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Abstract

Spectral parameter power series (SPPS) representations for solutions of Sturm-Liouville equations
proved to be an efficient practical tool for solving corresponding spectral and scattering problems. They
are based on a computation of recursive integrals, sometimes called formal powers. In this paper new
relations between the formal powers are presented which considerably improve and extend the application
of the SPPS method. For example, originally the SPPS method at a first step required to construct
a nonvanishing (in general, a complex-valued) particular solution corresponding to the zero-value of
the spectral parameter. The obtained relations remove this limitation. Additionally, equations with
“nasty”Sturm-Liouville coefficients 1/p or r can be solved by the SPPS method.

We develop the SPPS representations for solutions of Sturm-Liouville equations of the form

(
p(x)u′

)′
+ q(x)u =

N∑
k=1

λkRk [u] , x ∈ (a, b)

where Rk [u] := rk(x)u+ sk(x)u′, k = 1, . . . N , the complex-valued functions p, q, rk, sk are continuous
on the finite segment [a, b].

Several numerical examples illustrate the efficiency of the method and its wide applicability.

1 Introduction

Solutions of sufficiently regular linear second order Sturm-Liouville equations considered as functions of a
spectral parameter are entire functions which in particular means that they admit a normally convergent
Taylor series representation in terms of the spectral parameter in the whole complex plane. The coefficients
of the series are functions of the independent variable. For example, in the simplest case of the equation
y′′(x) = λy(x) two linearly independent solutions (satisfying in the origin the initial conditions (1, 0), (0, 1))

can be chosen in the form y1(x) = cosh
√
λx and y2(x) =

(
sinh
√
λx
)
/
√
λ. The Taylor coefficients in their

power series in terms of the spectral parameter λ with the center λ = 0 are powers of the independent
variable divided by corresponding factorials x2n/(2n)! and x2n+1/(2n+ 1)! respectively.

In [16] a simple way for calculating the Taylor coefficients for spectral parameter power series (SPPS)
defining solutions of the Sturm-Liouville equation (pu′)′ + qu = λu was proposed, based on the theory of
complex pseudoanalytic functions. In [18] (see also [17]) that result was extended onto equations of the form

(pu′)′ + qu = λru (1.1)

∗Research was supported by CONACYT, Mexico via the project 166141.

1

ar
X

iv
:1

40
1.

18
77

v1
  [

m
at

h.
C

A
] 

 9
 J

an
 2

01
4



and proved in a simpler way with no need of pseudoanalytic function theory (see Theorem 2.1 below). The
Taylor coefficients in the SPPS representations are calculated as recursive integrals and called formal powers.
The SPPS representations found numerous applications, see two recent review papers [14], [19]. In [13] SPPS
representations were obtained for solutions of fourth order Sturm-Liouville equations of the form

(pu′′)′′ + (qu′)′ = λR [u]

where R is a linear differential operator of the order n ≤ 3, and in [10] for Bessel-type singular Sturm-Liouville
equations. In [21] the SPPS representations were obtained for equations of the form

(p(x)u′)′ + q(x)u =

N∑
k=1

λkrk(x)u

and used for studying spectral problems for Zakharov-Shabat systems.
In [8] it was shown that at least in the case of the one-dimensional Schrödinger equation

u′′ + qu = λu (1.2)

the formal powers are the images of usual powers xk, k = 0, 1, 2, . . . under the action of a corresponding
transmutation operator. In [20] based on this observation a new method for solving spectral problems for
(1.2) was developed. The method possesses a remarkable unique feature: it allows one to compute thousands
of eigendata with a non-decreasing accuracy. In [9], [7], [8] and [15] methods for solving different problems
for partial differential equations involving the computation of formal powers were developed.

Thus, the computation of formal powers is required for application of different methods and in differ-
ent models. An important restriction for computing formal powers as proposed in [16], [18] and further
publications consisted in the necessity of a nonvanishing particular solution of the equation

(pv′)′ + qv = 0. (1.3)

When p and q are real valued (and sufficiently regular) such nonvanishing solution can be proposed in the
form v0 = v1 + iv2 where v1 and v2 are arbitrary linearly independent real-valued solutions of (1.3). However
for complex-valued coefficients p and q there is no such simple way for its construction. Moreover, even
when v0 does not vanish but in some points is relatively close to zero, the computation of formal powers
may present difficulties.

In the present work we solve two problems. 1) We develop an SPPS representation which is not limited
to nonvanishing particular solutions of auxiliary equations and admits certain “nastiness” in the coefficients.
For example, p is allowed to have zeros. 2) We extend the SPPS method onto equations of the form

(p(x)u′)′ + q(x)u =

N∑
k=1

λkRk [u] , x ∈ (a, b) (1.4)

where Rk [u] := rk(x)u+sk(x)u′, k = 1, . . . N , the complex-valued functions p, q, rk, sk are continuous on the
finite segment [a, b]. The presented numerical results show that nowadays this is one of the most accurate
ways for solving corresponding spectral problems with a wide range of applicability (e.g., few available
algorithms are applicable to complex coefficients, complex spectra, polynomial pencils of operators, etc.).

In Section 2 we prove new relations concerning formal powers and obtain the modified SPPS represen-
tations for Sturm-Liouville equations of the form (1.1). In Section 3 we extend this result onto equations of
the form (1.4). In Section 4 we describe the algorithm and the numerical implementation of the proposed
method for solving spectral problems and give eight numerical examples illustrating its performance.

2 SPPS representations

2.1 The original SPPS representation

In [18] the following theorem was proved.
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Theorem 2.1 (SPPS representation, [18]). Assume that on a finite segment [a, b], equation

(pv′)′ + qv = 0, (2.1)

possesses a particular solution f such that the functions f2r and 1/(f2p) are continuous on [a, b]. Then the
general solution of the equation

(pu′)′ + qu = λru (2.2)

on (a, b) has the form
u = c1u1 + c2u2 (2.3)

where c1 and c2 are arbitrary complex constants,

u1 = f

∞∑
k=0

λkX̃(2k) and u2 = f

∞∑
k=0

λkX(2k+1) (2.4)

with X̃(n) and X(n) being defined by the recursive relations X̃(−n) ≡ X(−n) ≡ 0 for n ∈ N,

X̃(0) ≡ 1, X(0) ≡ 1, (2.5)

X̃(n)(x) =


∫ x

x0

X̃(n−1)(s)f2(s)r(s) ds, n odd,∫ x

x0

X̃(n−1)(s)
1

f2(s)p(s)
ds, n even,

(2.6)

X(n)(x) =


∫ x

x0

X(n−1)(s)
1

f2(s)p(s)
ds, n odd,∫ x

x0

X(n−1)(s)f2(s)r(s) ds, n even,

(2.7)

where x0 is an arbitrary point in [a, b] such that p is continuous at x0 and p(x0) 6= 0. Further, both series in
(2.4) converge uniformly on [a, b].

The solutions u1 and u2 satisfy the initial conditions

u1(x0) = f(x0), u′1(x0) = f ′(x0),

u2(x0) = 0, u′2(x0) =
1

f(x0)p(x0)
.

This result was first obtained in [16] with the aid of pseudoanalytic function theory [17] and for the case

r ≡ 1. The functions X̃(n) and X(n) are called formal powers since they generalize the usual powers (x−x0)n

or more precisely (x− x0)n/n! (when f ≡ p ≡ r ≡ 1).

2.2 Relations between formal powers associated with two different particular
solutions

Now let us suppose additionally that f(x0) = 1 and that together with f there exists another linearly
independent solution g of (2.1) satisfying the same conditions as f and such that g(x0) = 1. Then one can

construct formal powers corresponding to g. Let us denote them by Ỹ (n) and Y (n) correspondingly. Thus,
Ỹ (−n) ≡ Y (−n) ≡ 0 for n ∈ N,

Ỹ (0) ≡ 1, Y (0) ≡ 1,

Ỹ (n)(x) =


∫ x

x0

Ỹ (n−1)(s)g2(s)r(s) ds, n odd,∫ x

x0

Ỹ (n−1)(s)
1

g2(s)p(s)
ds, n even,

Y (n)(x) =


∫ x

x0

Y (n−1)(s)
1

g2(s)p(s)
ds, n odd,∫ x

x0

Y (n−1)(s)g2(s)r(s) ds, n even.
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Later on we will show that the restrictions imposed on f and g can be relaxed. At this moment we need
them to establish relations between the two sets of formal powers. Denote ρ = 1

p(x0)(g′(x0)−f ′(x0))
.

Proposition 2.2. Assume that on a finite interval [a, b], equation (2.1) possesses two particular solutions
f and g such that f(x0) = g(x0) = 1, x0 is an arbitrary point in [a, b] such that p is continuous at x0 and
p(x0) 6= 0, the functions f2r, 1/(f2p), g2r and 1/(g2p) are continuous on [a, b]. Then the following relations
hold

gY (2k+1) = fX(2k+1) (2.8)

= ρ
(
gỸ (2k) − fX̃(2k)

)
(2.9)

= ρ
(
gX(2k) − fY (2k)

)
, (2.10)

gỸ (2k) = gX(2k) + ρ
(
gX̃(2k−1) − fỸ (2k−1)), (2.11)

fX̃(2k) = fY (2k) + ρ
(
gX̃(2k−1) − fỸ (2k−1)) (2.12)

for any k = 0, 1, 2, . . ..

Proof. Consider two pairs of linearly independent solutions of (2.2) constructed according to Theorem 2.1.
One pair is generated by the particular solution f and has the form (2.4) meanwhile the second pair is
generated by g and has the form

v1 = g

∞∑
k=0

λkỸ (2k) and v2 = g

∞∑
k=0

λkY (2k+1).

Due to Theorem 2.1 the solutions v1 and v2 satisfy the initial conditions v1(x0) = g(x0), v′1(x0) = g′(x0),
v2(x0) = 0, v′2(x0) = 1

g(x0)p(x0)
. Since f(x0) = g(x0) = 1, we obtain u2 ≡ v2. From the equality of the

corresponding series (2.4) for any value of the parameter λ we obtain (2.8).
Comparison of the initial conditions gives us also the following relation

v1 = u1 +
1

ρ
u2.

Thus,

g

∞∑
k=0

λkỸ (2k) = f

∞∑
k=0

λkX̃(2k) +
1

ρ
f

∞∑
k=0

λkX(2k+1)

for any λ ∈ C. Hence for any k = 0, 1, 2, . . . we have

gỸ (2k) = f

(
X̃(2k) +

1

ρ
X(2k+1)

)
from where (2.9) follows.

Consider the equality u′2 ≡ v′2. It implies the equality of the series

f ′
∞∑
k=0

λkX(2k+1) +
1

fp

∞∑
k=0

λkX(2k) = g′
∞∑
k=0

λkY (2k+1) +
1

gp

∞∑
k=0

λkY (2k)

and hence

f ′X(2k+1) +
1

fp
X(2k) = g′Y (2k+1) +

1

gp
Y (2k)

for any k = 0, 1, 2, . . .. From (2.8) we have g′Y (2k+1) = g′

g fX
(2k+1) and consequently,(

f ′ − g′

g
f

)
X(2k+1) =

1

p

(
1

g
Y (2k) − 1

f
X(2k)

)
.
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Notice that by Liouville’s formula for the Wronskian

g′f − gf ′ = W (f, g) =
p(x0)

p
W (f, g)(x0) =

1

ρp
. (2.13)

Then
1

ρ
X(2k+1) =

g

f
X(2k) − Y (2k)

from where we obtain (2.10).
Consider the equality v′1 = u′1 + 1

ρu
′
2. It can be written in the form

g′
∞∑
k=0

λkỸ (2k) +
1

gp

∞∑
k=1

λkỸ (2k−1) = f ′
∞∑
k=0

λkX̃(2k) +
1

fp

∞∑
k=1

λkX̃(2k−1)

+
1

ρ

(
f ′
∞∑
k=0

λkX(2k+1) +
1

fp

∞∑
k=0

λkX(2k)

)

which leads to the equality

g′Ỹ (2k) +
1

gp
Ỹ (2k−1) = f ′X̃(2k) +

1

fp
X̃(2k−1) +

1

ρ

(
f ′X(2k+1) +

1

fp
X(2k)

)
for any k = 0, 1, 2, . . .. Using (2.9) we obtain

g′Ỹ (2k) +
1

gp
Ỹ (2k−1) =

1

fp
X̃(2k−1) +

f ′g

f
Ỹ (2k) +

1

ρfp
X(2k).

Thus, (
g′ − f ′

f
g

)
Ỹ (2k) =

1

p

(
1

f
X̃(2k−1) − 1

g
Ỹ (2k−1) +

1

ρf
X(2k)

)
,

and taking into account (2.13) we arrive at (2.11). Finally, (2.12) is the same (2.11) where g plays the role
of f and vice versa.

2.3 Modified SPPS representation

The relations between formal powers established in Proposition 2.2 suggest another way for defining the
formal powers and formulating the SPPS representations for solutions of the Sturm-Liouville equation.

Definition 2.3. Let equation (2.1) admit two linearly independent solutions f and g such that {f, g, pf ′, pg′} ⊂
C1[a, b] and f(x0) = g(x0) = 1 where x0 is any point of [a, b] such that p(x0) 6= 0. Then the following systems

of functions {Fn}, {F̃n}, {Gn}, {G̃n} are defined recursively as follows

F−n ≡ G−n ≡ F̃−n ≡ G̃−n ≡ 0 for n ∈ N, (2.14)

F0 ≡ G0 ≡ 1, F̃0 ≡ f, G̃0 ≡ g, (2.15)

for an odd n:

Fn = Gn = ρ (gFn−1 − fGn−1) , (2.16)

F̃n(x) =

∫ x

x0

F̃n−1(s)f(s)r(s) ds, (2.17)

G̃n(x) =

∫ x

x0

G̃n−1(s)g(s)r(s) ds, (2.18)

5



and for an even n:

Fn(x) =

∫ x

x0

Fn−1(s)f(s)r(s) ds, (2.19)

Gn(x) =

∫ x

x0

Gn−1(s)g(s)r(s) ds, (2.20)

F̃n = fGn − ρ
(
fG̃n−1 − gF̃n−1

)
, (2.21)

G̃n = gFn − ρ
(
fG̃n−1 − gF̃n−1

)
. (2.22)

Notice that from (2.21) and (2.22) we have that

G̃2n − F̃2n = gF2n − fG2n

and hence from (2.16) we obtain the relation

F2n+1 = G2n+1 = ρ
(
G̃2n − F̃2n

)
. (2.23)

Remark 2.4. It is easy to see that when additionally the function 1/(f2p) is continuous on [a, b] and hence

the systems of functions {X(n)}, {X̃(n)} can be constructed, the following relations hold

Fn = fX(n) and F̃n = X̃(n) for an odd n

and
Fn = X(n) and F̃n = fX̃(n) for an even n.

In the following lemma we prove several properties of the introduced functions.

Lemma 2.5. For the functions defined by Definition 2.3 the following relations hold.
For an odd n:

F ′n = G′n = ρ (g′Fn−1 − f ′Gn−1) , (2.24)

(pF ′n)
′
+ qFn = rFn−2, (2.25)

(pG′n)
′
+ qGn = rGn−2, (2.26)

and for an even n:

F̃ ′n = f ′Gn − ρ
(
f ′G̃n−1 − g′F̃n−1

)
, (2.27)

G̃′n = g′Fn − ρ
(
f ′G̃n−1 − g′F̃n−1

)
, (2.28)(

pF̃ ′n
)′

+ qF̃n = rF̃n−2, (2.29)(
pG̃′n

)′
+ qG̃n = rG̃n−2. (2.30)

Proof. Let n be odd. Then from (2.16), (2.19) and (2.20) we have F ′n = ρ(g′Fn−1−f ′Gn−1)+ρfgr(Fn−2−
Gn−2). Due to (2.16) the difference in the last brackets equals zero and hence (2.24) holds.

Consider (pF ′n)
′

= ρ
(
(pg′)

′
Fn−1 − (pf ′)

′
Gn−1 + pr (g′fFn−2 − f ′gGn−2)

)
. Now from (2.16), (2.13) and

the fact that f and g are solutions of (2.1) we obtain (pF ′n)
′

= −qρ (gFn−1 − fGn−1) + rFn−2 and hence
(2.25). Equality (2.26) is proved similarly.

Let n be even. Differentiating (2.21) and using (2.17), (2.18) and (2.20) we obtain

F̃ ′n = f ′Gn + fgrGn−1 − ρ
(
f ′G̃n−1 − g′F̃n−1

)
− ρfgr

(
G̃n−2 − F̃n−2

)
.

Now using (2.23) we obtain (2.27). Equality (2.28) is proved analogously. Consider(
pF̃ ′n

)′
= (pf ′)′Gn + pf ′grGn−1 − ρ

(
(pf ′)

′
G̃n−1 − (pg′)

′
F̃n−1

)
− ρ
(
pf ′G̃′n−1 − pg′F̃ ′n−1

)
= −qfGn + pf ′grGn−1 − qρ

(
gF̃n−1 − fG̃n−1

)
− ρpr

(
f ′gG̃n−2 − g′fF̃n−2

)
= −qF̃n + ρpr

(
f ′g
(
G̃n−2 − F̃n−2

)
−
(
f ′gG̃n−2 − g′fF̃n−2

))
= −qF̃n + rF̃n−2.

Thus, (2.29) is true. Equality (2.30) is proved analogously.
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Lemma 2.6. For the functions defined by Definition 2.3 the following inequalities hold.

|F2k(x)| ≤ a2k(c1c2c3)k |x− x0|k , |G2k(x)| ≤ a2k(c1c2c3)k |x− x0|k , (2.31)

|F2k+1(x)| ≤ a2k+1c1c3(c1c2c3)k |x− x0|k , |G2k+1(x)| ≤ a2k+1c1c3(c1c2c3)k |x− x0|k , (2.32)

|F̃2k(x)| ≤ b2kc3(c1c2c3)k |x− x0|k , |G̃2k(x)| ≤ b2kc3(c1c2c3)k |x− x0|k , (2.33)

|F̃2k+1(x)| ≤ b2k+1c2c3(c1c2c3)k |x− x0|k+1
, |G̃2k+1(x)| ≤ b2k+1c2c3(c1c2c3)k |x− x0|k+1

, (2.34)

where c1 = |ρ|, c2 = max
(
maxx∈[a,b] |fr| ,maxx∈[a,b] |gr|

)
, c3 = max

(
maxx∈[a,b] |f | ,maxx∈[a,b] |g|

)
, a2k =

2k

k! , a2k+1 = 2k+1

k! , b2k = 2k(k+1)
k! , b2k+1 = 2k

k! , k = 0, 1, . . ..

Proof. For k = 0 all the inequalities are easily verified. Next, we assume that both inequalities (2.31) are
true for some k ∈ N and consider

|F2k+1(x)| = |G2k+1(x)| = |ρ (g(x)F2k(x)− f(x)G2k(x))| ≤ 2a2kc1c3(c1c2c3)k |x− x0|k

= a2k+1c1c3(c1c2c3)k |x− x0|k .

Hence
|F2k+2(x)| ≤ a2k+1

k + 1
(c1c2c3)k+1 |x− x0|k+1

= a2k+2(c1c2c3)k+1 |x− x0|k+1
.

Thus, (2.31) and (2.32) are proved.
Now, suppose that (2.33) hold for some k ∈ N. Then

|F̃2k+1(x)| ≤ b2kc2c3(c1c2c3)k
|x− x0|k+1

k + 1
= b2k+1c2c3(c1c2c3)k |x− x0|k+1

.

Consequently,

|F̃2k+2(x)| =
∣∣∣f(x)G2k+2(x) + ρ

(
g(x)F̃2k+1(x)− f(x)G̃2k+1(x)

)∣∣∣
≤ a2k+2c3(c1c2c3)k+1 |x− x0|k+1

+ 2b2k+1c1c2c
2
3(c1c2c3)k |x− x0|k+1

.

Notice that b2k+2 = a2k+2 +2b2k+1 and hence |F̃2k+2(x)| ≤ b2k+2c3(c1c2c3)k+1 |x− x0|k+1
. Thus, (2.33) and

(2.34) are proved.
Now we are in a position to prove the SPPS representations for solutions of (2.2) in terms of the formal

powers from Definition 2.3.

Theorem 2.7 (Modified SPPS representations). Let p and q be such that there exist two linearly independent
solutions f and g of equation (2.1) such that {f, g, pf ′, pg′} ⊂ C1[a, b] and f(x0) = g(x0) = 1 where x0 is
any point of [a, b] such that p(x0) 6= 0. Let r be such that {fr, gr} ⊂ C[a, b]. Then the general solution of
(2.2) on (a, b) has the form (2.3) where

u1 =

∞∑
k=0

λkF̃2k and u2 =

∞∑
k=0

λkF2k+1. (2.35)

The derivatives of u1 and u2 have the form

pu′1 = pf ′ +

∞∑
k=1

λk
(
pf ′G2k − ρ

(
pf ′G̃2k−1 − pg′F̃2k−1

))
(2.36)

and

pu′2 = ρ

∞∑
k=0

λk (pg′F2k − pf ′G2k) . (2.37)

All series in (2.35)–(2.37) converge uniformly on [a, b]. The solutions u1 and u2 satisfy the initial conditions

u1(x0) = 1, u′1(x0) = f ′(x0), u2(x0) = 0, u′2(x0) =
1

p(x0)
. (2.38)
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Remark 2.8. The function p in (2.36) and (2.37) is necessary only in the case when this function possesses
zeros and the derivatives f ′ and g′ increase to infinity near the zeros of the function p. In all other cases we
can easily remove all occurrences of p in (2.36) and (2.37).

Proof. Lemma 2.6 guarantees the uniform convergence of all the involved series. Moreover, it is not
difficult to see that the majorizing series for |u1(x)| converges to the function c3 (1 + c |x− x0|) ec|x−x0|

where c = 2 |λ| c1c2c3 meanwhile the majorizing series corresponding to |u2(x)| converges to 2c1c3e
c|x−x0|.

Indeed, we have

|u1(x)| ≤
∞∑
k=0

|λ|k
∣∣F̃2k(x)

∣∣ ≤ c3 ∞∑
k=0

|λ|k 2k(k + 1)

k!
(c1c2c3)k |x− x0|k .

Observe that
∑∞
k=0

(k+1)ck

k! tk = (tect)
′

= (1 + ct) ect. Hence

|u1(x)| ≤ c3 (1 + c |x− x0|) ec|x−x0|

where c = 2 |λ| c1c2c3. Analogously we have

|u2(x)| ≤ 2c1c3e
c|x−x0|.

Due to Lemma 2.5 we obtain that u1 and u2 are indeed solutions of (2.2) as well as the equalities (2.36)
and (2.37).

The equalities (2.38) follow from the fact that all formal powers Fn, Gn, F̃n and G̃n vanish at x = x0 for
any n ∈ N. Finally, from (2.38) it follows that u1 and u2 are linearly independent.

Remark 2.9. The requirement to know two particular solutions of equation (2.1) as well as values of their
derivatives at some point in Theorem 2.7 does not present any difficulty for numerical applications, a variety
of numerical methods can be used in order to construct two particular solutions, e.g., the SPPS representation
can be successfully applied, see [18]. Solely the case when only one particular solution is known exactly gives
some advantage to the formulas (2.5)–(2.7).

Remark 2.10. The Modified SPPS representation presented in Theorem 2.7 works not only when particular
solutions are available for λ0 = 0, but in fact when two particular solutions of the equation (pv′)′+qv = λ0rv
are known for some fixed λ0. The solution (2.35) now takes the form

u1 =

∞∑
k=0

(λ− λ0)kF̃2k and u2 =

∞∑
k=0

(λ− λ0)kF2k+1. (2.39)

The procedure of using particular solutions at some point λ0 6= 0 is called the spectral shift technique.

Remark 2.11. The conditions {f, g, pf ′, pg′} ⊂ C1[a, b] and {fr, gr} ⊂ C[a, b] in Theorem 2.7 are superflu-
ous and are necessarily only if we are interested in the classical solutions of equation (2.2). If we allow weak
solutions, the SPPS representations of the general solution (both original and modified) can be obtained un-
der weaker assumptions on the coefficients, namely when {f, g, pf ′, pg′} ⊂ AC[a, b] and {fr, gr} ⊂ L1[a, b].
We refer the reader to [5] for further details.

Since the formal powers are the essential ingredient of several methods for solving equations and corre-
sponding spectral problems it is important to verify whether the method of their calculation based on two
particular solutions (Definition 2.3), we will call it the new method, presents computational advantages in
comparison to the direct recursive integration (formulas (2.5)–(2.7)), the old method. It is clear that the new
method of construction of the formal powers is applicable even when the function 1/(f2p) is not necessarily
continuous on [a, b]. For example, f and p can possess zeros on [a, b]. This is an important extension of
applicability of the SPPS approach. Apart from it, we can highlight the following computational advantages
of the new method.

1. The first several formal powers (whose contribution in the final result usually is greater than that of
subsequent formal powers) are computed with a higher accuracy.

2. More formal powers can be computed. See for details [20, Examples 7.3 and 7.7].
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3. Computation of formal powers is considerably more stable, especially when the particular solution f
is of a larger change or nearly vanishing on the interval of interest.

4. Computation of the formal powers by the new method requires the same number of integrations as
by the old method and only several more algebraic operations, i.e., the computation time essentially
does not increase. In some cases the new method may be several times faster than the old one, this is
due to the necessity to use complex-valued particular solution for the old method to ensure that this
solution does not vanish, meanwhile for the new method one still can work with real-valued particular
solutions.

5. Accuracy is much higher when the particular solution f or/and the coefficient p possess values close
to zero on [a, b].

Below we illustrate these points.

Example 2.12. Consider the function f(x) = 1 + cx which is obviously a particular solution of the equation
f ′′(x) = 0 and f(0) = 1. As a second particular solution of the same equation satisfying the condition
g(0) = 1 we can choose the function g ≡ 1. The corresponding formal powers will be considered on the
segment [0, 10]. It is easy to see that Gn(x) = xn/n!. Moreover, due to (2.16) we have that for an odd n:
Fn(x) = xn/n! meanwhile for an even n the formal powers Fn have the form Fn(x) = xn

(n+1)! (n (1 + cx) + 1).

In a similar way the formal powers F̃n for this example can be written down explicitly by means of Definition
2.3. All the calculations of the recursive integrals were performed in Matlab using the Newton-Cottes 6
point integration formula of 7-th order (see, e.g., [11]) with 105 uniformly distributed nodes. In all cases
the computation took several seconds. The presented numerical results correspond to odd n, and the figures
show the following difference |xn − n!Fn(x)| /max[0,10] x

n = |xn − n!Fn(x)| /10n.
First, we consider a case when f is a nice function: c = 1. The first few formal powers are computed

more accurately by the new method meanwhile for the higher formal powers the old method resulted to be
preferable. Nevertheless even in this “nice” case the error produced by the new method is not much worse
than the error of the old method, see Fig. 1 (a).

Fig. 1 (b) shows that the accuracy achieved in the case of an almost vanishing function f (here c =
0.0001− 1/10) is considerably better when the new method is applied.

Taking c = 100 one can observe on Fig. 1 (c) that the situation with the accuracy changes considerably
for the old method meanwhile the new method delivers similar results as on Fig. 1 (a). Moreover, further
increasing c and hence making the function f take larger values we easily arrive at a situation when the old
method becomes practically useless meanwhile the new method keeps delivering accurate results. Fig. 1 (d)
corresponds to c = 1000000.

2.4 General solution in terms of the formal powers for Darboux associated
equations

Suppose that f and g are nonvanishing on a segment of interest [a, b] linearly independent solutions of (2.1)
such that f(x0) = g(x0) = 1, x0 ∈ [a, b]. Then together with equation (2.2) let us consider the following
Sturm-Liouville equations (

1

r
v′
)′

+ q1/fv = λ
1

p
v (2.40)

and (
1

r
w′
)′

+ q1/gw = λ
1

p
w (2.41)

where

q1/f = −

(
q

pr
+

2

r

(
f ′

f

)2

+
f ′

fr

(pr)
′

pr

)
and q1/g has the same form as q1/f with f being replaced everywhere by g.

The functions 1/f and 1/g are solutions of (2.40) and (2.41) corresponding to λ = 0 respectively. We
will call (2.40) and (2.41) the Sturm-Liouville equations Darboux associated with (2.2).
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Figure 1: The blue line (which starts above) shows the error of the formal powers Fn, for odd n computed by
the old method. The red line (starts below) shows the same but computed by the new method. The following
values of the parameter c are used: (a) c = 1, (b) c = 0.0001− 1/10, (c) c = 100 and (d) c = 1000000.

Let us observe that the functions

v1 =
1

f

∞∑
k=0

λkX(2k) and v2 =
1

f

∞∑
k=0

λkX̃(2k+1)

are linearly independent solutions of (2.40) as well as the functions

w1 =
1

g

∞∑
k=0

λkY (2k) and w2 =
1

g

∞∑
k=0

λkỸ (2k+1)

are linearly independent solutions of (2.41).
Now, from (2.35) and (2.21) we have that

u1 = fg (w1 − λρ (w2 − v2)) , (2.42)

and from (2.35) and (2.16),
u2 = ρfg (v1 − w1) . (2.43)

Equalities (2.42) and (2.43) give us expressions for the solutions of (2.2) in terms of solutions of the Darboux-
associated equations (2.40) and (2.41).

Remark 2.13. The observation that for a Darboux-associated equation one has to calculate the same formal
powers as for the original Sturm-Liouville equation can be used in the following way. Suppose that 1/p is
a “nice” function meanwhile r is “nasty”, e.g., has a singularity or even an “almost” singularity, achieving
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very large values. In this case one might prefer to calculate the integrals containing 1/(fp) in the integrand
rather than those containing fr. For this it is sufficient to consider equation (2.40) and follow the described
above construction begining with Definition 2.3 where now the roles of p and r result to be interchanged.

3 SPPS representations for solutions of pencils of Sturm-Liouville
operators

In this section we show that the SPPS representations analogous to those established in Theorem 2.7 can
also be obtained for solutions of Sturm-Liouville equations of the form

(p(x)u′)′ + q(x)u =

N∑
k=1

λkRk [u] , x ∈ (a, b) (3.1)

where Rk are linear differential operators of the first order, Rk [u] := rk(x)u + sk(x)u′, k = 1, . . . N , the
complex-valued functions p, q, rk, sk are continuous on the finite segment [a, b].

3.1 SPPS representation for solutions of pencils

It is possible to obtain the general solution of equation (3.1) by slightly changing the definition of formal
powers (2.5)–(2.7). We define the formal powers for equation (3.1) as follows

X̃ (−n) ≡ X (−n) ≡ 0 for n ∈ N, (3.2)

X̃ (0) ≡ X (0) ≡ 1, (3.3)

X̃ (n)(x) =


∫ x

x0

f(s)

N∑
k=1

Rk

[
f(s)X̃ (n−2k+1)(s)

]
ds, n - odd,∫ x

x0

X̃ (n−1) (s)
ds

f2 (s) p (s)
, n - even,

(3.4)

X (n)(x) =



∫ x

x0

X (n−1) (s)
ds

f2 (s) p (s)
, n - odd,∫ x

x0

f(s)

N∑
k=1

Rk

[
f(s)X (n−2k+1)(s)

]
ds, n - even

(3.5)

where x0 is an arbitrary point of the segment [a, b] such that p(x0) 6= 0. The following theorem generalizes
Theorem 2.1.

Theorem 3.1 (SPPS representations for polynomial pencils of operators). Assume that on a finite interval
[a, b], equation (2.1) possesses a particular solution f such that the functions fRk[f ], k = 1, . . . , N and 1

f2p

are continuous on [a, b]. Then the general solution of (3.1) has the form u = c1u1 + c2u2, where c1 and c2
are arbitrary complex constants and

u1 = f

∞∑
n=0

λnX̃ (2n) and u2 = f

∞∑
n=0

λnX (2n+1). (3.6)

Both series in (3.6) converge uniformly on [a, b].

The formulation and the proof of this theorem in the case sk ≡ 0, k = 1, . . . , N can be found in [21]. An
analogous theorem for a perturbed Bessel equation in the case N = 1 can be found in [10]. The proof from
[21] can be easily generalized onto the case considered here. Nevertheless we do not present here the proof
of Theorem 3.1 because below we prove a stronger result generalizing Theorem 2.7 and allowing particular
solution to have zeros.
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3.2 Modified SPPS representation for solutions of pencils

We introduce the following definition (cf. Definition 2.3) where in order not to overload this paper with
additional notations we use the same characters as above.

Definition 3.2. Let equation (2.1) admit two linearly independent solutions f and g such that {f, g, pf ′, pg′} ⊂
C1[a, b] and f(x0) = g(x0) = 1 where x0 is any point of [a, b] such that p(x0) 6= 0. Then the following systems

of functions {Fn}, {F̃n}, {Gn}, {G̃n} are defined recursively as follows

F−n ≡ G−n ≡ F̃−n ≡ G̃−n ≡ 0 for n ∈ N, (3.7)

F0 ≡ G0 ≡ 1, F̃0 ≡ f, G̃0 ≡ g,

for an odd n:

Fn = Gn = ρ (gFn−1 − fGn−1) ,

F̃n(x) =

∫ x

x0

f(s)

N∑
k=1

Rk

[
F̃n−2k+1(s)

]
ds, (3.8)

G̃n(x) =

∫ x

x0

g(s)
N∑
k=1

Rk

[
G̃n−2k+1(s)

]
ds, (3.9)

and for an even n:

Fn(x) =

∫ x

x0

f(s)

N∑
k=1

Rk [Fn−2k+1(s)] ds, (3.10)

Gn(x) =

∫ x

x0

g(s)

N∑
k=1

Rk [Gn−2k+1(s)] ds, (3.11)

F̃n = fGn − ρ
(
fG̃n−1 − gF̃n−1

)
,

G̃n = gFn − ρ
(
fG̃n−1 − gF̃n−1

)
.

From the last two equalities we have

G̃2n − F̃2n = gF2n − fG2n.

This definition may give an impression that the calculation of the formal powers involves their differentia-
tion (application of the operators Rk under the sign of integral). Nevertheless it is easy to see that such
differentiation is superfluous. Namely, we have the following equalities for the F -formal powers

Rk [F2n+1] = ρ (Rk [g]F2n −Rk [f ]G2n) , (3.12)

Rk[F̃2n] = Rk [f ]G2n + ρ
(
Rk [g] F̃2n−1 −Rk [f ] G̃2n−1

)
(3.13)

as well as analogous equalities for the G-formal powers G2n+1 and G̃2n with obvious substitution of f by g
and vice versa. For the proof of (3.12) it is sufficient to observe that gF ′2n − fG′2n = 0. Indeed,

gF ′2n − fG′2n = fg

(
N∑
k=1

Rk [F2n−2k+1]−
N∑
k=1

Rk [G2n−2k+1]

)

which equals zero because every operator Rk is linear and F2n−2k+1 ≡ G2n−2k+1 by definition. Equality
(3.13) is proved in a similar way.
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Thus, for a practical use of Definition 3.2 instead of (3.8) and (3.9) it is convenient to use an alternative
form of these equalities which does not require differentiation of formal powers

F̃2n+1(x) =

∫ x

x0

f(s)

N∑
k=1

(
Rk [f(s)]G2n−2k+2(s) + ρ

(
Rk [g(s)] F̃2n−2k+1(s)−Rk [f(s)] G̃2n−2k+1(s)

))
ds,

(3.14)

G̃2n+1(x) =

∫ x

x0

g(s)

N∑
k=1

(
Rk [g(s)]F2n−2k+2(s) + ρ

(
Rk [g(s)] F̃2n−2k+1(s)−Rk [f(s)] G̃2n−2k+1(s)

))
ds,

(3.15)

and analogously, instead of (3.10) and (3.11) their alternative form

F2n(x) = ρ

∫ x

x0

f(s)

N∑
k=1

(Rk [g(s)]F2n−2k(s)−Rk [f(s)]G2n−2k(s)) ds, (3.16)

G2n(x) = ρ

∫ x

x0

g(s)

N∑
k=1

(Rk [g(s)]F2n−2k(s)−Rk [f(s)]G2n−2k(s)) ds. (3.17)

Lemma 3.3. For the functions defined by Definition 3.2 the following relations hold.
For an odd n:

F ′n = G′n = ρ (g′Fn−1 − f ′Gn−1) ,

(pF ′n)′ + qFn =

N∑
k=1

Rk [Fn−2k] , (3.18)

(pG′n)′ + qGn =

N∑
k=1

Rk [Gn−2k] ,

and for an even n:

F̃ ′n = f ′Gn − ρ
(
f ′G̃n−1 − g′F̃n−1

)
,

G̃′n = g′Fn − ρ
(
f ′G̃n−1 − g′F̃n−1

)
,

(pF̃ ′n)′ + qF̃n =

N∑
k=1

Rk
[
F̃n−2k

]
,

(pG̃′n)′ + qG̃n =

N∑
k=1

Rk
[
G̃n−2k

]
.

Proof. The proof of the equalities for the first derivatives of the formal powers is completely analogous to
that from Lemma 2.5. We will prove (3.18), the rest of the equalities involving second derivatives of the
formal powers are proved similarly. Consider

(pF ′n)′ = ρ
(
(pg′)′Fn−1 − (pf ′)′Gn−1

)
+ ρp

(
g′F ′n−1 − f ′G′n−1

)
. (3.19)

Since p
(
g′F ′n−1 − f ′G′n−1

)
= p (g′f − f ′g)

∑N
k=1Rk [Fn−2k] = 1

ρ

∑N
k=1Rk [Fn−2k], from (3.19) we have

(pF ′n)′ = −ρq (gFn−1 − fGn−1) +

N∑
k=1

Rk [Fn−2k]

which is (3.18).
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Lemma 3.4. Let c1 = |ρ|, c2 = maxk=1,N (maxx∈[a,b] |Rk[f ]| ,maxx∈[a,b] |Rk[g]|) and c3 = max(maxx∈[a,b] |f | ,
maxx∈[a,b] |g|). Then for the functions defined by Definition 3.2 the following inequalities hold.

|F2n(x)| ≤
n−[ n

N ]∑
k=0

(
n

k

)
(2c1c2c3)n−k |x− x0|n−k

(n− k)!
, (3.20)

|G2n(x)| ≤
n−[ n

N ]∑
k=0

(
n

k

)
(2c1c2c3)n−k |x− x0|n−k

(n− k)!
(3.21)

|F2n+1(x)| = |G2n+1(x)| ≤ 2c1c3

n−[ n
N ]∑

k=0

(
n

k

)
(2c1c2c3)n−k |x− x0|n−k

(n− k)!
, (3.22)

∣∣∣F̃2n(x)
∣∣∣ ≤ c3 n−[ n

N ]∑
k=0

(
n

k

)
(2c1c2c3)n−k |x− x0|n−k (n− k + 1)

(n− k)!
, (3.23)

∣∣∣G̃2n(x)
∣∣∣ ≤ c3 n−[ n

N ]∑
k=0

(
n

k

)
(2c1c2c3)n−k |x− x0|n−k (n− k + 1)

(n− k)!
, (3.24)

∣∣∣F̃2n+1(x)
∣∣∣ ≤ c2c3 n+1−[n+1

N ]∑
k=0

(
n+ 1

k

)
(2c1c2c3)n−k |x− x0|n+1−k

(n− k)!
, (3.25)

∣∣∣G̃2n+1(x)
∣∣∣ ≤ c2c3 n+1−[n+1

N ]∑
k=0

(
n+ 1

k

)
(2c1c2c3)n−k |x− x0|n+1−k

(n− k)!
, (3.26)

where [x] denotes the largest integer less than or equal to x.

Remark 3.5. In the case when N = 1 and s1 ≡ 0, the estimates (3.20)–(3.26) coincide with the estimates
given in Lemma 2.6.

Proof. Clearly inequalities (3.20) and (3.21) hold for n = 0. Assume that inequalities (3.20) and (3.21)
hold for all n, 0 ≤ n < m for some m ∈ N. Then taking into account (3.7) we obtain from (3.16) that

|F2m(x)| =
∣∣∣∣ρ∫ x

x0

f(s)

min(N,m)∑
j=1

(Rj [g(s)]F2m−2j(s)−Rj [f(s)]G2m−2j(s)) ds

∣∣∣∣
≤ 2c1c2c3

min(N,m)∑
j=1

∫ x

x0

m−j−[m−j
N ]∑

k=0

(
m− j
k

)
(2c1c2c3)m−j−k |x− x0|m−j−k

(m− j − k)!
ds

=

min(N,m)∑
j=1

m−j−[m−j
N ]∑

k=0

(
m− j
k

)
(2c1c2c3)m−j−k+1 |x− x0|m−j−k+1

(m− j − k + 1)!
.

We rearrange the terms with respect to ` = k + j − 1. It follows from 1 ≤ j ≤ min(N,m) and 0 ≤ k ≤
m− j −

[
m−j
N

]
that 0 ≤ ` ≤ m− 1−

[
m−j
N

]
≤ m− 1−

[
m−N
N

]
= m−

[
m
N

]
and that j ≤ min(N,m, `+ 1).

Hence

|F2m(x)| ≤
m−[m

N ]∑
`=0

min(N,m,`+1)∑
j=1

(
(m− 1)− (j − 1)

`− (j − 1)

)
(2c1c2c3)m−` |x− x0|m−`

(m− `)!

≤
m−[m

N ]∑
`=0

(2c1c2c3)m−` |x− x0|m−`

(m− `)!
∑̀
j=0

(
m− 1− j
`− j

)
=

m−[m
N ]∑

`=0

(
m

`

)
(2c1c2c3)m−` |x− x0|m−`

(m− `)!
.

Similarly we obtain inequality (3.21). Now (3.22) easily follows from the definition.
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It is easy to see from (3.14), (3.15) that inequalities (3.25) and (3.26) hold for n = 0. Assume that
inequalities (3.25) and (3.26) hold for all n, 0 ≤ n < m. Similarly to the first part of the proof we obtain
from (3.14) that

|F̃2m+1(x)| ≤
min(N,m+1)∑

j=1

c2c3

m+1−j−[m+1−j
N ]∑

k=0

(
m+ 1− j

k

)
(2c1c2c3)m−j−k+1 |x− x0|m−j−k+2

(m− j − k + 2)!

+

min(N,m)∑
j=1

2c1c2c3 · c2c3
m+1−j−[m+1−j

N ]∑
k=0

(
m+ 1− j

k

)
(2c1c2c3)m−j−k |x− x0|m−j−k+2

(m− j − k + 2) · (m− j − k)!

≤ c2c3
min(N,m+1)∑

j=1

m+1−j−[m+1−j
N ]∑

k=0

(
m+ 1− j

k

)
(2c1c2c3)m−j−k+1 |x− x0|m−j−k+2

(m− j − k + 1)!
,

end the proof can be finished as in the first part.
Now inequalities (3.23) and (3.24) easily follow from the definition.
The following corollary presents rougher estimates than those in Lemma 3.4 however better suited for

the convergency testing.

Corollary 3.6. Under the conditions of Lemma 3.4 define

C(n, x) :=
(1 + 2c1c2c3|x− x0|)n([

n
N

])
!

.

Then for the functions Fn, F̃n, n ≥ 0, the following estimates hold.

|F2n(x)| ≤ C(n, x), |F2n+1(x)| ≤ 2c1c3C(n, x),

|F̃2n(x)| ≤ (n+ 1)c3C(n, x), |F̃2n+1(x)| ≤ n+ 1

2c1
C(n+ 1, x).

The same estimates hold for the functions Gn, G̃n.

Proof. Consider the inequality (3.25). We have n+ 1− k ≥
[
n+1
N

]
hence

|F̃2n+1(x)| ≤ 1

2c1

n+1−[n+1
N ]∑

k=0

(
n+ 1

k

)
(n+ 1− k)(2c1c2c3)n+1−k |x− x0|n+1−k

(n+ 1− k)!

≤ n+ 1

2c1
([
n+1
N

])
!

n+1−[n+1
N ]∑

k=0

(
n+ 1

k

)
(2c1c2c3)n+1−k |x− x0|n+1−k ≤ n+ 1

2c1
C(n+ 1, x).

Other inequalities can be obtained similarly.

Theorem 3.7 (Modified SPPS representations for Sturm-Liouville pencils). Let p and q be such that there
exist two linearly independent solutions f and g of equation (2.1) such that {f, g, pf ′, pg′} ⊂ C1[a, b] and
f(x0) = g(x0) = 1 where x0 is any point of [a, b] such that p(x0) 6= 0. Let the operators Rk in (3.1) be such
that {Rk[f ], Rk[g]} ⊂ C[a, b], k = 1, N . Then the general solution of (3.1) on (a, b) has the form (2.3) where

u1 =

∞∑
n=0

λnF̃2n and u2 =

∞∑
n=0

λnF2n+1. (3.27)

The derivatives of u1 and u2 have the form

pu′1 = pf ′ +

∞∑
n=1

λn
(
pf ′G2n − ρ

(
pf ′G̃2n−1 − pg′F̃2n−1

))
(3.28)
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and

pu′2 = ρ

∞∑
n=0

λn (pg′F2n − pf ′G2n) . (3.29)

All series in (3.27)–(3.29) converge uniformly on [a, b] (see also Remark 2.8). The solutions u1 and u2 satisfy
the initial conditions

u1(x0) = 1, u′1(x0) = f ′(x0), u2(x0) = 0, u′2(x0) =
1

p(x0)
. (3.30)

Proof. Corollary 3.6 guarantees the uniform convergence of all the involved series. For example, we have

|u2| ≤
∞∑
n=0

|λ|n|F2n+1| ≤ 2c1c3

∞∑
n=0

(
1 + 2c1c2c3|x− x0|

)n|λ|n([
n
N

])
!

= 2c1c3

(N−1∑
n=0

Mn

) ∞∑
m=0

MmN

m!
= 2c1c3

(N−1∑
n=0

Mn

)
exp(MN ),

where M =
(
1 + 2c1c2c3|x− x0|

)
|λ|.

Due to Lemma 3.3 we obtain that u1 and u2 are indeed solutions of (3.1) as well as the equalities (3.28)
and (3.29). Indeed, let us consider application of the operator L to u1,

L

[ ∞∑
n=0

λnF̃2n

]
=

∞∑
n=0

λn
N∑
k=1

Rk

[
F̃2n−2k

]
=

N∑
k=1

λkRk

[ ∞∑
n=0

λn−kF̃2n−2k

]
.

Taking into account that the formal powers with negative subindices equal zero we obtain that u1 satisfies
(3.1). For u2 the proof is analogous.

The equalities (2.38) follow from the fact that all formal powers Fn, Gn, F̃n and G̃n vanish at x = x0 for
any n ∈ N. Finally, from (2.38) it follows that u1 and u2 are linearly independent.

3.3 Spectral shift for pencils

Let λ0 be a fixed complex number and λ = λ0 + Λ. The right hand side of equation (3.1) can be written in
the form

N∑
k=1

λkRk[u] =

N∑
k=1

Rk[u]

k∑
`=0

(
k

`

)
λ`0Λk−`

=

N∑
k=1

λk0Rk[u] +

N∑
k=1

Λk
N−k∑
`=0

(
k + `

`

)
λ`0Rk+`[u],

therefore equation (3.1) can be transformed into equation

L0u =

N∑
k=1

Λk
N−k∑
`=0

(
k + `

`

)
λ`0Rk+`[u], (3.31)

where

L0u = (pu′)′ + qu−
N∑
k=1

λk0Rk[u] = (pu′)′ + u

(
q −

N∑
k=1

λk0rk

)
− u′

N∑
k=1

λk0sk.

Equation (3.31) is of the form (3.1) only for some special cases, say all the coefficients sk are identically
zeros or the coefficients sk are linearly dependent and such that for some special values of λ0 the expression∑N
k=1 λ

k
0sk equals zero. In other situations equation (3.31) has nonzero coefficient near u′. To overcome this

difficulty we multiply all terms of equation (3.31) by

P (x) := exp

(
−
∫ x

x0

1

p(s)

N∑
k=1

λk0sk(s) ds

)
,
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and transform it into the equation

(p̃u′)′ + q̃u =

N∑
k=1

ΛkR̃k[u], (3.32)

where

p̃ = p · P, q̃ = P

(
q −

N∑
k=1

λk0rk

)
(3.33)

and

R̃k[u] = r̃ku+ s̃ku
′ with r̃k = P ·

N−k∑
`=0

(
k + `

`

)
λ`0rk+`, s̃k = P ·

N−k∑
`=0

(
k + `

`

)
λ`0sk+`. (3.34)

Note that a particular solution of (3.32) corresponding to Λ = 0 is the particular solution of (3.1)
corresponding to λ = λ0. Hence applying Theorem 3.7 to equation (3.32) and taking into account that
p̃(x0) = p(x0) we obtain the following corollary.

Corollary 3.8 (Spectral shift for the modified SPPS representation). Let equation (3.1) admit for λ = λ0
two linearly independent solutions f and g such that {f, g, pf ′, pg′} ⊂ C1[a, b] and f(x0) = g(x0) = 1

where x0 is any point of [a, b] such that p(x0) 6= 0. Let 1
p

∑N
k=1 λ

k
0sk ∈ C[a, b] and {Rk[f ], Rk[g]} ⊂ C[a, b],

k = 1, N . Then the general solution of (3.1) on (a, b) has the form (2.3) where

u1 =

∞∑
n=0

(λ− λ0)nF̃2n and u2 =

∞∑
n=0

(λ− λ0)nF2n+1, (3.35)

and the functions {Fn} and {F̃n} are obtained by applying formulas from Definition 3.2 to the functions f ,

g and R̃k[f ], R̃k[g].
The derivatives of u1 and u2 have the form

pu′1 = pf ′ +

∞∑
n=1

(λ− λ0)n
(
pf ′G2n − ρ

(
pf ′G̃2n−1 − pg′F̃2n−1

))
(3.36)

and

pu′2 = ρ

∞∑
n=0

(λ− λ0)n (pg′F2n − pf ′G2n) . (3.37)

All series in (3.35)–(3.37) converge uniformly on [a, b]. The solutions u1 and u2 satisfy the same initial
conditions (3.30).

4 Numerical solution of spectral problems

4.1 The general scheme

The general scheme of using the modified SPPS representation for the solution of spectral problems for
equation (2.2) and more general (3.1) is similar to that for the original SPPS representation, see [18], [20].

Consider boundary conditions

αau(a) + βap(a)u′(a) = 0 (4.1)

αbu(b) + βbp(b)u
′(b) = 0, (4.2)

where αa, βa, αb and βb are complex numbers such that |αa|+ |βa| 6= 0 and |αb|+ |βb| 6= 0. Suppose that the
function p is continuous at one of the endpoints and is different from zero at that endpoint. We may assume
that a is such endpoint. Let f and g be two linearly independent solutions of (2.1) satisfying f(a) = g(a) = 1,

and denote h := f ′(a). Consider the systems of functions {Fn}, {F̃n}, {Gn}, {G̃n} constructed from the
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solutions f and g by Definition 2.3 or by Definition 3.2 using the point x0 = a. Then due to the initial
conditions (2.38) or (3.30) the solution u(x;λ) defined by

u(x;λ) = βau1(x;λ)− (αa + βah)u2(x;λ),

where the functions u1 and u2 are given by (2.35) or (3.27), satisfies the first boundary condition (4.1).
Hence the second boundary condition (4.2) gives us the characteristic function

Φ(λ) := αbu(b;λ) + βbp(b)u
′(b;λ). (4.3)

The set of zeros of the function Φ coincides with the set of eigenvalues of the spectral problem (4.1), (4.2) for
the equation (3.1). Truncating the series in (4.3) we obtain a polynomial approximating the characteristic
function. The roots of this polynomial closest to zero give us approximations of the eigenvalues. The Rouche
theorem guarantees that these roots are indeed the approximations to the eigenvalues and are not spurious
roots appearing as a result of the truncation of the series.

In the case when the function p is not continuous or equals zero at the endpoints, we cannot calculate the
formal powers starting from one of the endpoints and cannot take advantage of the initial conditions (2.38)
or (3.30). Instead we consider the general solution u = c1u1 + c2u2 constructed using some point x0 ∈ (a, b).
Then a point λ is an eigenvalue of the problem if and only if the determinant of the following system

det

(
αau1(a;λ) + βap(a)u′1(a;λ) αau2(a;λ) + βap(a)u′2(a;λ)
αbu1(b;λ) + βbp(b)u

′
1(b;λ) αbu2(b;λ) + βbp(b)u

′
2(b;λ)

)
= 0, (4.4)

is equal to zero, see, e.g., [24, §1.3], and we can proceed as before: taking the partial sums of the involved
series, obtaining a polynomial approximating the characteristic equation and choosing the roots closest to
zero.

4.2 Numerical examples for Sturm-Liouville problems

In the paper [18] the authors illustrated the numerical performance of the SPPS method for solving Sturm-
Liouville spectral problems. Since the difference between the original SPPS representation and the modified
SPPS representation consists only in the way of calculating coefficients, the performance of the modified SPPS
method is similar to that of the SPPS method when all the involved recursive integrals can be calculated
equally precise. Usually it is the case when a particular solution f and functions 1/p, r do not grow rapidly
and are sufficiently separated from zero. In the opposite case one may expect a better performance of the
modified SPPS method. One of the examples with a rapidly growing particular solution f , the Coffey-Evans
equation, is considered in [20] where we observe that a combination of the Clenshaw-Curtis integration
formula with the formulas (2.16)–(2.22) allows us to compute twice as many formal powers in comparison
with the formulas (2.6), (2.7).

In this subsection we consider several “nasty” examples (according to [28, Appendix B]) involving un-
bounded however absolutely integrable functions 1/p, r, q. Even though some of the problems do not satisfy
the conditions of Theorem 2.7, the modified SPPS method demonstrates an excellent accuracy, meanwhile
the performance of the SPPS method is considerably worse for the problems with unbounded functions 1/p
or r. Moreover, the numerical implementation of the SPPS method is several times slower for these problems
due to the necessity to use complex-valued functions in order to obtain non-vanishing particular solutions.

Example 4.1. Consider the following problem (Problem 10 from [28]){
−
(√

1− x2u′
)′

= λu,√
1− x2u′(x)

∣∣
x=−1 = 0, u(1) = 0,

a problem with a “nasty” p =
√

1− x2 and “good” q and r.
Since the function p equals zero at both endpoints, we used the determinant approach described in the

previous subsection.
The functions f(x) = 1 and g(x) = 1+arcsin(x) were chosen as two particular solutions of equation (2.1)

satisfying the conditions of Theorem 2.7.
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n λn ([28]) λn (our method) λn (“old” SPPS method) λn (SLEIGN2)
0 0.3856819 0.385681872027002 0.3863 0.385684539
1 3.80741155419017 3.8114 3.807427952
2 10.6772827352614 10.6867 10.677320922
3 20.9871308475868 21.0036 20.987197576
5 51.9221036193997 51.9570 51.922245020
10 189.421910262487 189.5241 189.422324959
15 412.863500805267 413.0592 412.864294034
20 722.245619500433 722.5567 722.246883258
24 1031.628 1031.62824937392 1032.047 1031.629950116

Table 1: The eigenvalues of the Problem 10 from [28] (Example 4.1).

We obtained approximate eigenvalues of the problem applying the spectral shift technique, on each step
finding one new approximate eigenvalue as the root of the polynomial approximating the characteristic
equation closest to the current spectral shift center and using this value as the spectral shift for the next
step. On each step we computed N = 100 formal powers using machine precision arithmetics in MATLAB
with x0 = 0 and M = 2 ·105−1 points for the Newton-Cottes 6 points integration scheme. We also tested the
“old” SPPS method on this problem. In order to deal with the zeros of the function p at the endpoints we
approximated it by a function having small, however non-zero values at the endpoints. The results from the
SPPS representation were obtained using the same parameters and the strategy for the spectral shift, with
the only difference that we have taken a complex-valued combination u1 + iu2 on each step for a particular
solution to be non-vanishing. The obtained results are presented in Table 1 together with the values from
[28] and the results produced by SLEIGN2 package [4]. Another well-known package, MATSLISE [23], can
not solve this problem at all. Unfortunately the exact characteristic equation for this problem is unknown.
Note that the results of the modified SPPS method are in a good agreement with those presented in [28],
meanwhile the results produced by SLEIGN2 differ in 3rd–5th decimal place, the results of the SPPS method
are even worse.

Example 4.2. Consider the following problem (Problem 9 from [28]). The interval is [−1, 1], “nice” p =
1/
√

1− x2 and q = 0, “nasty” r = 1/
√

1− x2 with the Dirichlet boundary conditions u(−1) = u(1) = 0.
We tested the performance of the Darboux-associated equations approach proposed in Subsection 2.4 and

Remark 2.13 on this problem. Even using the spectral shift technique, the results for the higher eigenvalues
were mediocre, see Table 2. Such behavior of the method can be explained by the additional steps related
with the Darboux associated equations, namely construction of the potentials q1/f and of a second particular
solution of these associated equations. Obtained potentials q1/f possessed large peaks inside the interval
leading to large errors in the calculated formal powers.

Additionally we applied the direct approach to check whether our method can be applied in the situations
not covered by Theorem 2.7. For that we chose f(x) = 1 and g(x) = 1+

(
x
√

1− x2+arcsinx
)
/2 as particular

solutions of (2.1) satisfying the conditions of Theorem 2.7, changed values of r at the endpoints to be equal
to some rather large values and proceeded exactly as described in Example 4.1. The obtained results are
presented in Table 2 and are in an excellent agreement with those reported in [28]. Some of the eigenvalues
computed by SLEIGN2 package differ from our results in 3-5th decimal place. Also we tested the performance
of the SPPS method. Produced eigenvalues are closer than in the previous example to the obtained by the
modified SPPS method and agree up to 4-6 decimal places.

Example 4.3. Consider the following problem (Problem 11 from [28]){
−u′′ + u lnx = λu,

u(0) = u(4) = 0.

Again, this problem is not covered by Theorem 2.7. Nevertheless we checked the performance of our method
on this problem. Two particular solutions of equation (2.1) were computed using the SPPS representation.
After that we proceeded exactly as in Examples 4.1 and 4.2 using the point x0 = 2 to calculate the formal
powers. We also checked the performance of the SPPS method. Obtained results together with the results
from [28] and the results produced by SLEIGN2 package are presented in Table 3.
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n λn ([28]) λn (our method) λn (our method, based on λn (SLEIGN2)
Darboux-associated eqns.)

0 3.559279966 3.55927997532677 3.559280003 3.559279975351
1 12.1562946865237 12.15629481 12.15637
2 25.7034532288478 25.70345354 25.70345322896
3 44.1919717455476 44.19197235 44.19206
5 95.9831209203069 95.98312252 95.98332
9 258.8005854 258.800585373152 258.8005909 258.7976
14 573.369367026965 573.36944 573.3693670289
19 1011.31532988447 1011.19 1011.3153298853
24 1572.635284 1572.63528434735 – 1572.6352843481

Table 2: The eigenvalues of the Problem 9 from [28] (Example 4.2).

n λn ([28]) λn (our method) λn (old SPPS method) λn (SLEIGN2)
0 1.1248168097 1.12481680968989 1.1248168096898 1.12481680982
1 2.99094198359879 2.99094198359867 2.990941998
2 6.03307162455419 6.03307162455413 6.03307134
4 15.8644572215756 15.8644572215752 15.86445693
9 62.0987975024207 62.0987975024165 62.0987975072
24 385.92821596 385.928215961012 385.928215961016 385.928215990

Table 3: The eigenvalues of the Problem 11 from [28] (Example 4.3).

4.3 High-precision evaluation of eigenvalues

In this subsection we show that the modified SPPS method can be successfully applied to the calculation of
eigenvalues of Sturm-Liouville spectral problems with a high accuracy. However, in contrast to the method
proposed in [20], the accuracy of the eigenvalues rapidly deteriorates with the eigenvalue index. The situation
can be improved to some extent applying the spectral shift technique allowing one to obtain hundreds of
highly accurate approximate eigenvalues.

Example 4.4. Consider the following spectral problem (the second Paine problem, [25, 28]){
−u′′ + 1

(x+0.1)2u = λu, 0 ≤ x ≤ π,
u(0, λ) = 0, u(π, λ) = 0.

This problem was treated in [20] and appears to be rather tough requiring a large number of formal powers
to be used in order to compute highly accurate eigenvalues. In [20] we were able to achieve the accuracy of
order 10−43÷10−42 almost independent of the eigenvalue index for several thousands of eigenvalues. Further
increase of accuracy required significant increase of all the parameters involved (number of the formal powers,
precision and the number of points used for the integration). In this example we show that the modified
SPPS method allows us to improve the accuracy to the order of 10−150 using the similar set of parameters
however only for the first 187 eigenvalues.

First we verified the precision of the coefficients of the polynomial approximating the exact characteristic
function. These coefficients are nothing more than the values of the formal powers at the right endpoint
divided by the corresponding factorials. We compared the different methods of indefinite numerical inte-
gration used for evaluating the formal powers. Up to now we used three different methods of indefinite
numerical integration, see [10], [15] and [20]. The first is the modification of the Newton-Cottes 7th order
six point rule, the second is the integration of a spline approximating a formal power and the third is the
Clenshaw-Curtis integration based on the approximation of a function by the Tchebyshev polynomials. The
computation time required by the second mentioned method highly exceeds the computation time required
by the first method providing only a slight improvement of the accuracy. For that reason in the present
work we consider only the first and the third integration methods. All the computations were performed in
Wolfram Mathematica 8.

20



For each of the methods a parameter M corresponds to the number of smaller subdivision intervals on
the segment [0, π] used for numerical integration, i.e., the integrand function was represented by its values in
M +1 points. For the Clenshaw-Curtis integration we used for M values 512, 1024, 2048 and 3072. For each
of the values of M we computed two particular solutions using the SPPS representation and verified their

precision against the exact particular solution u0(x) = (1 + 10x)(1+
√
5)/2. The maximum absolute errors

were 3.9 · 10−85, 7.5 · 10−165, 1.7 · 10−323 and 8.2 · 10−482 respectively. Therefore we used 100, 200, 400 and
600 digit arithmetic respectively for the calculation of the formal powers.

For the Newton-Cottes integration scheme we used M = 104, 5 · 104 and 25 · 104 and performed compu-
tations in machine-precision and 64-digit arithmetics, in both cases using exact particular solutions.

We compared the computed coefficients (values of the formal powers at the right endpoint divided by
the corresponding factorials) against the same values produced by means of the Clenshaw-Curtis integration
formula with M = 4096. The relative errors of the formal powers are presented on Figure 2. Note the
different behavior of the errors. For the Clenshaw-Curtis integration the errors start from much lower values
coinciding with the errors of the particular solutions, however rapidly increasing with the increase of the
formal power number. For the Newton-Cottes integration the errors in machine-precision are almost constant
and are slowly growing in the high precision arithmetic.

100 200 300 400 500 600

10-450

10-360

10-270

10-180

10-90

1

3072

2048

1024

512

M

100 200 300 400 500 600

10-21

10-16

10-11

10-6

0.1

50 k MP

10 k MP

250 k HP

50 k HP

10 k HP

M, precision

Figure 2: Relative errors of the first 600 formal powers in Example 4.4 obtained using Clenshaw-Curtis
integration (on the left graph) and using the Newton-Cortes integration (on the right graph). M corresponds
to the number of points used for representing the integrand, HP means 64 digit precision and MP means
machine precision.

Using the obtained coefficients we calculated the roots of the polynomial approximating eigenvalues and
compared them to the exact ones (see [20, Example 26] for the expression of the characteristic equation).
Since the problem possesses only real eigenvalues, all roots of the polynomial having large imaginary part
were discarded as spurious roots. On Figure 3 we present the graphs of the absolute errors of the approximate
eigenvalues obtained from the truncation of the modified SPPS representation using N = 100, 200, 400 and
600 formal powers and without application of the spectral shift.

Several observations can be made regarding the presented graphs. First, the number of eigenvalues which
can be approximately calculated from the truncated SPPS representation depends on the number of used
formal powers and almost does not depend on the accuracy of the formal powers. Second, the accuracy
of the formal powers has a great influence on the accuracy of the first eigenvalues. The errors of the first
approximate eigenvalues are close to the errors achieved while calculating the particular solutions and the first
several formal powers, meanwhile the errors of the larger eigenvalues remain roughly constant for different
computation precisions used.

Finally we computed the approximate eigenvalues applying the spectral shift technique. We performed
spectral shifts using values λ0 = 250n, n = 1, . . . , 200 and on each step calculating N = 400 formal powers
with the help of the Clenshaw-Curtis integration with M = 1024 and 200-digit arithmetic. The absolute
errors of the first 200 found eigenvalues are presented on Figure 4. As one can see, the errors are slowly
growing remaining smaller than 10−150 up to the eigenvalue number 186, for the higher indices the accuracy
rapidly deteriorates.
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Figure 3: Absolute errors of the approximate eigenvalues in Example 4.4 obtained using different number
of formal powers for approximating the exact characteristic equation (parameter N) and using Clenshaw-
Curtis integration (on the left graph) and using the Newton-Cortes integration (on the right graph). M
corresponds to the number of points used for representing the integrand, H means 64 digit precision and M
means machine precision. The horizontal lines on the left graph show the errors of the particular solutions
used for the calculation of the formal powers.

4.4 Spectral problems for pencils

In this subsection we consider several examples in which the right-hand side of equation (3.1) includes
a derivative of the unknown function at the spectral parameter or depends polynomially on the spectral
parameter.

The first two considered problems are from [2], [3] and belong to so-called second-order linear pencils.

Example 4.5. Consider the following problem [3, Example 3.3].{
−y′′ + x2y = λ(2iy′ + y), 0 ≤ x ≤ 1,

y′(0) + iλy(0) = 0, y′(1) + iλy(1) = 0.
(4.5)

The problem is self-adjoint and possesses a discrete real spectrum. With the help of Mathematica software
we found the characteristic equation of the problem is given by the expression

(
λ2 + λ− 1

)
1F1

(
1

4
(5− λ(λ+ 1));

3

2
; 1

)
+ 1F1

(
1

4
(1− λ(λ+ 1));

1

2
; 1

)
= 0,

where 1F1 is the Kummer confluent hypergeometric function.
We computed two particular solutions of (2.1) using the SPPS representation with N = 100 formal

powers and M = 10001 points for the evaluation of the involved integrals by the Newton-Cottes 6 point
formula, afterwards we used these particular solutions to compute N = 100 formal powers and to find the
roots of the polynomial approximating the exact characteristic equation, spectral shift technique was used to
obtain the higher index eigenvalues. The obtained eigenvalues together with the exact ones and the results
from [2] and [3] are presented in Table 4. Note that our results are significantly better than the results from
[2] and are comparable with the ones from [3]. However it should be mentioned that the approximations of
the characteristic function of the problem (4.5) from [2] and [3] do not lead to an automatic approximation of
the eigenfunctions; require some analytic precomputation as well as the solution of a large number of initial
value problems which the authors of [2] and [3] performed by means of Mathematica with a required accuracy.
Meanwhile the results delivered by the modified SPPS method were obtained using machine precision, did
not require any analytic precomputation and include the eigenfunctions as well.

Example 4.6. Consider the following boundary value problem [3, Example 3.1].{
−y′′ + q(x)y = λ(2iy′ + y), 0 ≤ x ≤ 1,

y(0) = 0, y′(1) + iλy(1) = 0,
(4.6)
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Figure 4: Absolute errors of the first 200 approximate eigenvalues in Example 4.4 obtained by the modified
SPPS method applying the spectral shift technique.

n λn (our method) λn (exact) λn ([2]) λn ([3])
-25 -75.90209254554286 -75.90209254550119
-10 -28.78465916307922 -28.78465916308716
-5 -13.08969157402720 -13.08969157402805
-3 -6.830508103259227 -6.830508103259007
-2 -3.741923372554198 -3.741923372554521 -3.7419233703827506 -3.7419233725545213
-1 -1.258249036460409 -1.2582490364604132 -1.2582490390569894 -1.2582490364604124
0 0.258249036460413 0.2582490364604132 0.2582490344106217 0.25824903646041525
1 2.741923372554577 2.741923372554521 2.741923371301097 2.7419233725545213
2 5.830508103259199 5.830508103259007 5.830508103873908 5.8305081032590085
3 8.955988815983204 8.955988815983707
5 15.22658797653006 15.22658797653187
10 30.92521763113015 30.92521763112857
25 78.04353040058767 78.04353040632336

Table 4: The eigenvalues of the problem (4.5) (Example 4.5).

where

q(x) =

{
1, 0 ≤ x ≤ 1/2,

0, 1/2 < x ≤ 1.

This problem is not covered by Theorem 3.7, however it can be solved by the modified SPPS representation
according to Remark 2.11. There seems to be some error in [2], [3] because the reported results are not the
eigenvalues of the problem (4.6). With the help of Wolfram Mathematica we found that the characteristic
equation of the problem (4.6) is given by the expression√

λ2 + λ tanh

(
1

2

√
−λ(λ+ 1)

)
tanh

(
1

2

√
1− λ(λ+ 1)

)
+
√
λ2 + λ− 1 = 0. (4.7)

We applied the modified SPPS method to this problem using the spectral shift technique computing
both the particular solutions and the first 100 formal powers using M = 10001 for all involved integrals
and performing integrations separately on each segment of continuity of the potential q. The calculated
eigenvalues together with the exact ones obtained from (4.7) and with the resulted absolute errors are
presented in Table 5.
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n λn (our method) λn (exact) Abs. error
-25 -77.4738498134661 -77.4738498206540 7.8 · 10−9

-10 -30.3579741391681 -30.3579741391157 6.2 · 10−11

-5 -14.6624304044055 -14.6624304044072 1.9 · 10−12

-3 -8.39761752583675 -8.39761752583497 3.9 · 10−12

-2 -5.30260260783015 -5.30260260783027 2.5 · 10−12

-1 -2.20110385479012 -2.20110385479002 1.1 · 10−13

0 1.20110385479006 1.20110385479002 3.7 · 10−14

1 4.30260260783056 4.30260260783027 2.8 · 10−13

2 7.39761752583498 7.39761752583497 1.4 · 10−12

3 10.5317097032223 10.5317097032191 3.5 · 10−12

5 16.8012911248982 16.8012911248964 1.0 · 10−11

10 32.4978603143171 32.4978603143055 1.2 · 10−11

25 76.4738498191705 76.4738498206540 7.0 · 10−9

Table 5: The eigenvalues of the problem (4.6) (Example 4.6).

For the next example we considered the following boundary value problem
∂
∂s

(
A(s)∂u∂s

)
− ∂2u

∂t2 − p(s)
∂u
∂t = 0,

u(0, t) = 0,
∂u
∂s

∣∣
s=l

+ ν ∂u
∂t

∣∣
s=l

+ µ ∂2u
∂t2

∣∣∣
s=l

= 0,

describing small transverse vibrations of a string of stiffness A(s) with a damping coefficient p(s) > 0. Here
u(s, t) is the transverse displacement and l > 0 is the length of the string. The left end of the string is fixed
and the right end is equipped with a ring of mass µ > 0 moving in the direction orthogonal to the equilibrium
position of the string. The damping coefficient of the ring is ν > 0. Similar problems were considered in
various papers where theoretical results on direct and inverse problems were obtained, see, e.g., [12], [26],
[27]. Substituting u(s, t) = v(λ, s)eiλt we obtain the system for the amplitude function v(λ, s).

(
A(s)v′(λ, s)

)′
+ λ2v(λ, s)− ip(s)λv(λ, s) = 0,

v(λ, 0) = 0,

v′(λ, l) + iνλv(λ, l)− µλ2v(λ, l) = 0.

(4.8)

The equation in (4.8) is of the type (3.1). In the case of a constant p(s) ≡ p the problem can be reduced to
a Sturm-Liouville problem by a change of the spectral parameter, however for a non-constant damping p(s)
the equation should be solved as a pencil.

Example 4.7. To be able to compare the approximate eigenvalues produced by the modified SPPS method
with the exact ones we have chosen the following parameters: A(s) ≡ 1, p(s) = s, µ = ν = 1 and l = 1.
For these parameters we were able to find with the help of Mathematica software the exact characteristic
equation

π
3
√
iλ

(
Bi
(
(iλ)4/3

) (
λ(λ− i) Ai

(
(iλ+ 1)

3
√
iλ
)
− 3
√
iλAi′

(
(iλ+ 1)

3
√
iλ
))

+

Ai
(
(iλ)4/3

) (
3
√
iλBi′

(
(iλ+ 1)

3
√
iλ
)
− λ(λ− i) Bi

(
(iλ+ 1)

3
√
iλ
)))

= 0, (4.9)

where Ai(x) and Bi(x) are the Airy functions. In Table 6 we present the approximate eigenvalues produced
by the modified SPPS method with N = 100 and M = 10001 and with the use of the spectral shift technique,
the exact eigenvalues obtained from the characteristic equation (4.9) with the help of Mathematica’s function
FindRoot and the absolute errors of the approximate eigenvalues compared to the exact ones. The eigenvalues
are symmetric with respect to the imaginary axis, so we included only the eigenvalues with the positive real
part. Note that our method allows one to obtain more eigenvalues, however Mathematica was unable to find
more zeros of the characteristic equation.
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n λn (our method) λn (exact) Abs. error
1 0.724600759561354 + 0.465512975730082i 0.724600759561355 + 0.465512975730082i 1.1 · 10−15

2 3.41348175703277 + 0.269073728680318i 3.41348175703277 + 0.26907372868032i 2.1 · 10−15

3 6.43085017426924 + 0.255763443512501i 6.43085017426926 + 0.255763443512497i 2.4 · 10−14

4 9.52497224975746 + 0.252665874553727i 9.5249722497575 + 0.252665874553731i 3.8 · 10−14

5 12.6419970813013 + 0.251521276777511i 12.6419970813014 + 0.251521276777512i 4.8 · 10−14

7 18.9002072286181 + 0.250683194824278i 18.9002072286181 + 0.250683194824283i 2.5 · 10−14

10 28.3081715202515 + 0.250305060446283i 28.3081715202511 + 0.250305060446279i 3.4 · 10−13

15 44.0040711901387 + 0.250126347925522i 44.0040711901389 + 0.250126347925464i 2.4 · 10−13

20 59.7063095058408 + 0.250068647436092i 59.7063095058413 + 0.250068647435942i 5.8 · 10−13

Table 6: The eigenvalues of the problem (4.8) (Example 4.7).

4.5 Spectral problems for Zakharov-Shabat systems

Zakharov-Shabat systems arise in the application of the inverse scattering transform method to non-linear
Schrödinger equations, see, e.g., [1, 29, 30]. In this subsection we follow definitions and results from the
recent papers [22, 21]. We consider a generalized Zakharov-Shabat system{

v′1 = λv1 + Pv2,

v′2 = −λv2 −Qv1,
(4.10)

where v1 and v2 are unknown complex valued functions, λ ∈ C is a spectral parameter, Q and P are complex
valued functions such that Q does not vanish, P is continuous and Q is continuously differentiable on the
domain of interest. Substituting v1 = − 1

Q (v′2 + λv2) into the first equation in (4.10) we obtain an equation
of the form (

1

Q
v′2

)′
+ Pv2 = λ

Q′

Q2
v2 + λ2

1

Q
v2. (4.11)

Equation (4.11) is of the form (3.1), hence we can apply the results of Section 3 to obtain the solution of
the Zakharov-Shabat system.

Recall that the eigenvalue problem for the system (4.10) consists in finding such values of the spectral
parameter λ for which there exists a non-trivial Jost solution. In particular, when the potentials Q and P
are compactly supported and non-vanishing on [−a, a] (a situation which usually arises when truncating the
infinitely supported and rapidly decreasing potentials) the eigenvalue problem reduces to finding such values
of λ (with Reλ > 0) for which there exists a solution of (4.10) on (−a, a) satisfying the following boundary
conditions (see, e.g., [22])

v1 (−a) = 1, v2 (−a) = 0, (4.12)

v1 (a) = 0. (4.13)

Let f and g be two particular solutions of (4.11) for some λ = λ0 satisfying the conditions of Theorem
3.7 and the solutions u1 and u2 be constructed by (3.35) using x0 = −a as the initial point in Definition
3.2. Then the general solution of (4.11) has the form v2 = c1u1 + c2u2 and it follows from (4.12) and (3.30)
that c1 = 0, while from the boundary condition for the function v1 = − 1

Q (v′2 +λv2) we obtain that c2 = −1.

Hence due to (4.13) the characteristic equation of the spectral problem reduces to

0 = v1(a) = − 1

Q(a)

(
v′2(a) + λv2(a)

)
=

1

Q(a)

(
u′2(a) + λu2(a)

)
.

Multiplying both sides by Q(a) we obtain that the eigenvalues of the spectral problem coincide with zeros
of the characteristic function

Φ(λ) = ρ

∞∑
n=0

(λ− λ0)n
(
g′(a)F2n(a)− f ′(a)G2n(a)

)
+ λ

∞∑
n=0

(λ− λ0)nF2n+1(a)

=

∞∑
n=0

(λ− λ0)n
(
ρ
(
g′(a)F2n(a)− f ′(a)G2n(a)

)
+ F2n−1(a) + λ0F2n+1(a)

)
.

(4.14)
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Example 4.8. Consider the following problem [6]{
iεv′ = qw + λv,

iεw′ = q̄v − λw,
(4.15)

where the potential q is given by

q(x) = A(x)eiS(x)/ε, A(x) = S(x) = sech(2x),

q̄ denotes the complex conjugate of q and ε is a small parameter. According to [6] the problem possesses a
finite set of eigenvalues having a “Y”-shape in the complex domain.

After division by iε, (4.15) reduces to the Zakharov-Shabat system (4.10) with the spectral parameter

λ̃ = λ/iε. This problem was numerically solved in [21, Example 4.10] using machine-precision arithmetic
by means of the original SPPS representation for several values of ε ≥ 0.063. In [6] the graphs of the
eigenvalues on the complex plane are presented for values of ε as small as 0.023. Such small values of ε
presented difficulties in [21, Example 4.10]. It was not possible to compute sufficiently many formal powers
to obtain all the eigenvalues without using the spectral shift technique, the larger index formal powers
became smaller than the smallest numbers in double precision. The spectral shift technique did not help
either because of the rapid growth followed by the rapid decay of the particular solutions used for spectral
shifts, similar difficulty as in the Coffey-Evans example [20, Example 7.5]. One possibility to overcome these
difficulties in the framework of the original SPPS method consists in using arbitrary precision arithmetic.
However even in this case the Clenshaw-Curtis integration formula allowed us to calculate only a few formal
powers accurately, meanwhile the use of the Newton-Cottes integration formula led to elevated computational
times.

The modified SPPS representation allowed us to overcome the main computation difficulty of the original
SPPS representation — nearly vanishing solutions. We truncated the potential to the segment [−8, 8] and
computed two particular solutions of equation (4.11) along with more than 2000 formal powers using the
Clenshaw-Curtis integration formula. Such amount of formal powers is sufficient to obtain all eigenvalues
of the problem (4.15) for all values of ε reported in [6] directly from the truncated characteristic function
(4.14). We confirmed the smaller eigenvalues using the spectral shift method. For the larger eigenvalues
the spectral shift method failed to produce reliable results with the parameters used because the particular
solutions reveal a computationally difficult behavior, starting at 1 they grow to more than 1040 and than
decay. All calculations were performed in Mathematica 8 using arbitrary precision arithmetic. On Figure
5 we present the graphs of the obtained eigenvalues for ε = 0.025 and ε = 0.0223, smallest values from [6],
and in Table 7 we present the approximate eigenvalues for ε = 0.025.
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Figure 5: Graphs of the eigenvalues of the problem (4.15) from Example 4.8 for ε = 0.025 (on the left) and
for ε = 0.0223 (on the right).
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2009.

27

http://arxiv.org/abs/1112.1633


[18] V. V. Kravchenko and R. M. Porter, Spectral parameter power series for Sturm-Liouville problems, Math. Meth.
Appl. Sci. 33 (2010) 459–468.

[19] V. V. Kravchenko and S. M. Torba, Transmutations and spectral parameter power series in eigenvalue problems,
in Operator Theory: Advances and Applications, Vol. 228 (2013) 209–238.

[20] V. V. Kravchenko and S. M. Torba, Analytic approximation of transmutation operators and applications to highly
accurate solution of spectral problems. Submitted, available at arXiv:1306.2914.
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