss function and its complementary function are extensively used
in practical settings. When the random variable of interest is normally distributed,
the first order loss function can be easily expressed in terms of the standard normal
cumulative distribution and probability density function. However, the standard
normal cumulative distribution does not admit a closed form solution and cannot
be easily linearised. Several works in the literature discuss approximations for either
the standard normal cumulative distribution or the first order loss function and their
inverse. However, a comprehensive study on piecewise linear upper and lower bounds
for the first order loss function is still missing. In this work, we initially summarise
a number of distribution independent results for the first order loss function and its
complementary function. We then extend this discussion by focusing first on ran-
dom variable featuring a symmetric distribution, and then on normally distributed
random variables. For the latter, we develop effective piecewise linear upper and
lower bounds that can be immediately embedded in MILP models. These linearisa-
tions rely on constant parameters that are independent of the mean and standard
deviation of the normal distribution of interest. We finally discuss how to compute
optimal linearisation parameters that minimise the maximum approximation error.
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1 Introduction

Consider a random variable ω and a scalar variable x. The first order loss function is
defined as

L(x, ω) = E[max(ω − x, 0)], (1)

where E denotes the expected value. The complementary first order loss function is
defined as

L̂(x, ω) = E[max(x− ω, 0)]. (2)

The first order loss function and its complementary function play a key role in several
application domains. In inventory control [10] it is often used to express expected in-
ventory holding or shortage costs, as well as service level measures such as the widely
adopted “fill rate”, also known as β service level [1], p. 94. In finance the first order
loss function may be employed to capture risk measures such as the so-called “condi-
tional value at risk” (see e.g. [8]). These examples illustrate possible applications of this
function. Of course, the applicability of this function goes beyond inventory theory and
finance.

Despite its importance, to the best of our knowledge a comprehensive analysis of
results concerning the first order loss function seems to be missing in the literature.
In Section 2, we first summarise a number of distribution independent results for the
first order loss function and its complementary function. We then focus on symmetric
distributions and on normal distributions; for these we discuss ad-hoc results in Section
3.

According to one of these results, the first order loss function can be expressed in
terms of the cumulative distribution function of the random variable under scrutiny. De-
pending on the probability distribution adopted, integrating this function may constitute
a challenging task. For instance, if the random variable is normally distributed, no closed
formulation exists for its cumulative distribution function. Several approximations have
been proposed in the literature, see e.g. [12, 9, 11, 3, 7, 4], which can be employed to
approximate the first order loss function. However, these approximations are generally
nonlinear and cannot be easily embedded in mixed integer linear programming (MILP)
models.

In Section 4 and 5, we introduce piecewise linear lower and upper bounds for the
first order loss function and its complementary function for the case of normally dis-
tributed random variables. These bounds are based on standard bounding techniques
from stochastic programming, i.e. Jensen’s lower bound and Edmundson-Madansky up-
per bound [6], p. 167-168. The bounds can be readily used in MILP models and do not
require instance dependent tabulations. Our linearisation strategy is based on standard
optimal linearisation coefficients computed in such a way as to minimise the maximum
approximation error, i.e. according to a minimax approach. Optimal coefficients for ap-
proximations comprising from two to eleven segments will be presented in Table 1; these
can be reused to approximate the loss function associated with any normally distributed
random variable.
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2 The first order loss function and its complementary func-

tion

Consider a continuous random variable ω with support over R, probability density func-
tion gω(x) : R → (0, 1) and cumulative distribution function Gω(x) : R → (0, 1). The
first order loss function can be rewritten as

L(x, ω) =

∫ ∞

−∞
max(t− x, 0)gω(t) dt =

∫ ∞

x
(t− x)gω(t) dt. (3)

The complementary first order loss function can be rewritten as

L̂(x, ω) =

∫ ∞

−∞
max(x− t, 0)gω(t) dt =

∫ x

−∞
(x− t)gω(t) dt. (4)

Lemma 1. The first order loss function L(x, ω) can also be expressed as

L(x, ω) =

∫ ∞

x
(1−Gω(t)) dt (5)

Proof.

L(x, ω) =

∫ ∞

x
(t− x)gω(t) dt (6)

=

∫ ∞

x
tgω(t) dt− x

∫ ∞

x
gω(t) dt (7)

the integration of ∫ ∞

x
tgω(t) dt

is a well-known integration by parts that proceeds as follows. Let u(t) = t, u′(t) = 1,
v(t) = −(1−Gω(t)), v′(t) = gω(t). Rewrite the integral as

∫ b

x
tgω(t) dt = [−t(1−Gω(t))]bx +

∫ b

x
(1−Gω(t)) dt

and take the limit since b → ∞. The product term in the integration by parts formula
converges to x(1−Gω(x)) as b→∞. We therefore take the limit to obtain the identity

∫ ∞

x
tgω(t) dt = x(1−Gω(x)) +

∫ ∞

x
(1−Gω(t)) dt

and by substituting
∫∞
x tgω(t) dt with this expression we obtain

L(x, ω) = x(1−Gω(x)) +

∫ ∞

x
(1−Gω(t)) dt − x(1−Gω(x)) (8)

=

∫ ∞

x
(1−Gω(t)) dt (9)
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The following well-known lemma is introduced, together with its proof, for complete-
ness.

Lemma 2. The complementary first order loss function L̂(x, ω) can also be expressed
as

L̂(x, ω) =

∫ x

−∞
Gω(t) dt. (10)

Proof.

L̂(x, ω) =

∫ x

−∞
(x− t)gω(t) dt (11)

= x

∫ x

−∞
gω(t) dt−

∫ x

−∞
tgω(t) dt (12)

= xGω(x)−
∫ x

−∞
tgω(t) dt (13)

= xGω(x)− xGω(x) +

∫ x

−∞
Gω(t) dt (14)

=

∫ x

−∞
Gω(t) dt (15)

There is a close relationship between the first order loss function and the comple-
mentary first order loss function.

Lemma 3. The first order loss function L(x, ω) can also be expressed as

L(x, ω) = L̂(x, ω)− (x− ω̃) (16)

where ω̃ = E[ω].

Proof.

L(x, ω) =

∫ ∞

x
(t− x)gω(t) dt (17)

=

∫ ∞

x
tgω(t) dt− x

∫ ∞

x
gω(t) dt (18)

=

∫ ∞

−∞
tgω(t) dt−

∫ x

−∞
tgω(t) dt− x

∫ ∞

x
gω(t) dt (19)

=

∫ ∞

−∞
tgω(t) dt−

∫ x

−∞
tgω(t) dt− x(1−Gω(t)) (20)

=

∫ ∞

−∞
tgω(t) dt− xGω(x) +

∫ x

−∞
Gω(t) dt− x(1−Gω(t)) (21)

=

∫ x

−∞
Gω(t) dt− (x− ω̃) (22)

= L̂(x, ω)− (x− ω̃) (23)
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Because of the relation discussed in Lemma 3, in what follows without loss of gener-
ality most of the results will be presented for the complementary first order loss function.

Another known result for the first order loss function and its complementary function
is their convexity, which we present next.

Lemma 4. L(x, ω) and L̂(x, ω) are convex in x.

Proof. We shall prove the result for L̂(x, ω). Recall that L̂(x, ω) =
∫ x
−∞Gω(t) dt. From

the fundamental theorem of integral calculus

d

dx
L̂(x, ω) = Gω(x)

and
d2

dx2
L̂(x, ω) = gω(x).

Since gω(x) is nonnegative the result follows immediately; furthermore, the proof for
L(x, ω) follows from Lemma 3 and from the fact that −x is convex.

For a random variable ω with symmetric probability density function, we introduce
the following results.

Lemma 5. If the probability density function of ω is symmetric about a mean value ω̃,
then

L(x, ω) = L̂(2ω̃ − x, ω).

Proof.

L(x, ω) =

∫ ∞

x
(1−Gω(t)) dt (24)

=

∫ ω̃−(x−ω̃)

−∞
Gω(t) dt (25)

= L̂(2ω̃ − x, ω) (26)

Lemma 6. If the probability density function of ω is symmetric about a mean value ω̃,
then

L̂(x, ω) = L̂(2ω̃ − x, ω) + (x− ω̃)

and
L(x, ω) = L(2ω̃ − x, ω)− (x− ω̃).

Proof. Follows immediately from Lemma 3 and Lemma 5.

The results presented so far are easily extended to the case in which the random
variable is discrete. In the following section we present results for the case in which the
random variable is normally distributed.
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3 The first order loss function for a normally distributed

random variable

Let ζ be a normally distributed random variable with mean µ and standard deviation
σ. Recall that the Normal probability density function is defined as

gζ(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (27)

No closed form expression exists for the cumulative distribution function

Gζ(x) =

∫ x

−∞
gζ(x) dx.

Let φ(x) be the standard Normal probability density function and Φ(x) the respective
cumulative distribution function.

We next present three known results for a normally distributed random variable: a
standardisation result in Lemma 7, and two closed form expressions for the computation
of the loss function and of its complementary function in Lemmas 8 and 9.

Lemma 7. The complementary first order loss function of ζ can be expressed in terms
of the standard Normal cumulative distribution function as

L̂(x, ζ) = σ

∫ x−µ

σ

−∞
Φ(t) dt = σL̂

(
x− µ

σ
,Z

)
, (28)

where Z is a standard Normal random variable.

Proof. Recall that the complementary first order loss function is defined as

L̂(x, ζ) =

∫ x

−∞
(x− t)gζ(t) dt.

We change the upper integration limit to

f(x) =
x− µ

σ

by noting that

f−1(y) = σy + µ,
df−1(y)

dy
= σ

it follows that

L̂(x, ζ) =

∫ f(x)

−∞
(x− f−1(t))gζ(f−1(t))

df−1(t)

dt
dt. (29)

= σ

∫ x−µ
σ

−∞
(x− σt− µ)

1

σ
φ(t) dt. (30)

= σ

∫ x−µ

σ

−∞
σ

(
x− µ

σ
− t

)
1

σ
φ(t) dt. (31)
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Lemma 8. The complementary first order loss function L̂(x, ζ) can be rewritten in
closed form as

L̂(x, ζ) = σ

(
φ

(
x− µ

σ

)
+ Φ

(
x− µ

σ

)
x− µ

σ

)

Proof. Integrate by parts Eq. 28 and observe that
∫ x−µ

σ
−∞ tφ(t) dt = −φ(x−µ

σ ).

From Lemma 3 the first order loss function of ζ can be expressed as

L(x, ζ) = −(x− µ) + σ

∫ x−µ

σ

−∞
Φ(t) dt (32)

Recall that an alternative expression is obtained via Lemma 1,

L(x, ζ) = σ

∫ ∞

x−µ

σ

(1− Φ(t)) dt. (33)

From Lemma 3 and Lemma 8 we obtain the closed form expression

L(x, ζ) = −(x− µ) + σ

(
φ

(
x− µ

σ

)
+ Φ

(
x− µ

σ

)
x− µ

σ

)
(34)

Lemma 9. The first order loss function L(x, ζ) can be rewritten in closed form as

L(x, ζ) = σ

(
φ

(
x− µ

σ

)
−
(

1− Φ

(
x− µ

σ

))
x− µ

σ

)

Proof. Integrate by parts Eq. 32 and observe that
∫∞

x−µ

σ

tφ(t) dt = φ(x−µ
σ ).

Furthermore, since the Normal distribution is symmetric, both Lemma 5 and Lemma
6 hold.

4 Jensen’s lower bound for the standard normal first order

loss function

We introduce a well-known inequality from stochastic programming [6], p. 167.

4.1 Jensen’s lower bound

Theorem 1 (Jensen’s inequality). Consider a random variable ω with support Ω and a
function f(x, s), which for a fixed x is convex for all s ∈ Ω, then

E[f(x, ω)] ≥ f(x,E[ω]).

Proof. [2], p. 140.
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Common discrete lower bounding approximations in stochastic programming are
extensions of Jensen’s inequality. The usual strategy is to find a low cardinality discrete
set of realisations representing a good approximation of the true underling distribution.
[2], p. 288, discuss one of these discrete lower bounding approximations which consists
in partitioning the support Ω into a number of disjoint regions, Jensen’s bound is then
applied in each of these regions.

More formally, let gω(·) denote the probability density function of ω and consider
a partition of the support Ω of ω into N disjoint compact subregions Ω1, . . . ,ΩN . We
define, for all i = 1, . . . , N

pi = Pr{ω ∈ Ωi} =

∫

Ωi

gω(t) dt

and

E[ω|Ωi] =
1

pi

∫

Ωi

tgω(t) dt

Theorem 2.

E[f(x, ω)] ≥
N∑

i=1

pif(x,E[ω|Ωi])

Proof. [2], p. 289.

Theorem 3. Given a random variable ω Jensen’s bound (Theorem 1) is applicable to
the first order loss function L(x, ω) and its complementary function L̂(x, ω).

Proof. Follows immediately from Lemma 4.

Having established this result, we must then decide how to partition the support ω
in order to obtain a good bound. In fact, to generate good lower bounds, it is necessary
to carefully select the partition of the support ω. The optimal partitioning strategy will
depend, of course, on the probability distribution of the random variable ω.

4.2 Minimax discrete lower bounding approximation

We discuss a minimax strategy for generating discrete lower bounding approximations of
the (complementary) first order loss function. In this strategy, we partition the support ω
into a predefined number of regions N in order to minimise the maximum approximation
error.

Consider a random variable ω and the associated complementary first order loss
function

L̂(x, ω) = E[max(x− ω, 0)];

assume that the support Ω of ω is partitioned into N disjoint subregions Ω1, . . . ,ΩN .

Lemma 10. For the (complementary) first order loss function the lower bound presented
in Theorem 2 is a piecewise linear function with N + 1 segments.
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Proof. Consider the bound presented in Theorem 2 and let f(x, ω) = max(x− ω, 0),

L̂lb(x, ω) =
N∑

i=1

pi max(x− E[ω|Ωi], 0)

this function is equivalent to

L̂lb(x, ω) =






0 −∞ ≤ x ≤ E[ω|Ω1]
p1x− p1E[ω|Ω1] E[ω|Ω1] ≤ x ≤ E[ω|Ω2]
(p1 + p2)x− (p1E[ω|Ω1] + p2E[ω|Ω2]) E[ω|Ω2] ≤ x ≤ E[ω|Ω3]
...

...
(p1 + p2 + . . .+ pN )x− (p1E[ω|Ω1] + p2E[ω|Ω2] + . . .+ pNE[ω|ΩN ]) E[ω|ΩN−1] ≤ x ≤ E[ω|ΩN ]

which is piecewise linear in x with breakpoints at E[ω|Ω1],E[ω|Ω2], . . . ,E[ω|ΩN ]. The
proof for the first order loss function follows a similar reasoning.

Lemma 11. Consider the i-th linear segment of L̂lb(x, ω)

L̂ilb(x, ω) = x

i∑

k=1

pk −
i∑

k=1

pkE[ω|Ωk] E[ω|Ωi] ≤ x ≤ E[ω|Ωi+1],

where i = 1, . . . , N . Let Ωi = [a, b], then L̂ilb(x, ω) is tangent to L̂(x, ω) at x = b.

Furthermore, the 0-th segment x = 0 is tangent to L̂(x, ω) at x = −∞.

Proof. Note that

L̂ilb(x, ω) = x
i∑

k=1

∫

Ωk

gω(t) dt−
i∑

k=1

∫

Ωk

tgω(t) dt

and that
Ω1 ∪ Ω2 ∪ . . . ∪ Ωi =)−∞, b]

it follows

L̂ilb(x, ω) = x

∫ b

−∞
gω(t) dt−

∫ b

−∞
tgω(t) dt

and

L̂ilb(x, ω) = Gω(b)(x − b) +

∫ b

−∞
Gω(t) dt.

which is the equation of the tangent line to L̂(x, ω) at a given point b, that is

y = L̂(b, ω)′(x− b) + L̂(b, ω).

x = 0 is tangent to L̂(x, ω) at x = −∞ since L̂(x, ω) is convex, positive and

lim
x→−∞

L̂(x, ω) = 0.

The very same reasoning can be easily applied to the first order loss function.
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Lemma 12. The maximum approximation error between L̂lb(x, ω) and L̂(x, ω) will be
attained at a breakpoint.

Proof. By recalling that L̂(x, ω) is convex (Lemma 4), since L̂lb(x, ω) is piecewise linear
(Lemma 10) and each segment of L̂lb(x, ω) is tangent to L̂(x, ω) (Lemma 11), it follows
that the maximum error will be attained at a breakpoint.

Theorem 4. Given the number of regions N , Ω1, . . . ,ΩN is an optimal partition of
the support Ω of ω under a minimax strategy, if and only if approximation errors at
breakpoints are all equal.

Proof. The approximation errors for x → −∞ and x → ∞ are both 0; since we have
N+1 segments, we only have N breakpoints to check.

We first show that (→) if Ω1, . . . ,ΩN is an optimal partition of the support Ω of ω
under a minimax strategy, then approximation errors at breakpoints are all equal.

A first observation that follows immediately from Lemma 12 is that, if the slope
of segment L̂i+1

lb (x, ω) remains unchanged, and the breakpoint between L̂ilb(x, ω) and

L̂i+1
lb (x, ω) moves towards the point at which L̂i+1

lb (x, ω) is tangent to L̂(x, ω), the error
at such breakpoint decreases.

If one changes the size of region Ωi so that the upper limit becomes bi + ∆, then
E[ω|Ωi] will increase if ∆ > 0, or will decrease if ∆ < 0. This immediately follows from
the definition of E[ω|Ωi]. Therefore, the breakpoint between segment i and segment i+1,
which occurs at E[ω|Ωi], will move accordingly. However, the slope of segment i + 1,
which we recall is equal to Gω(bi+1), depends uniquely on the upper limit of the region
Ωi+1, bi+1, and is not affected by a change in the upper limit of region Ωi. Therefore,
the error at the breakpoint between segment i and segment i + 1 will decrease if ∆ > 0,
or will increase if ∆ < 0.

Now, assume that Ω1, . . . ,ΩN is an optimal partition of the support Ω of ω and
approximation errors at breakpoints are not all equal. Furthermore, assume that the
maximum approximation error occurs at breakpoint i. By increasing the size of the
region Ωi, i.e. by setting the upper limit to bi + ∆, where ∆ > 0, it is possible to
decrease the maximum error until it becomes equal to the error at breakpoint k, where
k ∈ {1, . . . , i − 1}. The procedure can be repeated until all approximation errors are
equal.

Second, we show that (←) if approximation errors at breakpoints are all equal, then
Ω1, . . . ,ΩN is an optimal partition of the support Ω of ω under a minimax strategy.

If approximation errors at breakpoints are all equal and we change the size of region
Ωi by setting the upper limit to bi + ∆, where ∆ > 0, then the approximation error
at breakpoint i − 1 will increase; conversely, if ∆ < 0, then the approximation error at
breakpoint i + 1 will increase.

By using this last result it is possible to derive a set of equations that can be solved
for computing an optimal partitioning. Let us consider the error ei at breakpoint i, this
can be expressed as

ei = L̂(E[ω|Ωi], ω)− L̂ilb(E[ω|Ωi], ω),

10



where Ωi = [ai, bi]. Since we have N breakpoints to check, we must solve a system
comprising the following N − 1 equations

e1 = ei for i = 2, . . . , N.

under the following restrictions

a1 = −∞
bN =∞
ai ≤ bi for i = 1, . . . , N
bi = ai+1 for i = 1, . . . , N − 1

The system therefore involves N − 1 variables, each of which identifies the boundary
between two disjoint regions Ωi and Ωi+1.

Theorem 5. Assume that the probability density function of ω is symmetric about a
mean value ω̃. Then, under a minimax strategy, if Ω1, . . . ,ΩN is an optimal partition of
the support Ω of ω, breakpoints will be symmetric about ω̃.

Proof. This follows from Lemma 6 and Theorem 4.

In this case, by exploiting the symmetry of the piecewise linear approximation, an
optimal partitioning can be derived by solving a smaller system comprising ⌈N/2⌉ equa-
tions, where N is the number of regions Ωi and ⌈x⌉ rounds x to the next integer value.

Unfortunately, equations in the above system are nonlinear and do not admit a closed
form solution in the general case.

4.2.1 Normal distribution

We will next discuss the system of equations that leads to an optimal partitioning for
the case of a standard Normal random variable Z. This partitioning leads to a piecewise
linear approximation that is, in fact, easily extended to the general case of a normally
distributed variable ζ with mean µ and standard deviation σ via Lemma 7. This equation
suggests that the error of this approximation is independent of µ and proportional to σ.

Consider a partitioning for the support Ω of Z into N adjacent regions Ωi = [ai, bi],
where i = 1, . . . , N . From Theorem 5, if N is odd, then b⌈N/2⌉ = 0 and bi = −bN+1−i, if

N is even, then bi = −bN+1−i. We shall use Lemma 8 for expressing L̂(x,Z). Then, by
observing that ∫ bi

ai

tφ(t) dt = φ(ai)− φ(bi)

and that p1 + p2 + . . . + pi = Φ(bi), we rewrite

L̂ilb(E[Z|Ωi], Z) = Φ(bi)E[Z|Ωi]−
i∑

k=1

(φ(ai)− φ(bi)) (35)

= Φ(bi)E[Z|Ωi]− (φ(a1)− φ(bi)) (36)

= Φ(bi)E[Z|Ωi] + φ(bi) (37)

11



To express the conditional expectation E[Z|Ωi] we proceed as follows: let pi = Φ(bi)−
Φ(ai), it follows

E[Z|Ωi] =
φ(ai)− φ(bi)

Φ(bi)− Φ(ai)
.

To solve the above system of non-linear equations we will exploit the close connections
between finding a local minimum and solving a set of nonlinear equations. In particular,
we will use the Gauss-Newton method to find a partition Ω1, . . . ,ΩN of the support of
Z that minimises the following sum of squares

N∑

k=2

(e1 − ek)2

This minimisation problem can be solved by software packages such as Mathematica
(see NMinimize).

4.2.2 Numerical examples

The classical Jensen’s bound for the complementary first order loss function of a standard
Normal random variable Z is show in Fig. 1. This is obtained by considering a degenerate
partition of the support of Z comprising only a single region Ω1 = [−∞,∞]. In practice,
we simply replace Z by its expected value, i.e. zero. Therefore we simply have L̂lb =
max(x, 0). The maximum error of this piecewise linear approximation occurs for x = 0
and it is equal to 1/

√
2π.

-2 -1 1 2
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L
`
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Figure 1: classical Jensen’s bound for L̂(x,Z)

If we split the support of Z into four regions (Fig. 2), the solution to the system of
nonlinear equations prescribes to split Ω at b1 = −0.886942, b2 = 0, b3 = 0.886942. The
maximum error is 0.0339052 and it is observed at x ∈ {±1.43535,±0.415223}.
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Figure 2: five-segment piecewise Jensen’s bound for L̂(x,Z)

In Table 1 we report parameters of L̂lb(x,Z) with up to eleven segments. In Fig. 3
we present the approximation error of L̂lb(x,Z) with up to eleven segments.

4 6 8 10
Number of segments

0.1

0.2

0.3

0.4

Absolute error

Figure 3: approximation error of L̂lb(x,Z) with up to eleven segments
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Piecewise linear approximation parameters
Segments Error i 1 2 3 4 5 6 7 8 9 10

2 0.398942

bi ∞
pi 1
E[ω|Ωi] 0

3 0.120656

bi 0 ∞
pi 0.5 0.5
E[ω|Ωi] −0.797885 0.797885

4 0.0578441

bi −0.559725 0.559725 ∞
pi 0.287833 0.424333 0.287833
E[ω|Ωi] −1.18505 0 1.18505

5 0.0339052

bi −0.886942 0 0.886942 ∞
pi 0.187555 0.312445 0.312445 0.187555
E[ω|Ωi] −1.43535 −0.415223 0.415223 1.43535

6 0.0222709

bi −1.11507 −0.33895 0.33895 1.11507 ∞
pi 0.132411 0.234913 0.265353 0.234913 0.132411
E[ω|Ωi] −1.61805 −0.691424 0 0.691424 1.61805

7 0.0157461

bi −1.28855 −0.579834 0 0.579834 1.28855 ∞
pi 0.0987769 0.182236 0.218987 0.218987 0.182236 0.0987769
E[ω|Ωi] −1.7608 −0.896011 −0.281889 0.281889 0.896011 1.7608

8 0.0117218

bi −1.42763 −0.765185 −0.244223 0.244223 0.765185 1.42763 ∞
pi 0.0766989 0.145382 0.181448 0.192942 0.181448 0.145382 0.0766989
E[ω|Ωi] −1.87735 −1.05723 −0.493405 0 0.493405 1.05723 1.87735

9 0.00906529

bi −1.54317 −0.914924 −0.433939 0 0.433939 0.914924 1.54317 ∞
pi 0.0613946 0.118721 0.152051 0.167834 0.167834 0.152051 0.118721 0.0613946
E[ω|Ωi] −1.97547 −1.18953 −0.661552 −0.213587 0.213587 0.661552 1.18953 1.97547

10 0.00721992

bi −1.64166 −1.03998 −0.58826 −0.19112 0.19112 0.58826 1.03998 1.64166 ∞
pi 0.0503306 0.0988444 0.129004 0.146037 0.151568 0.146037 0.129004 0.0988444 0.0503306
E[ω|Ωi] −2.05996 −1.30127 −0.8004 −0.384597 0. 0.384597 0.8004 1.30127 2.05996

11 0.00588597

bi −1.72725 −1.14697 −0.717801 −0.347462 0. 0.347462 0.717801 1.14697 1.72725 ∞
pi 0.0420611 0.0836356 0.110743 0.127682 0.135878 0.135878 0.127682 0.110743 0.0836356 0.0420611
E[ω|Ωi] −2.13399 −1.39768 −0.9182 −0.526575 −0.17199 0.17199 0.526575 0.9182 1.39768 2.13399

Table 1: parameters of L̂lb(x,Z) with up to eleven segments
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In Fig. 4 we exploited Lemma 7 to obtain the five-segment piecewise Jensen’s bound
for L̂(x, ζ), where ζ is a normally distributed random variable with mean µ = 20 and
standard deviation σ = 5. The maximum error is σ0.0339052 and it is observed at
x ∈ {σ(±1.43535) + µ, σ(±0.415223) + µ}.
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Figure 4: five-segment piecewise Jensen’s bound for L̂(x, ζ), where µ = 20 and σ = 5

5 An approximate piecewise linear upper bound for the

standard normal first order loss function

In this section we introduce a simple bounding technique that exploits convexity of the
(complementary) first order loss function to derive a piecewise linear upper bound.

5.1 A piecewise linear upper bound

Without loss of generality we shall introduce the bound for the complementary first
order loss function. Consider a random variable ω with support Ω. From Lemma 4,
L̂(x, ω) is convex in x regardless of the distribution of ω. Given an interval [a, b] ∈ R, it is
possible to construct an upper bound by exploiting the very same definition of convexity,
that is by constructing a straight line L̂ub(x, ω) between the two points (a, L̂(a, ω)) and
(b, L̂(b, ω)). The slope (α) and the intercept (β) of this line can be easily computed

α =
L̂(b, ω)− L̂(a, ω)

b− a
, β =

bL̂(a, ω) − aL̂(b, ω)

b− a
.
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The upper bound is then

L̂ub(x, ω) = αx + β a ≤ x ≤ b (38)

= L̂(a, ω)
b− x

b− a
+ L̂(b, ω)

x − a

b − a
a ≤ x ≤ b (39)

We can improve the quality of this bound by partitioning the domain R of L̂(x, ω) into
N disjoint regions Di = [ai, bi], i = 1, . . . , N . The selected regions must be all compact
and adjacent. Because of the convexity of L̂(x, ω) the bound can be then applied to each
of these regions considered separately.

However, since L̂(x, ω) is defined over R, it is not possible to guarantee a complete
covering of the domain by using compact regions. We must therefore add two extreme
regions D0 = [−∞, a1] and DN+1 = [aN+1 = bN ,∞] to ensure the one obtained is indeed
an upper bound for each x ∈ R. By noting that

lim
x→−∞

L̂(x, ω) = 0 and lim
x→∞

L̂(x, ω) = x

it is easy to derive equations for the lines associated with these two extra regions. In
particular, we associate with D0 a horizontal line with slope α = 0 and intercept β =
L̂(a1, ω), and with DN+1 a line with slope α = 1 and intercept β = L̂(bN , ω)− bN .

Also in this case, we must then decide how to partition the domain R into N + 2
intervals D0, . . . ,DN+1 to obtain a tight bound. Once more, the optimal partitioning
strategy will depend on the probability distribution of the random variable ω.

5.2 Minimax piecewise linear upper bound

We discuss a minimax strategy for generating a piecewise linear upper bound of the
(complementary) first order loss function L̂(x, ω). In this strategy, we partition of the
domain R of x into a predefined number of regions N + 2 in order to minimise the
maximum approximation error. Note that, since this domain is not compact, one needs
at least two regions to derive a piecewise linear upper bound.

Consider a random variable ω and the associated complementary first order loss
function

L̂(x, ω) = E[max(x− ω, 0)];

assume that the domain R of x is partitioned into N + 2 disjoint adjacent subregions
D0, . . . ,DN+1, where D0 = [−∞, a1], Di = [ai, bi], for i = 1, . . . , N , and DN+1 = [bN ,∞],
and consider the following piecewise linear upper bound

L̂ub(x, ω) =





L̂(a1, ω) x ∈ D0
...

L̂(ai, ω) bi−x
bi−ai

+ L̂(bi, ω) x−ai
bi−ai

x ∈ Di

...

x + L̂(bN , ω)− bN x ∈ DN+1

Let L̂iub(x, ω) be the linear segment of L̂ub(x, ω) over Di, for i = 0, . . . , N + 1.
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Lemma 13. Consider L̂iub(x, ω), where i = 1, . . . , N ; the maximum approximation error

between L̂iub(x, ω) and L̂(x, ω) will be attained for

x̄i = G−1
ω

(
L̂(bi, ω)− L̂(ai, ω)

bi − ai

)
.

Proof. The idea here is to derive a line that is tangent to L̂(x, ω) and that has a slope
equal to that of the i-th linear segment of L̂ub(x, ω). We have already discussed in
Lemma 11 that the equation of the tangent to L̂(x, ω) at a given point x̄i is

y = L̂(x̄i, ω)′(x− p) + L̂(x̄i, ω)

that is

L̂ilb(x, ω) = Gω(x̄i)(x− p) +

∫ x̄i

−∞
Gω(t) dt.

The slope Gω(x̄i) only depends on x̄i. To find a tangent with a slope equal to that of
the i-th linear segment of L̂ub(x, ω), we simply let

Gω(x̄i) =
L̂(bi, ω)− L̂(ai, ω)

bi − ai

and invert the cumulative distribution function.

Note that the maximum approximation error for the linear segment over D0 is
L̂(a1, ω) and the maximum approximation error for the linear segment over DN+1 is
L̂(bN , ω)−bN . This can be inferred from the fact that L̂(x, ω) monotonically approaches
0 for x→ −∞ and x for x→∞.

Theorem 6. D0, . . . ,DN+1 is an optimal partition under a minimax strategy, if and
only if the maximum approximation error between L̂(x, ω) and each linear segment of
L̂ub(x, ω) is the same.

Proof. The proof of this theorem can be obtained from Lemma 13 and from Theorem
4. In particular, the key insight needed to understand this result is the following. In
Theorem 4 we showed that the approximation errors at breakpoints for the piecewise
linear lower bound presented are all equal to each other and also equal to the maximum
approximation error; furthermore, in Lemma 11 we showed that the i-th piecewise linear
segment of this lower bound agrees with the original function at point bi, where Ωi =
[ai, bi] is the i-th partition of the support of Z, for i = 1, . . . , N . Since the first order
loss function is convex and we know the maximum approximation error, by shifting
up the piecewise linear lower bound by a value equal to the maximum approximation
error we immediately obtain a piecewise linear upper bound comprising N +1 segments.
This upper bound agrees with the original function at E[Z|Ωi], for i = 1, . . . , N . The
maximum approximation error will be attained at those points in which the lower bound
was tangent to the original function, that is a1, b1, b2, . . . , bN . By using a reasoning
similar to the one developed for Theorem 4, it is possible to show that, if we increase or
decrease at least one E[Z|Ωi], the maximum approximation error can only increase.
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By using this result it is possible to derive a set of equations that can be solved for
computing an optimal partitioning. Let us consider the maximum approximation error
ei associated with the i-th linear segment of L̂ub(x, ω), this can be expressed as

ei = L̂iub(x̄i, ω)− L̂(x̄i, ω),

where i = 1, . . . , N ; furthermore e0 = L̂(a1, ω) and eN+1 = L̂(bN , ω) − bN . Since we
have N + 2 segments to check, we must solve a system comprising the following N + 1
equations

e0 = ei for i = 1, . . . , N + 1

under the following restrictions

ai ≤ bi for i = 1, . . . , N
bi = ai+1 for i = 1, . . . , N − 1

The system involves N + 1 variables, each of which identifies the boundary between two
disjoint adjacent regions Di and Di+1.

Theorem 7. Assume that the probability density function of ω is symmetric about a
mean value ω̃. Then, under a minimax strategy, if D0, . . . ,DN+1 is an optimal partition
of the domain, breakpoints will be symmetric about the mean value ω̃.

Proof. This follows from Lemma 6 and Theorem 6.

In this case, by exploiting the symmetry of the piecewise linear approximation, an
optimal partitioning can be derived by solving a smaller system comprising ⌈(N + 1)/2⌉
equations, where N + 2 is the number of regions Di and ⌈x⌉ rounds x to the next integer
value.

As in the case of Jensen’s bound, equations in the above system are nonlinear and
do not admit a closed form solution in the general case. For sake of completeness, we
will briefly discuss next how to derive the system of nonlinear equations for the case of
a standard normal random variable Z. However, one should note that in practice, by
exploiting the properties illustrated in the proof of Theorem 6, one does not need to
solve a new system of nonlinear equations to derive the piecewise linear upper bound.
All information needed, i.e. maximum approximation error at breakpoints and locations
of the breakpoint, are in fact immediately available as soon as the system of equation
presented for the piecewise linear lower bound is solved (Table 1).

The upper bound presented is closely related to a well-known inequality from stochas-
tic programming, see e.g. [6], p. 168, [5], p. 316, and [2], pp. 291-293. As pointed out
in [6], p. 168, Edmundson-Madanski’s upper bound can be seen as a bound where the
original distribution is replaced by a two point distribution and the problem itself is
unchanged, or it can be viewed as a bound where the distribution is left unchanged and
the original function is replaced by a linear affine function represented by a straight line.
The above discussion clearly demonstrates the dual nature of this upper bound.
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5.3 Normal distribution

We will next discuss the system of equations that leads to an optimal partitioning for
the case of a standard Normal random variable Z. This partitioning leads to a piecewise
linear approximation that is, in fact, easily extended to the general case of a normally
distributed variable ζ with mean µ and standard deviation σ via Lemma 7. Also for
this second approximation this equation suggests that the error is independent of µ and
proportional to σ.

Consider a partitioning for the domain of x in L̂(x, ω) into N + 2 adjacent regions
Di = [ai, bi], where i = 0, . . . , N + 1. From Theorem 7, if N is odd, then b⌈N/2⌉ = 0 and
bi = −bN+1−i, if N is even, then bi = −bN+1−i. Also in this case, we shall use Lemma 8
for expressing L̂(x,Z), and we will exploit the close connections between finding a local
minimum and solving a set of nonlinear equations. We will therefore use the Gauss-
Newton method to minimize the following sum of squares

N+1∑

k=1

(e0 − ek)2

This minimisation problem can be solved by software packages such as Mathematica
(see NMinimize).

5.3.1 Numerical examples

A two-segment piecewise linear upper bound for the complementary first order loss
function of a standard Normal random variable Z is shown in Fig. 5. This bound has
been obtained, under the minimax criterion previously described, by considering a single
breakpoint in the domain, i.e. x = 0. Of course, the maximum error of this piecewise
linear approximation occurs for x = ±∞ and it is equal to 1/

√
2π. It is easy to observe

that this upper bound can be obtained by adding to the classical Jensen’s lower bound
presented in Fig. 1 a constant value equal to its maximum approximation error, i.e.
1/
√

2π.
We next present a more interesting case, in which the domain has been split into

five regions (Fig. 6). Breakpoints are positioned at x ∈ {±1.43535,±0.415223}. These
were the locations at which the maximum error, i.e. 0.0339052, was observed in Fig.
2. Also in this case, the five-segment piecewise linear upper bound can be obtained by
adding to the five-segment piecewise Jensen’s lower bound a value equal to its maximum
approximation error.

Finally, in Fig. 7, we show an example in which we exploited Lemma 7 to obtain,
from the approximation presented in Fig. 6, the five-segment piecewise linear upper
bound for L̂(x, ζ), where ζ is a normally distributed random variable with mean µ = 20
and standard deviation σ = 5. The maximum error is σ0.0339052 and it is observed at
x ∈ {±∞, σ(±0.886942) + µ, µ}.
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Figure 5: two-segment piecewise linear upper bound for L̂(x,Z)
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Figure 6: five-segment piecewise linear upper bound for L̂(x,Z)

6 Conclusions

We summarised a number of distribution independent results for the first order loss
function and its complementary function. We then focused on symmetric distributions
and on normal distributions; for these we discussed ad-hoc results. To the best of our
knowledge a comprehensive analysis of results concerning the first order loss function
seems to be missing in the literature. The first contribution of this work was to fill this
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Figure 7: five-segment piecewise linear upper bound for L̂(x, ζ), where µ = 20 and σ = 5

gap in the literature. Based on the results discussed, we developed effective piecewise
linear approximation strategies based on a minimax framework. This is the second
contribution of our work. More specifically, we developed piecewise linear upper and
lower bounds for the first order loss function and its complementary function. These
bounds rely on constant parameters that are independent of the means and standard
deviation of the normal distribution considered. We discussed how to compute optimal
parameters that minimise the maximum approximation error and we also provided a
table with pre-computed optimal parameters for piecewise bound with up to eleven
segments. These bounds can be easily embedded in existing MILP models.
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