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CONVERGENCE OF RATIONAL BERNSTEIN OPERATORS

HERMANN RENDER

Abstract. In this paper we discuss convergence properties and error estimates of ra-
tional Bernstein operators introduced by P. Piţul and P. Sablonnière. It is shown that
the rational Bernstein operators Rn converge to the identity operator if and only if ∆n,

the maximal difference between two consecutive nodes of Rn, is converging to zero for
n → ∞. Error estimates in terms of ∆n are provided. Moreover a Voronovskaja theorem
is presented which is based on the explicit computation of higher order moments for the
rational Bernstein operator.

1. Introduction

Let C [0, 1] be the set of all continuous real-valued functions on the interval [0, 1]. The
classical Bernstein operator Bn : C [0, 1] → C [0, 1] is defined by

Bnf (x) =

n
∑

k=0

f

(

k

n

)(

n

k

)

xk (1− x)n−k ,

see e.g. [11], [14]. In [21], P. Piţul and P. Sablonnière introduced rational Bernstein
operators which are positive operators of the form

(1) Rnf (x) :=
n
∑

k=0

f (xn,k)wn,k

(

n

k

)

xk (1− x)n−k

Qn−1 (x)

where Qn−1 (x) is a given strictly positive polynomial over [0, 1] of degree ≤ n−1. Further
it is assumed that Qn−1 has two additional properties: (i) the Bernstein coefficients wn−1,k

in the representation

(2) Qn−1 (x) =
n−1
∑

k=0

wn−1,k−1

(

n− 1

k

)

xk (1− x)n−1−k

are strictly positive and (ii) the sequence wn−1,k, k = 0, ..., n− 1 satisfies the inequality

(W)
wn−1,k−1wn−1,k+1

w2
n−1,k

<

(

k + 1

k

)(

n− k

n− k − 1

)
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for k = 1, ..., n − 1. Then, according to the results in [21], there exist positive weights
wn,k, k = 0, ..., n, and increasing nodes 0 = xn,0 < xn,1 < ... < xn,n = 1 such that Rn

reproduces the constant function e0 (x) = 1 and the linear function e1 (x) = x, i.e. that

(3) Rnej = ej for j = 0, 1.

The weights wn,k and the nodes xn,k are uniquely defined through the condition (3) and
they are given by the formula

xn,k =
kwn,k−1

kwn,k−1 + (n− k)wn,k

for k = 1, .., n− 1

wn,k =
k

n
wn,k−1 +

(

1− k

n

)

wn,k for k = 1, ..., n− 1

and the conditions xn,0 = 0 and xn,n = 1 and wn,0 = Qn−1 (0) and wn,n = Qn−1 (1) . It was
shown in [21] that the rational Bernstein operators Rn have the same shape preserving
properties as the classical Bernstein operator Bn. Moreover it was proved that Rn con-
verges to the identity operator and that a Voronovskaja-type theorem holds under the
additional assumption that there exists a positive continuous function ϕ such that

wn−1,k = ϕ

(

k

n− 1

)(

n− 1

k

)

for k = 0, ..., n− 1

for all natural numbers n. The main purpose of this article is to study the convergence
of the rational Bernstein operators in the general case. Our main result states that the
operators Rn converge to the identity operator if and only if

(4) ∆n = sup
k=0,..,n−1

|xn,k+1 − xn,k|

converges to 0. The main innovation in the present article is the computation and esti-
mation of the moments

Rn (e1 − x)r (x) and Rn (er) (x)− xr

for the rational Bernstein operator Rn where er (x) = xr. For example, we shall prove the
inequality

∣

∣Rn (e2) (x)− x2
∣

∣ ≤ sup
0≤k≤n−1

|xn,k+1 − xn,k| · x (1− x)

which implies the convergence of Rn to the identity operator provided that ∆n → 0.
Convergence results and error estimates of O. Shisha and B. Mond for positive operators
are used for explicit error estimates. Results of R.G. Mamedov lead to a Voronovskaja
theorem for rational Bernstein operators in the general setting. We shall illustrate the
results by examples which are of different type as those in [21].

The paper is organized as follows: in the second section we shall recall briefly the basic
construction of the rational Bernstein operators as given in [21]. We shall show that
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there are many natural examples of rational Bernstein operators: starting with nodes
0 = xn,0 < xn,1 < ... < xn,n−1 < xn,n = 1 and a positive constant γn−1,0 > 0 we define

γn−1,k := γn−1,0

k
∏

l=1

1− xn,l
xn,l

for k = 1, ..., n and Qn−1 (x) :=
∑n−1

k=0 γn−1,kx
k (1− x)n−1−k . Then Qn−1 satisfies property

(W) and

Rnf (x) =
n
∑

k=0

f (xn,k) (γn−1,k + γn−1,k−1)
xk (1− x)n−k

Qn−1 (x)

is a rational Bernstein operator Rn fixing e0 and e1. In Section 3 we compute the expres-
sions Rn (er) (x)− xr explicitly and obtain the above-mentioned criterion for the conver-
gence of Rn. Section 4 is devoted to error estimates. In Section 5 we prove a Voronovskaja
result. In Section 6 we discuss the special case of rational Bernstein operators of [21] and
improve some results. Further we present a sequence of rational Bernstein operators Rn

converging to the identity operator where the polynomials Qn (x) converges pointwise to a
discontinuous function. In the final Section 7, we shall comment on links between rational
Bernstein operators and general results about Bernstein operators fixing two functions in
the framework of extended Chebyshev systems.

By Cr [0, 1] we shall denote the set of all r times continuously differentiable functions
on the unit interval [0, 1] and N will denote the set of all natural numbers.

2. Rational Bernstein operators

For convenience of the reader we recall the basic construction of the rational Bernstein
operator Rn as outlined in [21]. Let Qn−1 be a polynomial of degree ≤ n− 1. Instead of
the representation (2) it is more convenient to work with

(5) Qn−1 (x) =
n−1
∑

k=0

γn−1,kx
k (1− x)n−1−k

so γn−1,k = wn−1,k

(

n−1
k

)

. Since xk (1− x)n−1−k = xk (1− x)n−k + xk+1 (1− x)n−1−k we
infer that

Qn−1 (x) =
n
∑

k=0

(γn−1,k + γn−1,k−1) x
k (1− x)n−k

with the convention that γn−1,−1 = 0 and γn−1,n = 0. In view of (1) the requirement
Rn1 = 1 is then equivalent to

Qn−1 (x) =
n
∑

k=0

wn,k

(

n

k

)

xk (1− x)n−k
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and we conclude that

wn,k

(

n

k

)

= γn−1,k + γn−1,k−1.

Further we want that Rne1 = e1 for the linear function e1 (x) = x which is equivalent to
the identity

(6) xQn−1 (x) =
n
∑

k=0

xn,k · wn,k

(

n

k

)

xk (1− x)n−k .

Inserting x = 0 implies that that xn,0 = 0. From the identity

xQn−1 (x) =
n−1
∑

k=0

γn−1,k · xk+1 (1− x)n−1−k =
n
∑

k=1

γn−1,k−1x
k (1− x)n−k

and (6) we infer that for k = 1, ...n

(7) xn,k =
γn−1,k−1

wn,k

=
γn−1,k−1

γn−1,k + γn−1,k−1
=

γn−1,k−1

γn−1,k

1 +
γn−1,k−1

γn−1,k

.

Hence, given the polynomial Qn−1 (x) , there is at most one choice for the nodes xn,k and
the weights wn,k such that Rn fixes e0 and e1. However, in general the numbers xn,k defined
by (7) are not in the interval [0, 1] , and they are in general not increasing numbers, for
see Example 19 in Section 6. From formula (7) and the fact that f (x) = x/ (1 + x) is
strictly increasing we derive that xn,k is strictly increasing if and only if

γn−1,k−1

γn−1,k
=
wn−1,k−1

wn,k

k

n− k
is strictly increasing.

This is exactly condition (W). The construction of the rational Bernstein operator Rn has
the disadvantage that one has to check the condition (W) for the Bernstein coefficients of
the polynomial Qn−1 which in general might be cumbersome.

Example 1. Take Qn−1 (x) = 1 + x2, then straightforward calculations show that

γn−1,k =

(

n− 1

k

)(

1 +
k (k − 1)

(n− 1) (n− 2)

)

γn−1,k−1 + γn−1,k =

(

n

k

)

n (n− 1) + k (k − 1)

n (n− 1)

xn,k =
k

n− 2

(n− 1) (n− 2) + (k − 1) (k − 2)

n (n− 1) + k (k − 1)

and the rational Bernstein operator Rn is given by

Rnf (x) =

n−1
∑

k=1

(

n

k

)

n (n− 1) + k (k − 1)

n (n− 1)
f (xn,k)

xk (1− x)n−k

1 + x2
.
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We now change our point of view: instead of starting with the polynomial Qn−1 we just
start with an increasing sequence

0 = xn,0 < xn,1 < ... < xn,n−1 < xn,n = 1.

We use equation (7) to define
γn−1,k−1

γn−1,k
. Clearly (7) is equivalent to

xn,k

(

1 +
γn−1,k−1

γn−1,k

)

=
γn−1,k−1

γn−1,k
and

γn−1,k−1

γn−1,k
=

xn,k
1− xn,k

which is a recursion formula for γn−1,k provided we have defined γn−1,0. Hence define

(8) γn−1,k := γn−1,0

k
∏

l=1

1− xn,l
xn,l

.

These remarks lead to the following statement:

Proposition 2. Let 0 = xn,0 < xn,1 < ... < xn,n−1 < xn,n = 1. Let γn−1,0 > 0 and define
γn−1,k by (8) for k = 1, ..., n and define

Qn−1 (x) =

n−1
∑

k=0

γn−1,kx
k (1− x)n−1−k .

Then Qn−1 satisfies property (W) and the operator

Rnf (x) =
n
∑

k=0

f (xn,k) (γn−1,k + γn−1,k−1)
xk (1− x)n−k

Qn−1 (x)

is the rational Bernstein operator Rn fixing e0 and e1.

Proof. There is not much to show: by definition of γn−1,k we see that
γn−1,k−1

γn−1,k
=

xn,k

1−xn,k
.

This clearly implies that (7) holds, so the nodes of the operator Rn are just the given
numbers xn,k. Since xn,k’s are increasing we see that

γn−1,k−1

γn−1,k
are increasing and therefore

property (W) holds. �

3. Convergence of rational Bernstein operators

The following result is of central importance:

Theorem 3. Let Rn be the rational Bernstein operator for the polynomial Qn−1 (x) of
degree ≤ n − 1 satisfying (i) and (ii) in the introduction and let xn,k be defined by (7).
Then the following identity

(9) Rn (es) (x)− xs =
x (1− x)

Qn−1 (x)

s−2
∑

l=0

xl
n−1
∑

k=0

γn−1,k

(

xs−1−l
n,k+1 − xs−1−l

n,k

)

xk (1− x)n−1−k

holds for the polynomial es (x) = xs and s ≥ 1.
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Proof. At first we note that (7) implies that

γn−1,k + γn−1,k−1 = γn−1,k−1
1− xn,k
xn,k

+ γn−1,k−1 = γn−1,k−1
1

xn,k
.

It follows that

Rnf = f (0) γn−1,0
(1− x)n

Qn−1 (x)
+

n
∑

k=1

f (xn,k)
γn−1,k−1

xn,k

xk (1− x)n−k

Qn−1 (x)
.

Let s ≥ 1 and es (x) = xs. Since xn,0 = 0 and es (xn,0) = xsn,0 = 0 we have

(10) Qn−1 (x)Rn (es) (x) =

n
∑

k=1

γn−1,k−1x
s−1
n,k · xk (1− x)n−k .

Using an index transformation we arrive at

(11) Qn−1 (x)Rn (es) (x) = x

n−1
∑

k=0

γn−1,kx
s−1
n,k+1 · xk (1− x)n−1−k .

Writing xk (1− x)n−1−k = xk (1− x)n−k + xk+1 (1− x)n−1−k we obtain

Qn−1 (x)Rn (es) (x) = x

n−1
∑

k=0

γn−1,kx
s−1
n,k+1 · xk (1− x)n−k

+x
n−1
∑

k=0

γn−1,kx
s−1
n,k+1 · xk+1 (1− x)n−1−k .

The second sum is equal to x
∑n

k=1 γn−1,k−1x
s−1
n,k · xk (1− x)n−k . Using the convention

γn−1,n = γn−1,−1 = 0 and the fact that xn,0 = 0 we obtain

Qn−1 (x)Rn (es) (x) = x

n
∑

k=0

(

γn−1,kx
s−1
n,k+1 + γn−1,k−1x

s−1
n,k

)

· xk (1− x)n−k .

On the other hand, we have the trivial identity

γn−1,k

(

xs−1
n,k+1 − xs−1

n,k

)

= γn−1,k

(

xs−1
n,k+1 +

xn,k
1− xn,k

xs−2
n,k (xn,k − 1)

)

and using γn−1,k = γn−1,k−1
1−xn,k

xn,k

γn−1,k

(

xs−1
n,k+1 − xs−1

n,k

)

= γn−1,k

(

xs−1
n,k+1 +

γn−1,k−1

γn−1,k

xs−2
n,k (xn,k − 1)

)

= γn−1,kx
s−1
n,k+1 + γn−1,k−1x

s−1
n,k − γn−1,k−1x

s−2
n,k .
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It follows that

Qn−1 (x)Rn (es) (x) = x

n
∑

k=0

γn−1,k

(

xs−1
n,k+1 − xs−1

n,k

)

· xk (1− x)n−k

+x

n
∑

k=0

γn−1,k−1x
s−2
n,k · xk (1− x)n−k .

As γn−1,n = 0, the indices in the first sum range only up to n− 1. The first summand of
the second sum is zero. Using (10) for s− 1 instead of s for the second sum we arrive

Qn−1 (x)Rn (es) (x) = x (1− x)

n−1
∑

k=0

γn−1,k

(

xs−1
n,k+1 − xs−1

n,k

)

· xk (1− x)n−1−k

+x ·Qn−1 (x)Rn (es−1) (x) .

Now use this formula inductively and recall that Rn (e1) = e1 leading to the statement in
theorem. �

Corollary 4. The rational Bernstein operators Rn satisfy the inequality
∣

∣Rn (e2) (x)− x2
∣

∣ ≤ sup
0≤k≤n−1

|xn,k+1 − xn,k| · x (1− x) .

Proof. From Theorem 3 for s = 2 we see that

(12) Rn (e2) (x)− x2 =
x (1− x)

Qn−1 (x)

n−1
∑

k=0

γn−1,k (xn,k+1 − xn,k)x
k (1− x)n−1−k

and then the statement is obvious since γn−1,k is positive. �

Corollary 5. The rational Bernstein operators Rn converges to the identity operator if
and only if

(13) ∆n := sup
0≤k≤n−1

|xn,k+1 − xn,k|

converges to 0.

Proof. If ∆n converges to zero it follows that Rne2 converges uniformly to e2 and Ko-
rovkin’s theorem shows that Rn converges to the identity operator. Conversely, suppose
that Rn converges to the identity operator and suppose that ∆n does not converge to 0.
Then there exists δ > 0 and a subsequence (nl)l such that ∆nl

≥ 2δ. Hence for each l
there kn,l ∈ {0, ..., nl − 1} such that

(14) |xnl,kl+1 − xnl,kl| ≥ δ.

Since xn,k ∈ [0, 1] we can pass to a subsequence of xnl,kl which converges to some point x0
and we can pass again to a subsequence of the subsequence such that xnlr ,klr

converges
to x0 and xnlr ,klr+1 converges to x1. From (14) it follows that |x1 − x0| ≥ δ, and since
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xnl,kl ≤ xnl,kl+1 we infer that x0 ≤ x1. Now we take a natural number r0 such that
∣

∣x0 − xnlr ,klr

∣

∣ < δ/3 and
∣

∣x1 − xnlr ,klr+1

∣

∣ < δ/3 for all r ≥ r0. From the monotonicity of
xn,k for k = 0, ..., nl−1 it follows that xnlr ,k

/∈ [x0 + δ/3, x1 − δ/3] for all k = 0, ..., nlr and
l ≥ l0. Now construct a continuous non-zero function f with support in [x0 + δ/3, x1 − δ/3]
such that f (ξ) 6= 0 for some ξ ∈ [x0 + δ/3, x1 − δ/3] . Then Bnl

f (x) = 0 for all x ∈
[0, 1] . By assumption, Bn lrf (ξ) converges to f (ξ) 6= 0. Since Bn lrf (ξ) = 0 we obtain a
contradiction completing the proof. �

Corollary 6. The following inequality holds for all x ∈ [0, 1] and for all natural numbers
s ≥ 2 :

0 ≤ xs < Rn (es) (x) .

Proof. The right hand side in (9) is strictly positive for x ∈ [0, 1] and s ≥ 2. Alternatively,
one may argue that the function es is convex, and the result follows from the remarks in
[21, p. 46]. �

In the rest of this section we shall prove some inequalities which will be needed in
Section 5:

Proposition 7. The following inequality holds

0 ≤ Rn (e3) (x)− x3 ≤ 3 ·
(

Rn (e2) (x)− x2
)

.

Proof. From Theorem 3 for s = 3 we see that

Rn (e3) (x)− x3 =
x (1− x)

Qn−1 (x)

n−1
∑

k=0

γn−1,kAkx
k (1− x)n−1−k

where

Ak = x2n,k+1 − x2n,k + x (xn,k+1 − xn,k) = (xn,k+1 − xn,k) (xn,k+1 + xn,k + x) ≥ 0.

Since 0 ≤ xn,k+1 + xn,k + x ≤ 3 we obtain

0 ≤ Rn (e3) (x)− x3 ≤ 3
x (1− x)

Qn−1 (x)

n−1
∑

k=0

γn−1,k (xn,k+1 − xn,k)x
k (1− x)n−1−k

and the last expression is equal to 3 (Rn (e2) (x)− x2) . The proof is complete. �

Proposition 8. Let r be a natural number. Then the expression

A :=
x

Qn−1 (x)

n−1
∑

k=0

(x− xn,k+1)
r γn−1,kx

k (1− x)n−1−k

is equal to

B :=

r
∑

l=0

(

r

l

)

xr−l (−1)l
[

Rn (el+1) (x)− xl+1
]

.
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Proof. Since (x− xn,k+1)
r =

∑r

l=0

(

r

l

)

xr−l (−1)l xln,k+1 it is easy to see that

A =

r
∑

l=0

(

r

l

)

xr−l (−1)l
x

Qn−1 (x)

n−1
∑

k=0

γn−1,kx
l
n,k+1x

k (1− x)n−1−k .

Using (11) we see that

A =

r
∑

l=0

(

r

l

)

xr−l (−1)lRn (el+1)

and the result follows from the fact that
r
∑

l=0

(

r

l

)

xr−l (−1)l xl+1 = x (x+ (−x))r = 0.

�

For the Bernstein operator Bn it is well known that

Bne2 (x)− x2 =
x (1− x)

n

is a polynomial of degree ≤ 2. For rational Bernstein operators the expression Rne2 (x)−x2
is a never polynomial except thatQn−1 (x) = 1, the case of the classical Bernstein operator.
Indeed, suppose that Rne2 (x)− x2 = ps (x) for some polynomial ps (x) of degree s. Then
by (12)

x (1− x)
n−1
∑

k=0

γn−1,k (xn,k+1 − xn,k)x
k (1− x)n−1−k = ps (x)Qn−1 (x)

which shows that ps (x)Qn−1 (x) has degree ≤ n + 1. Hence s ≤ 2 and clearly x (1− x)
must be a factor of ps (x) . Hence ps (x) = Ax (1− x) . By uniqueness of the representation
(5) we infer that γn−1,k (xn,k+1 − xn,k) = Aγn−1,k, so xn,k+1 − xn,k = A, and we arrive at
the classical Bernstein operator.

4. Error estimates for rational Bernstein operators

Next we derive quantitative convergence results for Rn. By estimates of O. Shisha and
B. Mond (we refer to Theorem 8.1 in [21]) we conclude that

(15) |Rnf (x)− f (x)| ≤
(

1 +
1

h

√

Rn (e1 − x)2 (x)

)

ω1 (f, h)

for all f ∈ C [0, 1] and h > 0 where ω1 (f, h) is the first modulus of continuity defined by

ω1 (f, h) = sup
|x−y|≤h

|f (x)− f (y)| .

Since
Rn (e1 − x)2 (x) = Rn (e2) (x)− 2xRne1 (x) + x2 = Rne2 (x)− x2
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we obtain from (15) for h :=
√
∆n, defined in (13), and from Corollary 4 the following

result:

Theorem 9. The rational Bernstein operators Rn satisfies the following inequality:

(16) |Rnf (x)− f (x)| ≤
(

1 +
√

x (1− x)
)

ω1

(

f,
√

∆n

)

for all f ∈ C [0, 1] .

Similarly, Theorem 8.2 in [21] provides us with the estimate

|Rnf (x)− f (x)| ≤
(

1 +
1

2h2
Rn (e1 − x)2 (x)

)

ω2 (f, h)

for all f ∈ C [0, 1] and h > 0 where ω2 (f, h) is the second modulus of continuity defined
by

ω2 (f, h) = sup
|δ|≤h

{|f (x+ δ)− 2f (x) + f (x− δ)| : x± h ∈ [a, b]} .

Taking h =
√
∆n we obtain

Theorem 10. The rational Bernstein operators Rn satisfy the following inequality

(17) |Rnf (x)− f (x)| ≤
(

1 +
1

2
x (1− x)

)

ω2

(

f,
√

∆n

)

for all f ∈ C [0, 1] .

5. Voronovskaja’s Theorem

The classical Voronovskaja theorem states the following:

Theorem 11. Let f : [0, 1] → R be bounded and differentiable in a neighborhood of x and
has second derivative f ′′ (x) . Then

lim
n→∞

n · (Rnf (x)− f (x)) =
x (1− x)

2
f ′′ (x) .

We shall need the following generalization due to R.G. Mamedov [16], see also [13] and
[22] for quantitative estimates and higher order of differentiability.

Theorem 12. Let f ∈ C2 [0, 1] and Ln : C [0, 1] → C [0, 1] be a sequence of positive
operators such that Lnej = ej for j = 0, 1 and

lim
n→∞

Ln (e1 − x)4 (x)

Ln (e1 − x)2 (x)
= 0

for each x ∈ [0, 1] . Then
Lnf (x)− f (x)

Ln (e1 − x)2 (x)
→ 1

2
f ′′ (x)

when n→ ∞.
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The classical proof of the Voronovskaja theorem requires the computation of the mo-
ments of order r of the Bernstein operator Bn:

Bn [(e1 − x)r] (x) =
∑

k=0

(

k

n
− x

)r (
n

k

)

xk (1− x)n−k =:
1

nr
Tn,r (x) .

It is well known that Tn,r (x) is a polynomial of degree r in the variable x and one can
determine Tn,r (x) recursively by the formula

Tn,r+1 (x) = x (1− x)
[

T ′
n,r (x) + nsTn,r−1 (x)

]

,

see [14]. From this it is not difficult to show that for each r ∈ N there exists a constant
Ar > 0 such that

(18) Bn [(e1 − x)r] (x) ≤
√

Ar

1√
n
r ,

see e.g. [22]. In passing we mention that in the recent article [12] the following inequality
was established: for r ∈ N there exists a constant Kr > 0 such that

Bn

[

(e1 − x)r+1] (x) ≤ Kr√
n
Bn [(e1 − x)r] (x)

which clearly implies (18).
In the case of the rational Bernstein operator the moments Rn [(e1 − x)r] (x) are not

polynomials in the variable x as we have seen already at the end of Section 4 for r = 2.
Nonetheless, we can compute them explicitly but the formulae are much more complicated.
Indeed, if we use the binomial theorem for (e1 − x)r we obtain

Rn [(e1 − x)r] (x) =
r
∑

s=0

(

r

s

)

(−x)r−sRn (es) (x)

and since 0 = (x− x)r =
∑r

s=0

(

r

s

)

(−x)r−s xs we have

(19) Rn [(e1 − x)r] (x) =

r
∑

s=2

(

r

s

)

(−x)r−s [Rn (es) (x)− xs]

where we used the fact that Rn (es) = es for s = 0, 1. Theorem 3 provides then an explicit
formula for the moments. But in view of Theorem 12 we have to estimate

Rn (e1 − x)4 (x)

Rn (e1 − x)2 (x)

and it is therefore not sufficient just to estimate the moments.

Theorem 13. The fourth moment satisfies the following inequality;

Rn (e1 − x)4 (x) ≤ ∆n ·
[

Rn (e1 − x)2 (x)
] (

6x2 − 15x+ 12 + ∆n

)

.
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Proof. Formula (19) shows that Rn (e1 − x)4 (x) is equal to
(

Rn (e4) (x)− x4
)

− 4x
(

Rn (e3) (x)− x3
)

+ 6x2
(

Rn (e2) (x)− x2
)

.

By Theorem 3 we can calculate each summand explicitly and we obtain

(20) Rn (e1 − x)4 (x) =
x (1− x)

Qn−1 (x)

n−1
∑

k=0

γn−1,kx
k (1− x)n−1−k ·Hk

with

Hk = x3n,k+1 − x3n,k + x
(

x2n,k+1 − x2n,k
)

+ x2 (xn,k+1 − xn,k)

−4x
(

x2n,k+1 − x2n,k + x (xn,k+1 − xn,k)
)

+ 6x2 (xn,k+1 − xn,k)

which simplifies to

Hk =
(

x3n,k+1 − x3n,k
)

− 3x
(

x2n,k+1 − x2n,k
)

+ 3x2 (xn,k+1 − xn,k) .

We write Hk = (xn,k+1 − xn,k)Ak with

Ak = x2n,k+1 + xn,k+1xn,k + x2n,k − 3x (xn,k+1 + xn,k) + 3x2.

A straightforward calculation shows that

Ak = 3

(

x− 1

2
(xn,k+1 + xn,k)

)2

+
1

4
(xn,k+1 − xn,k)

2 ≥ 0.

Hence Ak is positive and and it is easy to see that

(21) Rn (e1 − x)4 (x) ≤ ∆n

x (1− x)

Qn−1 (x)

n−1
∑

k=0

γn−1,kx
k (1− x)n−1−k · Ak.

We write now

(22) Ak = 3 (x− xn,k+1)
2 + 3 (x− xn,k+1) (xn,k+1 − xn,k) + (xn,k+1 − xn,k)

2 .

Proposition 8 applied to the case r = 2 and 7 show that

x

Qn−1 (x)

n−1
∑

k=0

γn−1,k (x− xn,k+1)
2 xk (1− x)n−1−k

= Rn (e3) (x)− x3 − 2x
[

Rn (e2) (x)− x2
]

≤ (3− 2x)
[

Rn (e2) (x)− x2
]

.

Formula (21) and (22) in connection with the last inequality and the simple estimates
|x− xn,k+1| ≤ 1 and xn,k+1 − xn,k ≤ ∆n lead to

Rn (e1 − x)4 (x) ≤ ∆n (1− x) · 3 (3− 2x) ·
[

Rn (e1) (x)− x2
]

+∆n (3 + ∆n)
x (1− x)

Qn−1 (x)

n−1
∑

k=0

γn−1,k (xn,k+1 − xn,k) x
k (1− x)n−1−k .



CONVERGENCE OF RATIONAL BERNSTEIN OPERATORS 13

It follows that

Rn (e1 − x)4 (x) ≤ ∆n

[

Rn (e2) (x)− x2
]

((1− x) (9− 6x) + 3 + ∆n)

and the statement is now obvious since Rn (e2) (x)− x2 = R (e1 − x)2 (x) . �

Using Theorem 12 and Theorem 13 we obtain

Theorem 14. Let f ∈ C2 [0, 1] and assume that ∆n → 0 for the rational Bernstein
operators Rn : C [0, 1] → C [0, 1] . Then

Rnf (x)− f (x)

Rn (e1 − x)2 (x)
→ 1

2
f ′′ (x) .

6. Special classes of rational Bernstein operators

In [21] error estimates and convergence results have been given for rational Bernstein
operators Rn under the assumption that there exists a positive function ϕ ∈ C [0, 1] such
that

Qn−1 (x) := Bn−1ϕ (x) =
n−1
∑

k=0

ϕ

(

k

n− 1

)(

n− 1

k

)

xk (1− x)n−1−k

where Bn−1 is the classical Bernstein operator of degree n − 1. Then Qn−1 has clearly
positive Bernstein coefficients but in general one has to assume in addition that property
(W) is satisfied.

It is shown in [21, p. 42] that property (W) is satisfied provided that n is sufficiently
large and ϕ ∈ C2 [0, 1] . Later in this section we shall show that it suffices to assume only
that ϕ ∈ C1 [0, 1] , and we shall show by example that the result is not true for a Lipschitz
function. Now we cite from [21] the following result:

Theorem 15. Suppose that ϕ ∈ C [0, 1] such that Qn−1 (x) = Bn−1ϕ (x) satisfies property
(W). Then

|Rnf (x)− f (x)| ≤
(

1 +
1

2

√

maxx∈[0,1] ϕ (x)

minx∈[0,1] ϕ (x)

)

ω1

(

f,
1√
n
+

1

2m
ω1

(

ϕ,
1

n− 1

))

.

We want to show that Theorem 15 can be derived and improved from our previous
results. Indeed we want to show:

Theorem 16. Suppose that ϕ ∈ C [0, 1] such that Qn−1 (x) = Bn−1ϕ (x) satisfies property
(W). Then

|Rnf (x)− f (x)| ≤
(

1 +
√

x (1− x)
)

ω1

(

f,
1√
n
+

1

2m
ω1

(

ϕ,
1

n− 1

))

.

Obviously the result is better since
√

x (1− x) ≤ 1/2 and minx∈[0,1] ϕ (x) ≤ maxx∈[0,1] ϕ (x) .
We need the following result which is implicitly contained in [21]:
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Proposition 17. Let ϕ ∈ C [0, 1] positive and Qn−1 (x) = Bn−1ϕ (x) =
∑n−1

k=0 γn−1,kx
k

with γn−1,k = ϕ (k/(n− 1))
(

n−1
k

)

. If one defines

xn,k :=
γn−1,k−1

γn−1,k−1 + γn−1,k
=

kϕ
(

k−1
n−1

)

kϕ
(

k−1
n−1

)

+ (n− k)ϕ
(

k
n−1

)

then

(23) ∆n = sup
k=0,....n−1

|xn,k+1 − xn,k| ≤
1

2m
ω1

(

ϕ,
1

n− 1

)

+
1

n
,

where m = minx∈[0,1] ϕ (x) .

Proof. Define

ψh (x) =
xϕ (x− h)

xϕ (x− h) + (1− x+ h)ϕ (x)
.

Put h = 1/ (n− 1) and x = k/ (n− 1) then

(24) xn,k = ψ 1

n−1

(

k

n− 1

)

.

Similarly,

(25)
k

n
= τ 1

n−1

(

k

n− 1

)

for τh (x) =
x

1 + h
.

We want to estimate xn,k − k
n
and therefore we look at

ψh (x)−
x

1 + h
= x

(1 + h)ϕ (x− h)− xϕ (x− h)− (1− x+ h)ϕ (x)

(1 + h) (xϕ (x− h) + (1− x+ h)ϕ (x))

=
x · (1− x+ h) · (ϕ (x− h)− ϕ (x))

(1 + h) · (xϕ (x− h) + (1− x+ h)ϕ (x))
.

Further we can estimate with m := miny∈[0,1] ϕ (y)

xϕ (x− h) + (1− x+ h)ϕ (x) ≥ (1 + h)m

and we obtain that
∣

∣

∣

∣

ψh (x)−
x

1 + h

∣

∣

∣

∣

≤ x (1− x+ h)

(1 + h)2m
ω1 (ϕ, h) ≤

1

4m
ω1 (ϕ, h) .

where we used that 4x (1− x+ h) ≤ (1 + h)2 for all x ∈ [0, 1] and h > 0. Using (24) and
(25) it follows that for all k = 0, ....n and all n the following inequality

∣

∣

∣

∣

xn,k −
k

n

∣

∣

∣

∣

≤ 1

4m
ω1

(

ϕ,
1

n− 1

)
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holds. Since xn,k+1 − xn,k = xn,k+1 − k+1
n

+ 1
n
+ k

n
− xn,k we can estimate

(26) |xn,k+1 − xn,k| ≤
1

2m
ω1

(

ϕ,
1

n− 1

)

+
1

n
.

�

Proof of Theorem 16: Formula (23), the inequality
√
a + b ≤ √

a +
√
b for positive

numbers a, b, and (26) imply that

√

∆n ≤ 1√
n
+

√

ω1

(

ϕ, 1
n−1

)

2m
=

1√
n
+

1√
2m

sup
|x−y|≤ 1

n−1

√

|ϕ (x)− ϕ (y)|.

Further

sup
|x−y|≤ 1

n−1

√

|ϕ (x)− ϕ (y)| = sup
|x−y|≤ 1

n−1

|ϕ (x)− ϕ (y)|
√

|ϕ (x) + ϕ (y)|
≤
ω1

(

ϕ, 1
n−1

)

√
2m

.

and
√
∆n ≤ 1√

n
+ 1

2m
ω1

(

ϕ, 1
n−1

)

. Further (16) and the trivial estimate ω1 (f, δ) ≤ ω1 (f, δ
′)

for δ ≤ δ′ leads to

|Rnf (x)− f (x)| ≤
(

1 +
√

x (1− x)
)

ω1

(

f,
1√
n
+

1

2m
ω1

(

ϕ,
1

n− 1

))

which is the above estimate.
Finally we shall prove:

Theorem 18. Let ϕ ∈ C [0, 1] be strictly positive. If ϕ ∈ C1 [0, 1] then Qn−1 (x) :=
Bn−1ϕ (x) satisfies property (W) for sufficiently large n ∈ N. If ϕ is Lipschitz continuous
then a+ ϕ satisfies property (W) for sufficiently large n ∈ N and sufficiently large a > 0.

Proof. We use the notations from the proof of Proposition 17. In view of (24) it suffices
to show that the function x 7−→ ψh (x) is increasing if h > 0 is sufficiently small, or
equivalently, that for δ > 0 and h > 0 sufficiently small and for all x ∈ [0, 1] the inequality

(27) ψh (x) =
xϕ (x− h)

ch (ϕ) (x)
< ψh (x+ δ) =

(x+ δ)ϕ (x+ δ − h)

ch (ϕ) (x+ δ)

holds where
ch (ϕ) (x) := xϕ (x− h) + (1− x+ h)ϕ (x) .

Note that ch (ϕ) (x) converges to ϕ (x) uniformly in x when h tends to zero. Inequality
(27) means that

D (x, h, δ) := xϕ (x− h) ch (ϕ) (x+ δ)− xϕ (x+ δ − h) ch (ϕ) (x)

satisfies the inequality

(28) D (x, h, δ) < δϕ (x+ δ − h) ch (ϕ) (x) .
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By inserting and subtracting xϕ (x− h) ch (ϕ) (x) we conclude that

D (x, h, δ)

δ
= xϕ (x− h)

ch (ϕ) (x+ δ)− ch (ϕ) (x)

δ

+xch (ϕ) (x)
ϕ (x− h)− ϕ (x+ δ − h)

δ
.

If ϕ ∈ C1 [0, 1] we can find ξx,h,δ ∈ [x− h, x− h + δ] and ηx,h,δ ∈ [x, x+ δ] with

ϕ (x− h)− ϕ (x+ δ − h) = ϕ′ (ξx,h,δ) · δ
ch (ϕ) (x+ δ)− ch (ϕ) (x) = ch (ϕ)

′ (ηx,h,δ) · δ.
It follows that

D (x, h, δ)

δ
= xϕ (x− h) ch (ϕ)

′ (ηx,h,δ)− x · ch (ϕ) (x)ϕ′ (ξx,h,δ) .

In order to show (28) we note that ch (ϕ) (x) converges to ϕ (x) , and ch (ϕ)
′ (x) converges

to ϕ′ (x) for h → 0. Hence D (x, h, δ) /δ converges to 0 for h → 0 and δ → 0, and (28)
holds since

D (x, h, δ)

δ
<

1

2
m2 ≤ m

2
ϕ (x)2 ≤ ϕ (x+ δ − h) ch (ϕ) (x)

for m := minx∈[0,1] ϕ (x) and h sufficiently small.
Now assume that ϕ is only Lipschitz continuous. Clearly ch (ϕ) is Lipschitz continuous

and there exist M > 0 and N > 0 such that

|ϕ (x− h)− ϕ (x+ δ − h)| ≤ Mδ

|ch (ϕ) (x+ δ)− ch (ϕ) (x)| ≤ Nδ

where N does not depend on h. It follows that |D (x, h, δ)| /δ is bounded for all x ∈ [0, 1]
and h > 0 and δ > 0. If we replace now ϕ by a+ ϕ we see that

ch (a + ϕ) (x) = x [a + ϕ (x− h)] + (1− x+ h) [a+ ϕ (x)]

= a (1 + h) + ch (ϕ) (x) .

Then

D (x, h, δ, a+ ϕ) = x (a+ ϕ (x− h)) · (a (1 + h) + ch (ϕ)) (x+ δ)

−x (a + ϕ (x+ δ − h)) (a (1 + h) + ch (ϕ)) (x)

can be simplified to

D (x, h, δ, a+ ϕ) = D (x, h, δ, ϕ) + ax [ch (ϕ) (x+ δ)− ch (ϕ) (x)]

+xa (1 + h) [ϕ (x− h)− ϕ (x+ δ − h)] .

On the other hand

(a+ ϕ (x+ δ − h)) ch (a+ ϕ) (x) ≥ a2 (1 + h)

and by taking a > 0 sufficiently large we obtain the desired inequality. �
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We shall give an example of a positive function ϕ ∈ C [0, 1] such that Q2n (x) = B2nϕ
does not satisfy property (W):

Example 19. Let ϕa (x) = a +
∣

∣x− 1
2

∣

∣ for a > 0. Then

Q2n,a (x) := B2nϕa (x) =
2n
∑

k=0

(

a +

∣

∣

∣

∣

k

2n
− 1

2

∣

∣

∣

∣

)(

2n

k

)

xk (1− x)2n−k

has strictly positive Bernstein coefficients, and it satisfies property (W) if and only if
a > 1

2
.

Proof. It follows that

γ2n,k =

{ (

a+ 1
2
− k

2n

) (

2n
k

)

for k ≤ n
(

a− 1
2
+ k

2n

) (

2n
k

)

for n < k ≤ 2n.

It follows that
γ2n−1,n−1

γ2n−1,n

=
na+ 1

2

(n+ 1) a
and

γ2n−1,n

γ2n−1,n+1

=
(n + 1) a

na + 1
2

.

If
γ2n−1,k−1

γ2n−1,k
is increasing then necessarily

γ2n−1,n−1

γ2n−1,n
< 1 and this implies that na + 1

2
<

(n + 1) a, which means that 1
2
< a. Conversely, this condition implies that

γ2n−1,n−1

γ2n−1,n
<

γ2n−1,n

γ2n−1,n+1
. It is not difficult to see that the coefficients are increasing. �

Next we want to show by example that the positive polynomials Qn−1 (x) may not
converge in general to a continuous function even if the Bernstein operators Rn converge
to the identity. In particular there does not exists in this case a continuous function ϕ
with Qn−1 = Bn−1ϕ for all n ∈ N.

Example 20. The rational Bernstein operator Rn associated to the nodes xn,k =
√

k
n

for k = 0, ..., n converges to the identity operator but the associated polynomials Qn−1 (x)
defined by

Qn−1 (x) = (1− x)n +
n−1
∑

k=1

(

n− 1

k

) k
∏

l=1

√

l
n

1 +
√

l
n

xk (1− x)n−1−k

do not converge to a continuous function, in particular Qn−1 is not equal to Bn−1ϕ for
some continuous function ϕ ∈ C [0, 1] .

Proof. Clearly 1/
√
n ≤ |xn,1 − xn,0| ≤ ∆n and

|xn,k+1 − xn,k| =
√

k + 1

n
−
√

k

n
=

k+1
n

− k
n

√

k+1
n

+
√

k
n

≤ 1√
n

1√
k + 1

.
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Next we consider for l = 1, .., n− 1

1− xn,l
xn,l

=
1− x2n,l

xn,l (1 + xn,l)
=

1− l
n

√

l
n

1

1 +
√

l
n

=
n− l

l

√
l

√
n+

√
l
.

Since 2
√
l ≤ √

n+
√
l we can estimate the last factor by 1/2. It follows that

γn−1,k =
k
∏

l=1

1− xn,l
xn,l

≤
(

n− 1

k

)

1

2k

and

Qn−1 (x) ≤
n−1
∑

k=0

(

n− 1

k

)

1

2k
xk (1− x)n−1−k =

(

1− x

2

)n

.

Then Qn−1 (x) converges to 0 for 0 < x ≤ 1 but Qn−1 (0) = 1 for all n. �

7. Final Comments

We want to comment on rational Bernstein operators Rn from a different point of view:
Given a strictly positive polynomial Qn−1 (x) we consider the space

En =

{

p (x)

Qn−1 (x)
: p (x) is a polynomial of degree ≤ n

}

.

Then En is an extended Chebyshev space over any interval [a, b], meaning that each non-
zero function f ∈ En has at most n zeros (including multiplicities) in [a, b] . We call a
system of functions Pn,k, k = 0, ..., n in an n+1 dimensional linear space En of Cn [a, b] a
Bernstein basis, if each Pn,k has exactly k zeros in a and n−k zeros in b. Thus the system
of functions

xk (1− x)n−k

Qn (x)
, k = 0, ..., n− 1

is a Bernstein basis in En for [0, 1] . Bernstein bases in extended Chebyshev spaces have
been studied by many authors, see [6], [7], [8], [9], ,[10], [17], [18].

Recently, Bernstein operators for an extended Chebyshev space En of dimension n+ 1
have been introduced by J. M. Aldaz, O. Kounchev and the author which by definition
are operators of the form

Snf (x) =

n
∑

k=0

f (xn,k)αn,kpn,k (x)

where pn,k (x) , k = 0, ..., n, is a Bernstein basis for En. The nodes xn,k and the weights
αn,k are chosen such that Snf0 = f0 and Snf1 = f1 where f0 is a strictly positive function
in En and f1 ∈ En has the property that f1/f0 is strictly increasing. We refer to [1],
[2], [3], [4] and [19] for a systematic study (existence of Bernstein operators fixing two
functions and shape preserving properties) and to [20] for a discussion of Schoenberg-type
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operators in the setting of extended Chebyshev space. It seems to be a difficult task to
establish convergence results of Bernstein operators in the setting of extended Chebyshev
spaces, and the rational Bernstein operators considered here seems to be the simplest
non-trivial example beyond the classical case of Bernstein operators.
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