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CONVERGENCE OF RATIONAL BERNSTEIN OPERATORS
HERMANN RENDER

ABSTRACT. In this paper we discuss convergence properties and error estimates of ra-
tional Bernstein operators introduced by P. Pitul and P. Sablonniere. It is shown that
the rational Bernstein operators R,, converge to the identity operator if and only if A,
the maximal difference between two consecutive nodes of R,,, is converging to zero for
n — 0o. Error estimates in terms of A,, are provided. Moreover a Voronovskaja theorem
is presented which is based on the explicit computation of higher order moments for the
rational Bernstein operator.

1. INTRODUCTION

Let C'[0,1] be the set of all continuous real-valued functions on the interval [0, 1]. The
classical Bernstein operator B, : C'[0,1] — C'[0,1] is defined by

Buf (x) = Z () () amar.

see e.g. [1I], [14]. In [2I], P. Pitul and P. Sablonniere introduced rational Bernstein
operators which are positive operators of the form

& n\ z* (1 —xz)""
) Ruf ()= 3 (o) s () =50

where Q),,—1 () is a given strictly positive polynomial over [0, 1] of degree < n—1. Further
it is assumed that (),,—1 has two additional properties: (i) the Bernstein coefficients w,,_1
in the representation

(2) Qn-1 (z) = gwn_l,k_l (" . 1) o (1= z)"

are strictly positive and (ii) the sequence wy,,_1, k =0, ...,n — 1 satisfies the inequality
Wp—1,k—1Wn—1,k+1 kE+1 n—k
(O n—k—1
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for k = 1,...,n — 1. Then, according to the results in [21], there exist positive weights
Wy, k = 0,...,n, and increasing nodes 0 = z,0 < z,1 < ... < &, = 1 such that R,
reproduces the constant function eq (z) = 1 and the linear function e; (z) = z, i.e. that

(3) Rnej =€ fOI'j = O, 1.

The weights W, and the nodes x, j are uniquely defined through the condition (3] and
they are given by the formula
kwn k—1
Tpr = ’ fork=1,..,n—1
* kwn -1+ (0 — k) wnp

k k
Wpr = —Wpk—1+ (1 — —) wpi fork=1,...,n—-1
n n

and the conditions z,, 0 = 0 and x,,, = 1 and w, 9 = @,,—1 (0) and w,,, = Q-1 (1) . It was
shown in [21I] that the rational Bernstein operators R,, have the same shape preserving
properties as the classical Bernstein operator B,,. Moreover it was proved that R, con-
verges to the identity operator and that a Voronovskaja-type theorem holds under the
additional assumption that there exists a positive continuous function ¢ such that

k n—1
wn_l’k—@<m) ( L ) fork—O,...,n—l

for all natural numbers n. The main purpose of this article is to study the convergence
of the rational Bernstein operators in the general case. Our main result states that the
operators R,, converge to the identity operator if and only if
(4) A, = sup |ZTpgt1 — Tnkl

k=0,..,n—1
converges to 0. The main innovation in the present article is the computation and esti-
mation of the moments

R, (e; —2)" (z) and R, (e,) (x) — 2"

for the rational Bernstein operator R,, where e, () = z". For example, we shall prove the
inequality
| Ry (e2) (x) = 2®| < sup |an ki1 — Tl -2 (1 — )
0<k<n—1

which implies the convergence of R, to the identity operator provided that A, — 0.
Convergence results and error estimates of O. Shisha and B. Mond for positive operators
are used for explicit error estimates. Results of R.G. Mamedov lead to a Voronovskaja
theorem for rational Bernstein operators in the general setting. We shall illustrate the
results by examples which are of different type as those in [21].

The paper is organized as follows: in the second section we shall recall briefly the basic
construction of the rational Bernstein operators as given in [21I]. We shall show that
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there are many natural examples of rational Bernstein operators: starting with nodes
0=2p0 < Tp1 <..<Tpp-1<Tp, =1 and a positive constant v,_; o > 0 we define

k
1-— Tl
Yn—1,k *= Vn—1,0 H

X
=1 n,l

fork=1,...,nand Q,_1 (z) := ZZ;& Yook (1 — :)s)n_l_k . Then Q,,_; satisfies property
(W) and

a ab (1 — )"
R,f(x) = T n— n—1k-1) — ~ /N
.f( ) kZ:O .f( ,k) (’y 1,k + Yn—1,k 1) Qn—l (ZII’)
is a rational Bernstein operator R, fixing ey and e;. In Section 3 we compute the expres-
sions R, (e,) (x) — 2" explicitly and obtain the above-mentioned criterion for the conver-
gence of R,. Section 4 is devoted to error estimates. In Section 5 we prove a Voronovskaja
result. In Section 6 we discuss the special case of rational Bernstein operators of [21] and
improve some results. Further we present a sequence of rational Bernstein operators R,
converging to the identity operator where the polynomials @, (x) converges pointwise to a
discontinuous function. In the final Section 7, we shall comment on links between rational
Bernstein operators and general results about Bernstein operators fixing two functions in
the framework of extended Chebyshev systems.
By C7[0,1] we shall denote the set of all  times continuously differentiable functions
on the unit interval [0, 1] and N will denote the set of all natural numbers.

2. RATIONAL BERNSTEIN OPERATORS

For convenience of the reader we recall the basic construction of the rational Bernstein
operator R, as outlined in [2I]. Let @Q,,—1 be a polynomial of degree < n — 1. Instead of
the representation (2)) it is more convenient to work with

n—1
(5) Quor () = D pporpa® (1 —2)"
k=0

S0 Yootk = Wu—1x(","). Since a¥ (1 — )" =k =) R (1= )" we
infer that

n

Qn-1(x) = (Yn-1k + Yn-1k-1) " (1-— x)n_k
k=0

with the convention that v,_1_1 = 0 and 7,1, = 0. In view of (Il the requirement
R,1 =1 is then equivalent to

Qn-1 () = ;wn’k <Z> zk (1— x)ﬂ—k
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and we conclude that

o n
Wy, (k‘) = Yn—-1,k T Vn-1,k—1-

Further we want that R,e; = e; for the linear function e; (x) = x which is equivalent to
the identity

(6) 2Qu_i (z) = kz; Tk T (Z) 2t (1 — )" ",

Inserting x = 0 implies that that z,, o = 0. From the identity

n—1
TQp_1 () = Z%-Lk'u@kﬂ (1—a)"" ok Z”Yn Lk (1 —2)"
k=0

and (6) we infer that for k =1,...n

Tn—1,k—1
(7) o= Tn—1,k—1 Yn—1,k—1 Tn—1,k
nk T T - Yn—1,k—1 "
W,k Yn—1,k + Yn—1,k—1 1 + :n ik

Hence, given the polynomial Q),,—1 (x), there is at most one choice for the nodes z,, and
the weights w,, ,, such that R, fixes ey and e;. However, in general the numbers z,, ;, defined
by (@) are not in the interval [0, 1], and they are in general not increasing numbers, for
see Example [[9 in Section 6. From formula (7) and the fact that f(z) = z/(1+x) is
strictly increasing we derive that z,,j is strictly increasing if and only if
Tnok-1 _ Wn-lk-1 b is strictly increasing.
Tn—1,k Wp N — k

This is exactly condition (W). The construction of the rational Bernstein operator R,, has
the disadvantage that one has to check the condition (W) for the Bernstein coefficients of
the polynomial (),,_; which in general might be cumbersome.

Example 1. Tuke Q,_1 (x) = 1 + 22, then straightforward calculations show that

= (1) (a6 s)
n\n(n—1)+k(k-1)
()

VYn-1k-1+t Vn-1,k =

k n(n—1)
E(n—=1)(n—=2)+(k—1)(k—2)
Tk =T n(n—1)+k(k—1)

and the rational Bernstein operator R, is given by

::i ( ) n— 1()n+_k1()k —1)

(1 —x) "

1+ 22

/ (xn,k)
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We now change our point of view: instead of starting with the polynomial ¢),,_; we just
start with an increasing sequence
0=op0 < Tp1 <. <Tpp-1<Tpy =1

’Yn 1,k—1

We use equation ([7) to define . Clearly () is equivalent to

—1,k—1 Tn—1,k—1 Tn—1,k—1 Tk
Tk <1 + T ) = and n = n
Yn—1,k Yn—1,k Yn—1,k 1-— T,k

which is a recursion formula for v,  provided we have defined ~,_; . Hence define

k
1-— Tnl
(8) Vn—1,k ‘= ”Yn—l,OH . —.
I=1 %

These remarks lead to the following statement:

Proposition 2. Let 0 = 2,0 < Tp1 < ... < Tpp-1 < Tppn = 1. Let 110 > 0 and define
Yn-1k 0y (8) for k =1,....,n and define

n—1
Qu-r (2) = norpa® (1 —2)" 78
k=0
Then Q,_1 satisfies property (W) and the operator

. k(1 —xz)" "
f kzof Tk (%z Lk T Yn—1k- 1)@1——1(1’)

1s the rational Bernstein operator R, fixzing e and e;.

t Yn—1,k—1 __ Tn,k
Yn—1,k 1—zp, 1"

This clearly implies that (7)) holds, so the nodes of the operator R,, are just the given
numbers z,, ;. Since x,,;’s are increasing we see that % are increasing and therefore

property (W) holds. O

Proof. There is not much to show: by definition of v,_;; we see tha

3. CONVERGENCE OF RATIONAL BERNSTEIN OPERATORS
The following result is of central importance:

Theorem 3. Let R, be the rational Bernstein operator for the polynomial Q,—1 (x) of
degree < n — 1 satisfying (1) and (i) in the introduction and let x,; be defined by (7).
Then the following identity

s—2 n—1

]'_I s—1— s—1— n—1—
(9) R (e.)(z) —a° = Q = xlz%lk SAl g1ty g (1 — gk
n= 1=0

—0
holds for the polynomial es (x) = x* and s > 1.
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Proof. At first we note that (7)) implies that

1-— T,k 1
Yn-1k T Vn-1k-1 = Yn-1hk-1——"—"" T Yn-1k—1 = Vn—1,k—1 .
Tk Lk

It follows that

_ M - Vo1 )1 2% (1 — x)n_k
Bof = £(0) n-10 Qn_1(x) * ; J (@ni) Tk Qu-1(z)

Let s > 1 and e, (v) = 2°. Since x,0 = 0 and ¢, (z,0) = 7}, 5 = 0 we have

(10) Qn-1 () Ry (es) (1) = Y norpazyy - ab (1 —2)" ™"
k=1

Using an index transformation we arrive at
n—1

(11) Quor (@) R (€2) () = 03 a2 (1 — )" 7"
k=0

Writing 2% (1 — )" " F = 2% (1 — 2)" ™" 4+ 281 (1 — 2)" " we obtain

n—1
Quot () Ry () (1) = @) qmoasaiyly - 2b (1—2)" "
k=0

e

s—1 k+1 n—1-k
+x Vn-1kTp i1 " T (1—x) )
=0

—_

ol

The second sum is equal to xzzzlfyn_m_le;kl cxk (1 - :L’)"_k. Using the convention
Tn—-1n = Yn—1,—1 = 0 and the fact that z, o = 0 we obtain

Qn-1(2) Ry (e5) (z) = 2 Z (f}/n—l,kfo;cl-i-l + ”Yn—l,k—lez,_kl) -t (1 - x)n_k .
k=0

On the other hand, we have the trivial identity

T
s—1 s—1\ __ s—1 n.k s—2
Tn—1k (In,k—l—l - zn,k ) = Tn—1k (xn,k—l—l + 1— 71 kxn’k (zn,k - 1))
n,
d . _ l—mn,k
and using Yn—1k = Yn-1,k—1"5
s—1 s—1 o s—1 ’}/n_l,k_l s—2
Tn—1k (In,k—l—l - zn,k ) = Tn—1k (In,k—l-l + 5 v xn,k (I%k - 1)
n—1,

s—1 s—1 s—2
= Tn—1kTp g1 T In—1,k—1Tp p — Vn—1k—1T, -
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It follows that

Qn-1(x) Ry (&) () = o Z Yn—1,k (xfh_klﬂ - xfz,_kl) -t (1- x)n_k
k=0

n

s—2 _k n—k

+x E V-1 k—1Tp ) T (1—z)"".
k=0

As v,—1, = 0, the indices in the first sum range only up to n — 1. The first summand of
the second sum is zero. Using ([I0)) for s — 1 instead of s for the second sum we arrive

n—1
Qno1 (1) By () (1) = a(1=2) > ynorw (i — i) -2f (1 —a)" 7"
k=0

2 Qu-1 () R (e5-1) (2) -

Now use this formula inductively and recall that R, (e¢;) = e; leading to the statement in
theorem. ]

Corollary 4. The rational Bernstein operators R, satisfy the inequality

}Rn (e2) (z) — xz} < sup |Tpki1 — Tokl -2 (1 —2).
0<k<n—1

Proof. From Theorem [3] for s = 2 we see that

n—1
z(l—=x nel—
(12 Rulen) @) —a* = LS s — ) at (1 — 2
Qo (1) 2
and then the statement is obvious since v,_1 is positive. O

Corollary 5. The rational Bernstein operators R, converges to the identity operator if
and only if

(13) A, = Sup  |Tpkt1 — Tokl
0<k<n—1

converges to 0.

Proof. If A, converges to zero it follows that R,es converges uniformly to ey and Ko-
rovkin’s theorem shows that R, converges to the identity operator. Conversely, suppose
that R, converges to the identity operator and suppose that A, does not converge to 0.
Then there exists 6 > 0 and a subsequence (n;), such that A,, > 24. Hence for each I
there k,; € {0, ...,n; — 1} such that

(14) |xm,kz+1 — $nz7kz| 2 5

Since z,,; € [0, 1] we can pass to a subsequence of z,, 5, which converges to some point x
and we can pass again to a subsequence of the subsequence such that x,, x, converges
to xg and w,, k, 41 converges to x;. From (I4) it follows that |r; — xo| > J, and since
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Toyky < Ty g+1 We infer that zp < z;. Now we take a natural number 7y such that
|20 — @, k| < 6/3 and |z — @y, sy, 41| < 6/3 for all r > ro. From the monotonicity of
Tpyp for k=0, ...,n;—1 it follows that ,, i ¢ [xo+ /3,21 — /3] forall k =0, ...,n;, and
[ > lp. Now construct a continuous non-zero function f with support in [zg + /3,21 — /3]
such that f(§) # 0 for some & € [zg+d/3,21 —3/3]. Then B, f(x) = 0 for all x €
[0,1]. By assumption, B,,;, f (§) converges to f (§) # 0. Since By, f () = 0 we obtain a
contradiction completing the proof. O

Corollary 6. The following inequality holds for all x € [0,1] and for all natural numbers
s> 2:
0<z*<R,(e)(x).

Proof. The right hand side in () is strictly positive for x € [0, 1] and s > 2. Alternatively,
one may argue that the function e, is convex, and the result follows from the remarks in
21, p. 46]. 0

In the rest of this section we shall prove some inequalities which will be needed in
Section 5:

Proposition 7. The following inequality holds
0<R,(e3)(x)—2*><3- (Rn (e9) (x) — 1’2) )

Proof. From Theorem [3] for s = 3 we see that

1—x nel—

R, (es) (x) —2° = Q Z% LeAgr (1 —z)"
n— 1

where

Ay = xi,k—i—l - xik + 2 (Tn 1 — Tng) = (Tnpr1 — Tok) (g1 + Tpg + ) > 0.

Since 0 < 2z, p1+1 + Tk + 2 < 3 we obtain

1—12) el
0= Buen) (@)= <3S s =z at (1 — 2
Qur (2) 2
and the last expression is equal to 3 (R, (e2) (x) — 2%). The proof is complete. O

Proposition 8. Let r be a natural number. Then the expression

3
—

xr
A= — — Ty r . k 1— n—1—k
Qn—l (SL’) - (LL’ z ,k-l-l) Yn—1,kT ( SL’)

B = Z (7)ot 0 [ et 0) = 7.

e
Il

18 equal to
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Proof. Since (z — @y 1) = > (7)™ (—1) xil k41 it is easy to see that

" (r ne—1—
A:Z(l)xr_ Z’}/n 1kxnk+1x (1 ZI}') ! k.
1=0 Qn 1
Using ([III) we see that

A=Z;C)f4en%a@ﬂ>

and the result follows from the fact that

i C) =D 2 =z (r+ (—2)" =0,

For the Bernstein operator B,, it is well known that
r(l—=x
Bpes (z) — 2% = z(l-2)
n

is a polynomial of degree < 2. For rational Bernstein operators the expression R,e; (z)—x?

is a never polynomial except that (,,_1 (x) = 1, the case of the classical Bernstein operator.
Indeed, suppose that R,e; (x) — 22 = p, (z) for some polynomial p, (z) of degree s. Then

by ([12)

i
L

£ (1=2) Y Yomts (@t — @) 2 (1= 2)" 7 = p (2) Qus (2)
=0

ol

which shows that p, () Q,—1 () has degree < n + 1. Hence s < 2 and clearly = (1 — x)
must be a factor of ps () . Hence p, (x) = Az (1 — z) . By uniqueness of the representation
[@) we infer that v,—1 4 (Tnrt1 — Tnk) = AVn—1ks SO Tpgt1 — Tux = A, and we arrive at
the classical Bernstein operator.

/\

4. ERROR ESTIMATES FOR RATIONAL BERNSTEIN OPERATORS

Next we derive quantitative convergence results for R,. By estimates of O. Shisha and
B. Mond (we refer to Theorem 8.1 in [21]) we conclude that

(15) Rt (@) = P01 < (14 a1 =0 @) ) (1)
for all f € C'[0,1] and h > 0 where w; (f, h) is the first modulus of continuity defined by
wi (f,h) = sup |f(x) = f(y)l.

lz—y|<h

Since
R, (e — )% (2) = Ry, (e2) (z) — 22 Rpeq () + 22 = Ryes (x) — x
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we obtain from (I5]) for h := y/A,, defined in (I3), and from Corollary [ the following
result:

Theorem 9. The rational Bernstein operators R,, satisfies the following inequality:

(16) Bof (@) = [ (@) < (14 Vo =2)) w (f,v/A)
for all f € C'[0,1].
Similarly, Theorem 8.2 in [21] provides us with the estimate
1 2
Rl (o) = £ = (14 gyt = 0 @) ) wn (£:1)

for all f € C'[0,1] and h > 0 where ws (f, k) is the second modulus of continuity defined
by

w2(f,h):lﬁ&%{|f(x+5)—2f(f€)+f(f€—5)|ixihG [a, b1} -

Taking h = v/A,, we obtain

Theorem 10. The rational Bernstein operators R, satisfy the following inequality

(17 Rt (@)= £ < (14500 ) s (£, VB)
for all f € C'0,1].
5. VORONOVSKAJA’'S THEOREM

The classical Voronovskaja theorem states the following:

Theorem 11. Let f : [0,1] — R be bounded and differentiable in a neighborhood of x and
has second derivative f” (x). Then

lim - (Bof (2) — f () = “L0)

n—oo 2

f" (@)
We shall need the following generalization due to R.G. Mamedov [16], see also [13] and
[22] for quantitative estimates and higher order of differentiability.

Theorem 12. Let f € C?[0,1] and L, : C[0,1] — C[0,1] be a sequence of positive
operators such that Lne; = e; for j = 0,1 and

Ly (e1 — )" ()

PR e @)
for each x € [0,1]. Then

Lo(er— )’ (x) 2
when n — 00.
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The classical proof of the Voronovskaja theorem requires the computation of the mo-
ments of order r of the Bernstein operator B,:

Buller o1 = X (E-2) (1)t -0y = L1, o)

k=0
It is well known that T, , (z) is a polynomial of degree r in the variable x and one can
determine T, , (z) recursively by the formula
Toyi1 (@) =2 (1= 2) [T}, () + nsT, -1 (z)]

see [14]. From this it is not difficult to show that for each r € N there exists a constant
A, > 0 such that
1

(18) By l(er — )] (z) < \/EW’

see e.g. [22]. In passing we mention that in the recent article [12] the following inequality
was established: for » € N there exists a constant K, > 0 such that
K,

B, [(61 — :E)TH} (r) < an [(e1 — 2)"] (x)

which clearly implies (IS]).

In the case of the rational Bernstein operator the moments R, [(e; — z)"] (z) are not
polynomials in the variable x as we have seen already at the end of Section 4 for r = 2.
Nonetheless, we can compute them explicitly but the formulae are much more complicated.
Indeed, if we use the binomial theorem for (e; — )" we obtain

Baller =210 =3 (1) (o~ Rufe)

s=0 s

and since 0 = (z —2)" =>"_ (1) (—=z)"""2* we have

(19) Bul(er—2)](@) =3 (

where we used the fact that R, (e5) = e, for s = 0, 1. Theorem [3] provides then an explicit
formula for the moments. But in view of Theorem [12] we have to estimate

R, (er — )" (2)
R, (e — )" (2)

and it is therefore not sufficient just to estimate the moments.

Theorem 13. The fourth moment satisfies the following inequality;
R, (e; —x) (z) <A, - (R, (e1 — ) ()] (62" — 15z + 124+ A,,) .
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Proof. Formula (I9) shows that R, (e; — z)* (z) is equal to
(R (e4) (z) — ) — 4z (R, (e3) (z) — 2°) + 627 (R, (e2) (z) — z7) .

By Theorem [B] we can calculate each summand explicitly and we obtain

x (1 - ZL’) k n—1—k
(20) R, (e1 — x)4 () — —t Yn-1,2" (1 — ) - Hy
G () 2=
with
Hy =y — T+ (200 — 25 4) + 27 (Topn — Tog)

—4x (2] jo1 — Vo g + T (Tt — Tng)) + 627 (Tnp1 — Tag)
which simplifies to
Hy, = (xi,k+1 - xik) — 3z (Ii,k—i-l - xik) +32% (Tp i1 — Tog) -
We write Hy = (X k11 — Tn i) A with
A = xi,k—i-l + T pp1Tn g + xik — 3z (SL’n,k—i-l + xmk) + 3$2.

A straightforward calculation shows that

1 S|
A =3 (SC 3 (@1 + Ink)) + 1 (T jor1 — xn,k)2 > 0.

Hence Ay is positive and and it is easy to see that
(21) R, (e — )" (2) < Anw > nowa® (1—2) A
@n-1(7) 4=

We write now

(22) Ap =3 (x — xn,k+1)2 +3 (@ — Tppt1) (Tnprr — Tog) + (Tnpyr — In,k)2 .

Proposition [§ applied to the case r = 2 and [ show that

. -1
@n-1(2) {5

= R, (e3) () —2° — 22 [R, (e2) () — 2°] < (3 —22) [R, (e2) (x) — 7] .

Formula (2I)) and (22) in connection with the last inequality and the simple estimates
|z — 2 1] <1 and 2,511 — 2 < A, lead to

Ry(er—x)' (x) < A, (1—2)-3(3—21) [R,(e1)(2) — 2?]
x(l—ux) —

"—An (3 + An) m Z Yn—1,k (flfn’k_,_l — xn,k) fL’k (1 — LL’)n_l_k .
n= k=0

3

Yn—1,k (z — xn,k+1)2 z* (1- x)n_l_k
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It follows that
R, (e1 — )" (z) < A, [R, (e2) (x) — 2% (1 — ) (9 — 62) + 3+ A,)
and the statement is now obvious since R, (es) (z) — 2% = R (e; — z)° () . O
Using Theorem [12] and Theorem [I3 we obtain

Theorem 14. Let f € C?[0,1] and assume that A, — 0 for the rational Bernstein
operators R, : C'[0,1] — C'[0,1]. Then
R f(x) = f(z) 1

Ry (61 — :c)2 (@) - §f (z).

6. SPECIAL CLASSES OF RATIONAL BERNSTEIN OPERATORS

In [21] error estimates and convergence results have been given for rational Bernstein
operators R,, under the assumption that there exists a positive function ¢ € C'[0, 1] such

that .
@n1(2) = Buap (2) = ;so <n ﬁ 1) <n L 1):#“ (1—a)

where B, is the classical Bernstein operator of degree n — 1. Then @,,_; has clearly
positive Bernstein coefficients but in general one has to assume in addition that property
(W) is satisfied.

It is shown in [2I) p. 42] that property (W) is satisfied provided that n is sufficiently
large and ¢ € C?[0,1]. Later in this section we shall show that it suffices to assume only
that o € C10, 1], and we shall show by example that the result is not true for a Lipschitz
function. Now we cite from [21] the following result:

Theorem 15. Suppose that ¢ € C'[0,1] such that Q,—1 () = Bn_1¢ (x) satisfies property
(W). Then

1 [max,ep] ¢ () 1 1 1
R, — <145y —== =+ — — ) -
Ruf (@)= ()] < ( 2\/mmxe[w(x) N e O
We want to show that Theorem can be derived and improved from our previous
results. Indeed we want to show:

Theorem 16. Suppose that ¢ € C'[0,1] such that Q,—1 () = Bn_1¢ (x) satisfies property
(W). Then

Raf () = F)] < (14 VA=) (£ g (02 ) ).

Obviously the result is better since y/x (1 — ) < 1/2 and ming,cp 1) ¢ (z) < max,epq1) ¢ (@) .
We need the following result which is implicitly contained in [21]:
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Proposition 17. Let ¢ € C'[0,1] positive and Q,—1 () = Bh_1p (z) = ZZ;& Yro1 k"
with Y1 = ¢ (k/(n — 1)) (".'). If one defines

o Vn—1,k—1 _ ke (%)
T g1 F et R (%) +(n—Fk)p (%)
then
1 1 1
(23) A, = k:osf.l.l.)n—l | Ty 1 — Tpge| < pa (% m) + o
where m = mingep 1] ¢ () -
Proof. Define
B xp(xr—h)
Yn (@) = xo(x—h)+(1—x+h)p(x)
Put h=1/(n—1)and x = k/ (n — 1) then
k
(24) [L’mk:’l/)ﬁ <n_1>.
Similarly,
k k x
(25) S =T (n—l) fOTTh(ZE):1+h-

We want to estimate x,, 5, — % and therefore we look at

n () — T I(l—l—h)ap(m—h)—zap(x—h)—(l—x+h)g0(z)
1+h (1+h)(zp(x—h)+ (1 —x+h)p(x))
- (l—z+h)-(plx—h)—p()
(1+nh) - (xp(x—h)+(1—xz+h)p(x))
Further we can estimate with m := minyeo1) ¢ (v)

zo(x—h)+(I—ax+h)p(x)>(1+h)m

and we obtain that
z(l—x+h
n () ( )

(1+h)’m

where we used that 4z (1 — z 4+ h) < (1 + k) for all z € [0,1] and h > 0. Using (24)) and
(29) it follows that for all k =0, ....n and all n the following inequality

k < 1 1
—w —_—
= 4m 1 (p’n—l

o
1+h

1
W1 ((pv h) < %wl ((pv h) :

' <

Tk — —
n
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holds. Since , p11 — Tpk = Tp g1 — % + % + % — Tp We can estimate
1 1 1

26 T, —Tpk| < —w ,— |+ —.

(26) . ’k|_2m 1(S0n—1) n

O

Proof of Theorem Formula (23)), the inequality v/a + b < /a + /b for positive
numbers a, b, and (206) imply that

VEsLaflem) L L @l

S
)
3
£}
<
A

|

Further

\/‘QO(SL’)—QO(y)‘: |Q0(x)_()0(y)| <w1 (‘Pvﬁ)'

sup sup <
jo—yl< 2 e—yl< 2y Ve (@) + ¢ ()] v2m

and v/A,, < %%—ﬁwl (¢, =1) . Further (I6) and the trivial estimate w; (f,8) < w; (f,d")

for § < ¢’ leads to

Bof (1) = f (@) < (1+ Va0 —2)) (f% g (Wﬁ»

which is the above estimate.
Finally we shall prove:

Theorem 18. Let ¢ € C[0,1] be strictly positive. If o € C1[0,1] then Q,_1 (z) :=
Bn_1¢ () satisfies property (W) for sufficiently large n € N. If ¢ is Lipschitz continuous
then a + ¢ satisfies property (W) for sufficiently large n € N and sufficiently large a > 0.

Proof. We use the notations from the proof of Proposition 7l In view of ([24)) it suffices
to show that the function x —— 1)y, (x) is increasing if A > 0 is sufficiently small, or
equivalently, that for § > 0 and h > 0 sufficiently small and for all z € [0, 1] the inequality

(x+d)p(x+d—h)
cn () (z+0)

_wp (x —h)
27) (@) == @

holds where

<wh($—|—(5>:

e () (z) ==zp(x—h)+(1—x+h)p(x).
Note that ¢, (¢) (z) converges to ¢ (z) uniformly in x when h tends to zero. Inequality
(27) means that

D (xz,h,8):=xp(x—h)cy (p)(x+3d) —xp(x+0—h)c, (@) (x)
satisfies the inequality
(28) D (xz,h,d) <dp(x+0—"h)cy (o) (x).
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By inserting and subtracting zp (z — h) ¢, () (z) we conclude that

D (z,h,0) cn () (x +0) — en () (x)
) )

+xch(gp)(x)w(£p_h)_§($+5_h).

= zp(z—h)

If p € C'[0,1] we can find &, 45 € [x — h,x — h+ 0] and 7,45 € [x, 2 + §] with
ple—h)—p@+d—h) = ¢ (&ns)-0
cn (@) (@ +0) —an(p) (@) = cn(®) (Nope) 0.
It follows that
D (z,h,0)
J

In order to show (28) we note that ¢, () (x) converges to ¢ (z), and ¢, (p)’ (z) converges
to ¢’ (x) for h — 0. Hence D (z,h,d) /§ converges to 0 for h — 0 and 6 — 0, and (28)
holds since

=xzp(x—h)c, (@)/ (nm,h,5> —x-cp(p) () ¢’ (fzp,h,é) .

M<%m?s%mx)zSw<x+5—h>ch<¢><x>

for m := mingeo1) ¢ () and h sufficiently small.
Now assume that ¢ is only Lipschitz continuous. Clearly ¢, (¢) is Lipschitz continuous
and there exist M > 0 and N > 0 such that
lo(x—h)—p(x+d—h) < Mo

lcn (0) (2 +0) —en (@) (2)] < NO

where N does not depend on h. It follows that |D (x, h,d)| /0 is bounded for all z € [0, 1]
and h > 0 and § > 0. If we replace now ¢ by a + ¢ we see that

cnla+e)(zr) = zla+tpx—h)]+ 1 —x+h)[a+ ¢ ()]
= a(l+h)+c(p) ().
Then
D (z,h,0,a+¢) = xz(a+e(@x—"n)) (a(l+h)+cn(p))(x+90)
—z(a+¢@+0—h))(a(l+h)+e(p) (@)
can be simplified to
D (z,h,6,a+¢) = D(x,h,6 )+ az(c, (@) (z+9)—cn(p) (x)]
+xa(l+h)[p(x—h)—p(x+J—h)].
On the other hand
(a+@@+d—h))cy(a+p)(x)>a®(1+h)
and by taking a > 0 sufficiently large we obtain the desired inequality. ([
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We shall give an example of a positive function ¢ € C'[0, 1] such that Qs (z) = B,
does not satisfy property (W):

Example 19. Let ¢, (z) = a+ |z — §| for a > 0. Then

k 1 2n\ 4 2n—k

A 1—

2n QD <k‘ )x (1=x)

has strictly positive Bernstein coefficients, and it satisfies property (W) if and only if
1

a > ;.
2

Q2n,a (T) = Bangpa (z) = Z (a +

k=0

Proof. 1t follows that

B (a+l—%)(2n) for E<n
Yank = { (a— 1+ BV for n<k<om
It follows that ,

Yon—1pn—1 _ NA+ 3 and 2ln (n+1)a

Yon—1,n B (n+1)a Yon—1,n+1 na + % .

If Yon—1,k—1 Y2n—1,n—1
Y2n—1,k Y2n—1,n
(n+ 1) a, which means that 1 < a. Conversely, this condition implies that M <

Y2n—1,n
A/ZQL%L It is not difficult to see that the coefficients are increasing. O
n—1,n

is increasing then necessarily < 1 and this implies that na + 1 <

Next we want to show by example that the positive polynomials @,_; () may not
converge in general to a continuous function even if the Bernstein operators R,, converge
to the identity. In particular there does not exists in this case a continuous function ¢
with ,_1 = B,_1¢ for all n € N.

Example 20. The rational Bernstein operator R, associated to the nodes x,j = %
for k=0, ...,n converges to the identity operator but the associated polynomials Q1 ()

defined by
n—1 k 1
Qn-1(x) = l—x”—l—Z(n_l)Hsz(l_@n—kk
k=1 =11+ \/%

do not converge to a continuous function, in particular QQ,_1 is not equal to B,_1p for
some continuous function ¢ € C'[0,1].

Proof. Clearly 1/y/n < |z,1 — 0| < A, and

k+1 \[ —k 1 1
Tnjtl — Tnk| = — =< — .
[Tt = 2] =/ Vs
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Next we consider for [ =1,..,n—1

1_xn,l 1—1’2

_ .l _1—% 1 n—l Vi
T Ty (L4 20y) \/Z 1_|_\/Z I \/ﬁ—l-\/f

Since 2v1 < Vvn+ V1 we can estimate the last factor by 1 /2. Tt follows that

k
-2,  (n—1\1
Yn—1k = H T S ( k )Q_k

=1

and
/n—1\1 , - z\"
ot (2) < - = (1-2)"
R S (P :
Then Q-1 (x) converges to 0 for 0 < x <1 but @,—1 (0) =1 for all n. O

7. FINAL COMMENTS

We want to comment on rational Bernstein operators R, from a different point of view:
Given a strictly positive polynomial @Q,,_; (x) we consider the space

E, = {M : p(x) is a polynomial of degree < n} :

Qn—l (LL’)
Then E, is an extended Chebyshev space over any interval |a, b], meaning that each non-
zero function f € E, has at most n zeros (including multiplicities) in [a,b]. We call a
system of functions P, ;,k = 0,...,n in an n + 1 dimensional linear space E,, of C" [a,b] a
Bernstein basis, if each P, ; has exactly k zeros in @ and n — & zeros in b. Thus the system
of functions
b (1—z)" "

is a Bernstein basis in E,, for [0,1]. Bernstein bases in extended Chebyshev spaces have
been studied by many authors, see [6], [7], [8], [9], ,[10], [17], [18].

Recently, Bernstein operators for an extended Chebyshev space FE, of dimension n + 1
have been introduced by J. M. Aldaz, O. Kounchev and the author which by definition
are operators of the form

k=0,...n—1

Suf (x) = Z f (@0 k) Qn kP (2)
k=0
where p,x (), k = 0,...,n, is a Bernstein basis for £,. The nodes x, and the weights
oy, i are chosen such that S, fo = fo and S, f1 = f1 where fj is a strictly positive function
in F, and f; € E, has the property that f;/fy is strictly increasing. We refer to [1],
[2], [3], [4] and [19] for a systematic study (existence of Bernstein operators fixing two
functions and shape preserving properties) and to [20] for a discussion of Schoenberg-type
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operators in the setting of extended Chebyshev space. It seems to be a difficult task to
establish convergence results of Bernstein operators in the setting of extended Chebyshev
spaces, and the rational Bernstein operators considered here seems to be the simplest
non-trivial example beyond the classical case of Bernstein operators.
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