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Abstract

We review some aspects of the theory of spherical Bessel functions and Struve functions by means

of an operational procedure essentially of umbral nature, capable of providing the straightforward

evaluation of their definite integrals and of successive derivatives. The method we propose allows

indeed the formal reduction of these family of functions to elementary ones of Gaussian type. We

study the problem in general terms and present a formalism capable of providing a unifying point

of view including Anger and Weber functions too. The link to the multi-index Bessel functions is

also briefly discussed.
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I. INTRODUCTION

The spherical Bessel and Struve functions [1, 2] are widely exploited in applications, e.

g. the diffraction and scattering of radiation [3]. Albeit their properties are rather well

known, we apply here a new point of view, developed in a recent series of papers (see Ref.

[4]), which frames them within the operational context. This method is fairly attractive and

yields a significant simplification of the underlying computations.

In the first part of the paper we deal with the theory of spherical Bessel functions, while

the second will be devoted to the study of the properties of the Struve functions. The

underlying thread will be discussed in the concluding section.

The spherical Bessel functions jn(x) are linked to their cylindrical counterparts by [1, 2, 5]

jn(x) =

√

π

2 x
Jn+ 1

2

(x), (n ∈ Z). (1.1)

The relevant differential equation can easily be derived as follows. We start by introducing

the operators [6]

Ê± =
N̂

x
∓ ∂x,

where N̂ is an operator whose action on a generic indexed function is given by (ν ∈ R)

N̂ Fν(x) = ν Fν(x).

By using the relation [1]

J ′
ν(x) = ∓

[

Jν±1(x)−
ν

x
Jν(x)

]

we obtain the following identity

Ê± Jν(x) = Jν±1(x), (1.2)

and, therefore

Ê+ Ê− Jν(x) = Jν(x).

In the case ν = n+1/2, taking into account of definition (1.1), this equation can be rewritten

in differential terms as follows

(

n− 1
2

x
− ∂x

) (

n+ 1
2

x
+ ∂x

)

[

√

2 x

π
jn(x)

]

=

√

2 x

π
jn(x)
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and, after a few manipulations, we end up with

{

x2 ∂2
x + 2 x ∂x +

[

x2 − n (n + 1)
]}

jn(x) = 0.

According to the definition (1.1), the function jn(x) can be expressed by the series

jn(x) =

√

π

2 x

∞
∑

k=0

(−1)k

k! Γ
(

n + k + 3
2

)

(x

2

)n+2 k+ 1

2

which can be formally written as [4]

jn(x) =

√

π

2 x

(

ĉ
x

2

)n+ 1

2

e−ĉ (x/2)2 ϕ(0), (1.3)

with the operator ĉ defined by identity

ĉα ϕ(0) =
1

Γ(1 + α)
, (α ∈ R).

Although we have already exploited this method for other families of Bessel functions [4],

we get a glimpse of how the formal re-handling of the spherical Bessel functions given in Eq.

(1.3) may be useful, by considering the evaluation of the integral

b0 =

∫ ∞

−∞

j0(x) dx.

According to Eq. (1.3), by treating ĉ as an ordinary constant we can reduce our problem to

the evaluation of a Gaussian integral, obtaining

b0 =

[√
π ĉ

2

∫ ∞

−∞

e−ĉ (x/2)2dx

]

ϕ(0) =

√
π ĉ

2

2
√
π

√
ĉ

ϕ(0) = π ĉ 0 ϕ(0) = π.

In the forthcoming sections we will further prove the usefulness of this procedure.

II. DERIVATIVES AND INTEGRALS OF SPHERICAL BESSEL FUNCTIONS

The operational definition (1.3) of jn(x) allows a very straightforward derivation of the

relevant generating function. We get

∞
∑

n=0

tn

n!
jn(x) =

√
π ĉ

2
exp

{

−
ĉ

4
(x2 − 2 x t)

}

ϕ(0)

=

√

π

2

J1/2

(√
x2 − 2 x t

)

√
x2 − 2 x t

= j0

(√
x2 − 2 x t

)

. (2.1)
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The formalism of the shift operators [7] can now be usefully exploited to get further prop-

erties. By recalling indeed that

exp

{

λ

(

1

z
∂z

)}

f(z) = f
(√

z2 + 2 λ
)

,

Eq. (2.1) can be rewritten as

∞
∑

n=0

tn

n!
jn(x) =

∞
∑

n=0

(−ξ)m

m!

(

1

x
∂x

)m

j0(x)

∣

∣

∣

∣

ξ=x t

from which we obtain the well-known property [2]

jn(x) = (−x)n
(

1

x
∂x

)n

j0(x).

The described approach also allows us to easily obtain a closed form for the successive

derivative of the function j0(x). By taking into account the following identity [9]

∂n
x e

ax2

= Hn(2 a x, a) e
ax2

where Hn(y, z) are the two-variable Hermite polynomials defined by

Hn(y, z) = n!

[n/2]
∑

k=0

yn−2k zk

k! (n− 2 k)!
,

from Eq. (1.3) we get

∂n
x j0(x) = (−1)n

√
π ĉ

2
Hn

(

ĉ
x

2
,−

ĉ

4

)

e−ĉ (x/2)2 ϕ(0)

= n!

[n/2]
∑

k=0

(−1)n+k(2x)−k

k! (n− 2 k)!
jn−k(x).

As a final example of application of the method, let us now consider the following integral

bn =

∫ ∞

−∞

jn(x) dx.

By using the generating function method we can write

b(t) =

∞
∑

n=0

tn

n!
bn =

[√
π ĉ

2

∫ ∞

−∞

exp

{

−
ĉ

4
(x2 − 2 x t)

}

dx

]

ϕ(0)

= π

∞
∑

k=0

1

(k!)2

(

t

2

)2 k

(2.2)
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from which, by equating the coefficients of the same powers in t, we get

b2n =
(2n)!

(n!)2
π

22n
=

√
π

n!
Γ

(

n+
1

2

)

, b2n+1 = 0.

From Eq. (2.2) we also get

b(t) = π I0(t)

where I0(t) is the modified Bessel function of order 0 [2], and, thus, as a consequence of Eq.

(2.1), the following identity results
∫ ∞

−∞

j0

(√
a x2 + b x

)

dx =
π
√
a
I0

(

b

2
√
a

)

,

that can also be viewed as an integral representation of the function I0.

III. THE STRUVE FUNCTIONS

The Struve functions Hα(x) are defined by the series (see Eq. (57:6:1) in Ref. [2])

Hα(x) =
∞
∑

k=0

(−1)k

Γ
(

m+ 3
2

)

Γ
(

m+ α + 3
2

)

(x

2

)2m+α+1

.

The derivation of the relevant differential equation can be achieved through the shift oper-

ators defined in Eq. (1.2). By using the differentiation formula (see Eq. (57:10:1) in Ref.

[2])

∂x Hα(x) =
1

2

[

Hα−1(x)−Hα+1(x) +
(x/2)α

√
π Γ

(

α + 3
2

)

]

and taking into account the recursion formula for the Struve functions

Hα+1(x) +Hα−1(x) =
2α

x
Hα(x) +

(x/2)α
√
π Γ

(

α + 3
2

) ,

it is easy to show that

Ê+ Hα(x) = Hα+1(x)−
(x/2)α

√
π Γ

(

α+ 3
2

) , Ê− Hα(x) = Hα−1(x),

i.e.

Ê+ Ê−Hα(x) = Hα(x)−
(x/2)α−1

√
π Γ(α+ 1

2
)
.

In differential terms the last equation can be rewritten as follows
(

α− 1

x
− ∂x

)

(α

x
+ ∂x

)

Hα(x) = Hα(x)−
(x/2)α−1

√
π Γ(α + 1

2
)
,
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that can be reduced to the following non-homogeneous Bessel equation

B̂αHα(x) =
4 (x/2)α+1

√
π Γ

(

α + 1
2

) , B̂α = (x ∂x)
2 + (x2 − α2).

The properties of Struve functions can be studied by means of a slight modification of

the procedure we have followed so far. To widen the perspective we consider the problem

starting from the study of the Humbert-Bessel functions [8], which are two-index Bessel-like

functions defined by the series

Jµ,ν(x) =
∞
∑

k=0

(−x)k

k! Γ(k + µ+ 1) Γ(k + ν + 1)
, (3.1)

and whose connection with the Struve functions is realized by the following identity

Hα(x) =
(x

2

)α+1
∫ ∞

0

e−s J 1

2
, α+ 1

2

[

s
(x

2

)2
]

ds.

According to our technique, the Humbert-Bessel functions can formally written as

Jµ,ν(x) = ĉµ
1 ĉ ν

2 e−ĉ1 ĉ2 x ϕ1(0)ϕ2(0), ĉα
i ϕi(0) =

1

Γ(1 + α)
(i = 1, 2), (3.2)

an expression that makes a very simple task to derive, for example, the identities reported

below
∫ ∞

−∞

Jµ,ν(x
2) dx =

√
π

Γ
(

µ+ 1
2

)

Γ
(

ν + 1
2

) ,

∫ ∞

0

xα−1 Jµ,ν(x) dx =
Γ(α)

Γ(µ− α + 1) Γ(ν − α + 1)
.

The operatorial expression (3.2) allows one also to easily prove that (see Eq. (2.7.2.1) in

Ref. [11])

∫ ∞

0

Hα(x) dx =

[

Γ
(

1 +
α

2

)

ĉ
−(α+1)/2
1 ĉ

(α−1)/2
2

∫ ∞

0

e−s s−1−α/2 ds

]

ϕ1(0)ϕ2(0)

= − cot
(

α
π

2

)

(−2 < Re(α) < 0),

which can be further handled to get the canonical form reported in Ref. [4], where are also

discussed the conditions of validity.

A more general definition of Struve-like functions can be obtained through the definition

of the following auxiliary function

∆α,β,γ(x) =

∫ ∞

0

e−s sγ−1 Jα,β

(

s
x2

4

)

ds
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i.e., by using Eq. (3.2)

∆α,β,γ(x) =

[

ĉα
1 ĉ

β
2

∫ ∞

0

sγ−1 e−s (1+ĉ1 ĉ2 x2/4) ds

]

ϕ1(0)ϕ2(0)

=
Γ(γ)

Γ(1 + α) Γ(1 + β)
1F2

(

γ; 1 + α, 1 + β; −
x2

4

)

.

with pFq ((ap); (bq); z) the generalized hypergeometric function. From the definition (3.1) it

is also easy to show that

∞
∑

m,n=−∞

um vn Jm,n(x) = exp
{

u+ v −
x

u v

}

and, therefore, the generating function of ∆α,β,γ(x) with respect to the indices α and β is

given by

∞
∑

m,n=−∞

um vn∆m,n,γ(x) = eu+v

∫ ∞

0

exp

{

−1 − γ − s

[

1 +
1

u v

(x

2

)2
]}

ds

= eu+v Γ(γ)
[

1 +
1

u v

(x

2

)2
]γ .

The multi-index Bessel of Humbert type functions are not widespreadly known, although

their use could be very advantageous in applications. As an example, we consider the case

of the product of two cylindrical Bessel functions, which can be written as (see Eq. 8.442.1

from [5])

Jµ(x) Jν(x) =
∞
∑

k=0

(−1)k Γ(µ+ ν + 2k + 1)

k! Γ(µ+ k + 1) Γ(ν + k + 1) Γ(µ+ ν + k + 1)

(x

2

)2k+µ+ν

i.e.

Jµ(x) Jν(x) =
(x

2

)µ+ν
∫ ∞

0

e−s sµ+ν Jµ,ν,ν+µ

(

s2
x2

4

)

ds (3.3)

with

Jµ,ν,ρ(z) =

∞
∑

k=0

(−z)k

k! Γ(µ+ k + 1) Γ(ν + k + 1) Γ(ρ+ k + 1)
.

In the context of our operatorial method, this series can be written as

Jµ,ν,ρ(z) = ĉµ
1 ĉ ν

2 ĉ ρ
3 e

−ĉ1 ĉ2 ĉ3 z ϕ1(0)ϕ2(0)ϕ3(0)

that, inserted in Eq. (3.3), makes an easy task to prove, for example, the following identity
∫ ∞

0

(x

2

)−µ−ν

Jµ(x) Jν(x)dx =
√
π

Γ(µ+ ν)

Γ

(

µ+
1

2

)

Γ

(

ν +
1

2

)

Γ

(

µ+ ν +
1

2

) .
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IV. CONCLUDING REMARKS

Multi-index Bessel-like functions can also be used to express the Anger Jν(x) and Weber

Eν(x) functions, defined as [10]





Jν(x)

Eν(x)



 =







cos
(ν x

2

)

sin
(ν x

2

)

sin
(ν x

2

)

− cos
(ν x

2

)











S1(ν, x)

S2(ν, x)



 ,

with

S1(ν, x) =
∞
∑

k=0

(−1)k (x/2)2k

Γ
(

k +
ν

2
+ 1

)

Γ
(

k −
ν

2
+ 1

)

S2(ν, x) =

∞
∑

k=0

(−1)k (x/2)2k+1

Γ

(

k +
ν

2
+

3

2

)

Γ

(

k −
ν

2
+

3

2

) .

These functions can be expressed in the operatorial form (δi,k (i, k = 1, 2) is the Kronecker

symbol)

Sk(ν, x) = ĉ
(δk,2+ν)/2
1 ĉ

(δk,2−ν)/2
2

(x/2)δk,2

1 + ĉ1 ĉ2 (x/2)2
ϕ1(0)ϕ2(0)

that can be used to easily prove, for example, the following identities

∫ ∞

0

S1(ν, x) dx = cos
(ν π

2

)

,

∫ ∞

0

S2(ν, x)

x
dx =

1

ν
sin

(ν π

2

)

.

In this paper we have shown that the use of concepts of umbral nature from the opera-

tional calculus, combined with the properties of special functions and polynomials, can be

successfully applied to the the theory of Bessel-like functions. The method we have sug-

gested provides some advantages in ”practical” computations and is flexible enough to open

many new perspectives, which cannot all be explored in the space of a single paper. The

main drawback is the lack of mathematical rigor and, therefore, the necessity of checking

the obtained results resorting, for example, to numerical methods.

Some of our results (those relevant to the integrals) can be justified on the basis of the

Ramanujan master theorem [12–14], originally suggested by XIX century operationalists like

Glaisher [7]. However, we believe that the strategy one should follow, when dealing with

the present method, is that of using it as a procedure to first “guess” some specific formulae

and then use them as sound conjecture to be proven with other conventional means.
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