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Abstract.

Approximation of a continuous dynamics by discrete dynamics in the form of Poincare map is one of the
fascinating mathematical tool which can describe the approximate behaviour of the dynamics of the
dynamical system in lesser dimension than the embedding diemnsion. The present article considers a very
rare biomedical signal like Electromyography (EMG) signal. It determines suitable time delay and
reconstruct the attractor of embedding diemnsion three. By measuring its Lyapunov exponent, the
attractor so reconstructed is found to be chaotic. Naturally the Poincaré map obtained by corresponding
Poincaré section is to be chaotic too. This may be verified by calculation of Lyapunov exponent of the
map. The main objective of this article is to show that Poincaré map exists in this case as a 2D map for a
suitable Poincaré section only. In fact, the article considers two Poincaré sections of the attractor for
construction of the Poincaré map. It is seen that one such map is chaotic but the other one is not so – both
are verified by calculation of Lyapunov exponent of the map.
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1. Introduction.

Learning dynamics from a deterministic nonlinear signal is one of the challenging topics in nonlinear
world. Deterministic signal  means a signal which is not stochastic and nonlinear signal means a signal
whose linear statistical measures convey meaningless informations. Determinsim and nonlinearity of a
signal is generally tested by well known Surrogate data method, proposed by Theiler et al. (1992)[1,2].
Now to explain the dyanmics of a signal, phase space reconstruction  [3-9] is done  by which we can get
many information about the dyanmics. Phase space [3-9] is an abstract mathematical concept in Euclidean
space which consists of independent coordinates, where the time is absent. Reconstruction means
construction of phase space [3-9] from a single observation/signal with the help of suitable time lag and
the proper embedding dimension [9-12]. Suitable time lag is such a value from which we can understand
after what time the time series components is independent. On the other hand embedding dimension relay
-how many independent coordinates are necessary for the reconstruction of phase space  [3-9]. Suitable
time lag for nonlinear signal is generally found out by Average Mutual Information method (AMI)
[13,14] and proper embedding diemnsion is calculated by False Nearest Neighbourhood (FNN) method
[9-11]. Any way whenever the process of reconstruction is completed, sometimes it is seen that phase
space  [3-9] shows irratic behaviour in bounded region due to complex interaction of the independent



varaibles. In this situation, dynamics become unpredictable or chaotic. The main reason is that system
gradually forget the memory from its initial state. Geometrically it is observed that when distance
between two trajectories corresponding to two initial states increases exponentially, phase space  [3-9]
loses its memory that results in chaos. The measure known as Largest Lyapunov exponent (LLE) [15-17 ]
is very useful in this context. In the chaotic phase space  [3-9], the most beautyful fact is that how much
we observe the chaotic dyanmics through phase space  [3-9], we see that trajectories have a tendency to
converge on a dense bounded regions (irregular geometrical shaped) but they never intersect with own.
Such type of fact is known as deterministic chaos and the dense bounded region is called chaotic attractor.
When the attractor is reconstructed from the real world signal, we do not have any knowledge of the long
term dynamics of the signal as such. In fact, we do not know the realtion connecting the present position
with the previous or past posituions on the moving trajectory. What we can do is that we can try to search
for the dynamics on the attractor itself. The dynamics of a high dimensional flow in the corresponding
phase space [3-9] is understood conventionally by observing the dynamics induced by the flow on a
particular section of the phase space [3-9]. The chosen section, called the Poincaré section [9] helps in
visualizing the underlying dynamics. The successive intersections of the flow with the section produce a
discrete map known as the Poincaré map [18-25].

The electrical activity of skeletal muscles is reflected in EMG signal [26], which contains information
about the structure and function of muscles that make the movement of different parts of the body. The
EMG signal [26] conveys information about the controller function of the central and peripheral nervous
systems on the muscles. As such, the EMG signal [26] provides a highly useful characterization of the
neuromuscular system since many pathological processes, whether arising in the nervous system or
the muscle, are manifested by alterations in the signal properties. However, the proper dynamics behind
the generation of the EMG signal is still unknown. In fact, if one tries to model the system that generates
the EMG signal, the outcome of the model far deviates from the actual outcome (EMG signal). So we
cannot rely on the model and hence further mathematical study on EMG signal remains impossible.

In this article, an attempt has been made to understand the dynamics behind the generation of the EMG
signal by reconstructing its 3D attractor. As in the present case, the 3D attractor possesses the chaotic
structure; we do not calculate the proper embedding dimension for the EMG signal. This is because of the
fact that if the 3D attractor is chaotic then it remains so, when it is reconstructed in its actual embedding
space. Thus, the Poincaré map obtained in this case will be of two dimension [27] and so the
interpretation regarding the dynamics becomes much easier. In fact, our main goal is to find the Poincaré
map [18-25] for a suitable Poincare section of the reconstructed attractor, which gives the discrete
dyanmics approximation of the continuous EMG signal [26].

2. Methodology

2.1. Data collection

EMG signal [26] (with noise) in analogue form of the experimental subjects with tremor were recorded in
lead-1 and lead-2 configurations and collected in data accusation device available in the School of
BioScience and Engineering, Jadavpur University, Kolkata 32, India, in which it is converted to digital
form. This digitized data was then processed in a laptop by using LAB VIEW software to remove noise.
Finally, the recorded data was analyzed using a MATLAB program.



Figure.1. EMG signal with 11000 samples.

2.2. Phase space reconstruction

Taken theorem states that it is possible to reconstruct a topological equivalent phase space [3-9] from a
single time series [28, 29], if the suitable time delay and proper embedding dimension can be found out.
Let us consider the time series data given by {  ( ) ,   1,  2,  . . ., }.x k k N Suppose the embedding dimension
and the delay time for reconstruction of the attractor are m and  respectively. Then reconstructed phase
space [3-9] is given by  ( ) ( ), ( ), ( 2 ), ....., ( ( 1) ) ,X k x k x k x k x k m       1, 2, ..., ,k M where {  ( )}x k is

the phase space’s point in m-dimension phase space [3-9], M is the number of phase
points,  -  -  1M N m  , describes the evaluative trajectory of the system in the phase space [3-9].

Reconstruction of the attractor is guaranteed if the dimension of the phase space [3-9] is sufficient to
unfold the attractor. It is ensures when 2 1m d  will achieve this, where d is the dimension of the
attractor.

For the nonlinear signal, suitable time delay is calculated by the method of Average mutual
information. The mutual information is a measure of how much information can be derived from one
point of a time series, given complete information about the other. On the other hand, embedding
dimension is calculated by FNN [9-11], but for the sake of geometrical visibility we reconstruct the
attractor with embedding dimension three.

2.2.1. Average Mutual information method

For a time series{  ( ) ,   1,  2,  . . ., }x k k N , AMI [13, 14] is calculated by

[ ( ), ( )]
( ) [ ( ), ( )] log ,

1 [ ( )] [ ( )]

N prob x k x k m
AMI prob x k x k m

k prob x k prob x k m




 
 
 

(1)

[ 1,2,...., 1]m N  where [ ]p ro b  denotes the probability.

For estimation of , two criteria are important. First,  has to be large enough so that the AMI [13,

14] at time k  is significantly different from the AMI [13,14] at time k . Then it will be possible to
gather enough information about all other system variables that influence the value of x to reconstruct
the whole attractor. Second,  should not be larger than the typical time for which the system loses
memory of its initial state. We will always conscious about the second criteria, because chaotic systems
are unpredictable or lose memory of its initial state as time goes forward. In this context, Fraser and



Swinney proposed a very useful method [13, 14] which state that the optimum time-delay is obtained
where the mutual information attains its first minimum value.

2.3. Nonstationarity test

Nonstationary signal means a signal where the pattern of probabilty distributions of different segments are
not equal at all. We simple use Quantile-Quantile plot (QQ-plot) [30] to test the nonstationarity of EMG
signal [26]. Basically it is a graphical technique for determining if two data sets come from populations
with a common distribution. For this purpose, a 45-degree reference line is plotted. If the two sets come
from a population with the same distribution, the points should fall approximately along this reference
line. The greater the departure from this reference line, the greater the evidence for the conclusion that the
two data sets have come from populations with different distributions.

2.4. Nonlinearity by Surrogate data Test (with 99% confidence)

Surrogate data of an observed signal is such a time series which has same linear statistical properties as in
the observed signal. Surrogate data Test method is based on statistical hypothesis testing [30]. This
method has three steps: generate 99 surrogate data from the observed data. In this paper, we observed that
EMG signal [26] is a non-stationary signal, so Surrogate data is thus generated by Amplitude Adjusted
Truncated Fourier Transform surrogates (AATFT) method [31] and select the nonlinear version of
autocorrelation statistics-AMI (with m=1) as discriminate statistics. Consider a null hypothesis against
which observations are tested. Here we consider the null hypothesis ( 0H ) as

   : 1 10 experimental signal (experimental signal)H AMI m AMI mSUR   .

Here AMI [13, 14] plays a role as the discriminating statistic, which is basically a number that quantifies
some aspect of the time series.  If this number is different for the observed data then null hypothesis can
be rejected.

2.5. Largest Lyapunov exponent and signature of chaos

Detecting the presence of chaos in a dynamical system is an important problem that is solved by
measuring the LLE [15-17]. Lyapunov exponents [15-17] quantify the exponential divergence of initially
close state-space trajectories and estimate the amount of chaos in a system. We use a new method for
calculating the LLE [15-17] from an experimental time series. The method follows directly from the
definition of the LLE [15-17] and is accurate because it takes advantage of all the available data. The
major advantages of this algorithm are that the algorithm is fast, easy to implement, and robust to changes
in the following quantities: embedding dimension, size of data set, reconstruction delay, and noise level.

The LLE [15-17] is easily and accurately calculated using a least-square fit to the
“average” line defined by

1
( ) ln ( ) ,jy i d i

t



where                                                          (2)

. denotes the average over all values of j and ( )jd i is the distance between the j-th pair of nearest

neighbours after i discrete time-steps, i.e.,  i t seconds.



2.6. Poincaré section and Poincaré map

Let   3
1
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     be a 3D phase space [3-9] and z= c be a plane which cut the phase

space [3-9] orthogonally. For the experimental data set, the first task is to find out those points from phase
space [3-9] which is very near to the plane z=c in one side. Let they are  ( ), ( ), ( 2 )x h x h m x h m  for

1 2 3, , ,..., Nh a a a a , where ( 1,2,.., )ia i N denotes the time index  and 1 2 1( 1,2,.., 2)i i i ia a a a i N       .  Then,

find out   ( 1), ( 1 ), ( 1 2 )x h x h m x h m     which are just near on the other side of the plane. Joining

  ( ), ( ), ( 2 )x h x h m x h m  to   ( 1), ( 1 ), ( 1 2 )x h x h m x h m     by a line which cuts the plane z=c

orthogonally. Suppose the joining lines meets the plane z=c at  ( 1), ( 1) , 1,2,..,u n v n n   .The plane z=c,

containing those points, is known as Poincaré section [9]. Next we draw two surfaces

( 1) ( ( ), ( )), ( 1) ( ( ), ( )), 1, 2, 3, ..u n f u n v n v n g u n v n n     and find the intersections of them. This

intersection gives us a three dimensional curve called Poincaré map [18-25], since it is described by 2D
map: ( 1) ( ( ), ( )), ( 1) ( ( ), ( )), 1, 2, 3, ..u n f u n v n v n g u n v n n     .

2.7. Lyapunov exponent of a map

Consider a map ( 1) ( ( ), ( )), ( 1) ( ( ), ( )), 1, 2, 3, ..,u n f u n v n v n g u n v n n N     . Then the partial differences

, , ,u v u vf f g g    are given by
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Thus, for each of N - pairs of ( ( ), ( ))u n v n , we get N 2 2 matrices which are given by 1 2, ,......, NJ J J .

Then 1 2 ...... NG J J J    is also a 2 2 matrix. Suppose , 1,2.k k  are the Eigen values ofG . Then,

Lyapunov Exponent is defined by

1
log( ), 1,2.k k k

N
  

If ( 1,2)k k  are complex conjugates, then ( 1,2)k k  are complex. If any one of ( 1,2)k k  is

negative, then the corresponding value of k is also complex. In both the cases k is not workable, as

complex Lyapunov exponents do not signify exponential divergence. So, the only case to be considered is

when both k are real and positive. Further if one of ( 1, 2)kk  is positive and the other one is negative,

then it ensures that the map is chaotic.



3. Result and discussion

3.1. Nonstationarity of the EMG signal

The QQ-plot of the given EMG signal is shown by figure. 2.

Fig.2. QQ-plot of EMG signal shows many points lie far away from the diagonal line y=x.

From the above QQ-plot [29] it is evident that the distributions are different for any two segments of
equal length. This proves that the statistical parameters of the segments of equal length are always
different. In other words, the EMG signal [26] is non-stationary.

3.2. Nonlinearity of EMG signal

After generating 99 surrogate data of the EMG, we calculate AMI (with m=1) for each of them and then
draw a graph Grade vs. AMI (with m=1), which is given in figure 2

Figure. 3.  Two grades- ‘1’ and ‘0’ are considered in y-axis. For the collected data we considered ‘1’ and for the surrogate
data we considered ‘0’. In y-axis, we fix the grade ‘1’ for the EMG signal and 0.5 for the surrogate data.  In x-axis, we
take the value of the AMI (with lag=1).

From figure 2, it is seen that value of AMI (with m=1) of EMG signal [26] is different of the values of
the AMI (with lag=1) of each 99 surrogate data.
We consider the null hypothesis (

0H ) as follows:

0 EMG SUR(EMG):  ( =1)= ( =1)H AMI m AMI m where EMGAMI denotes AMI of EMG and
S U R (E M G )A M I denotes



AMI [13, 14] of surrogate data of EMG. Hence by the method of surrogate data test [30], null hypothesis
is rejected with 99% confidence. So, that EMG is a nonlinear time series.

3.3. 3D chaotic phase space reconstruction of EMG signal

3.3.1. Time-delay

AMI vs. time-delay graph is given in figure 3. Since first minimum value of AMI [13, 14] occurs at
lag=33, so the value of time delay / lag is 33. This method actually determines the time lag by which we
can get independent coordinates from a single time series for the attractor reconstruction.

Figure. 4. X-axis represents time delay/lag and y-axis represents AMI. AMI has the first minimum value (=0.5498) when
the time-lag (m)=33.

3.3.2. 3D Phase-space

3D reconstructed phase space [3-9] with m=33 of the EMG signal [26] is given

by,  ( ) ( ), ( 33), ( 66)X k x k x k x k   , where 1, 2, ....., 66k N  . The following figure shows the 3D reconstructed

phase space [3-9]:

Figure. 5. 3D reconstructed attractor with time lag (m) =33.



3.4. Poincaré section and 2D Poincaré map

Figure.6a and figure.6b shows the Poincaré section at 0.174z  and at 0.1123z  respectively. The

dots in the XY-plane are those points, where the trajectories meet 0.174z  and 0.1123z  .

(a) (b)

Figure 6. 2D Poincaré section of the 3D reconstructed attractor (a) at 0.174z  and (b) at 0.1123z  .

It is observed from the above diagram that the points on the Poincaré section are mixed in the sense that
this diagram does not carry the information about the times at which those points occur. So, from this
collection of dots (points), we first find out the succesive sequence of dots in order of their arrival on the

Poincaré section. Let us call the rearranged sequence of dots as  ( ), ( )u n v n and make two triplets –

 ( ), ( ), ( 1)u n v n u n  and  ( ), ( ), ( 1)u n v n v n  . Next plot these triplets separately in 3D and fit surfaces

individually. For the section 0.174z  , surfaces are shown in figure. 7a and figure.7b.

(a)                                                                                     (b)
Figure 7. (a) Fitted surface ( 1) ( ( ), ( ))u n f u n v n  , (b) Fitted surface ( 1) ( ( ), ( ))v n f u n v n 

It is observed that the functional form of the fitted surface ( 1) ( ( ), ( ))u n f u n v n  is given by

20.27 48.85 34.03 35.02 67.13 14.22
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(3)

Also we observed that the functional form of the fitted surface ( 1) ( ( ), ( ))v n f u n v n  is given by



4.971 11.78 9.145 8.777 14.83 3.363

                      2
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(4)

For the section 0.1123z  , surfaces are shown in figure. 8a and figure.8b.

(a) (b)
Figure 8. (a) Fitted surface ( 1) ( ( ), ( ))u n f u n v n  , (b) Fitted surface ( 1) ( ( ), ( ))v n f u n v n  .

It is observed that the functional form of the fitted surface ( 1) ( ( ), ( ))u n f u n v n  is given by
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Also we observed that the functional form of the fitted surface ( 1) ( ( ), ( ))v n f u n v n  is given by

2
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(6)

The intersection of the surfaces described in (3) & (4) and the intersection of the surfaces described in (5)
& (4) are shown in figure.9a and figure.9b respectively.



(a)                                                                                  (b)
Figure 9. (a) Intersection of the two surfaces (3) &(4), (b) Intersection of the two surfaces (5) &(6) .

Intersection shows a 3D curve which is known as 2D Poincaré map of the reconstructed attractor of the
EMG signal [26]. Thus, it is established that 2D Poincaré map in form of difference equation exists for a
nonlinear EMG signal [26].

3.5. Verification of proper Poincaré map

Since there may exists many Poincaré sections for the reconstructed attractor of EMG signal, so there
may be many Poincaré maps, one for each Poincaré section. Now the natural question arises – which
Poincaré sections are perfect among them and which Poincaré map we choose? Otherwise we cannot say
that approximation of continuous dynamics is complete at all. To answer this query, we calculate
Lyapunov exponent [32] for each of the Poincaré maps of the corresponding Poincaré section.

Let ( 1) ( ( ), ( ))u n f u n v n  and ( 1) ( ( ), ( ))v n f u n v n  be two surfaces whose intersection is the

required 2D Poincaré map. Next let ( ( ), ( ), ( ))p n q n r n denotes the points in 3D such

that       ( ), ( ), ( ) ( ( ), ( ), ( 1)) : ( 1) ( ( ), ( )) ( ( ), ( ), ( 1)) : ( 1) ( ( ), ( ))p n q n r n u n v n u n u n f u n v n u n v n v n v n g u n v n        .

Figure.10a and figure.10b show such points in 3D for the Poincaré section 0.174z  and 0.1123z 
respectively.

(a) (b)
Figure.10. (a) Points of intersection of the two surfaces given by (3) and (4), (b) Points of intersection of the two surfaces
given by (5) and (6).



Now, to calculate the Lyapunov exponent of the 2D Poincaré map, we consider only two variables – ( )u n

and ( )v n , because the maps (given by (3), (4) and also by (5), (6)) are described by only those two

variables.  Thus the third variable has no role to play in this case and hence we take the 2D projection of
the above Poincaré maps for finding the Lyapunov exponent. These are shown by figure.11a and
figure.11b respectively.

(a) (b)
Figure.11. 2D Projections of (a) the Poincaré map given by figure.10a, (b) the Poincaré map given by figure.10b.

The resultant matrices for the Poincaré section at 0.174z  and 0.1123z  are given by

0.174 0.1123

2.2605 -0.1205 -0.1159 0.0506
 and

-2.6244 0.1689 -0.0933 0.0407z zG G 

   
    
   

Let the two Eigen values of 0.174zG  and 0.1123zG  be 1, 0.174 2, 0.174,z z   and 1, 0.1123 2, 0.1123,z z  

respectively. The calculated value of 1, 0.174 2, 0.174 1, 0.1123 2, 0.1123, ; ,z z z z       are given by

0.0127, -0.0522, -0.0752 and 6.9389e-0181, 0.174 2, 0.174 1, 0.1123 2, 0.1123z z z z          .

Next let the corresponding Lyapunov exponents be 1, 0.174 2, 0.174,z z   and 1, 0.1123 2, 0.1123,z z  

respectively. The calculated value of 1, 0.174 2, 0.174,z z   , 1, 0.1123 2, 0.1123,z z   are given by

0.0127, -0.0522;  -0.0761 + 0.0924i, -1.1620.1, 0.174 2, 0.174 1, 0.1123 2, 0.1123z z z z         

4. Conclusion

Study of continuous chaotic dynamics of some known dynamical model through its discrete dynamics
approximation in form of Poincaré map is a very common practice in nonlinear analysis. The purpose of
such approximation is to understand the higher dimensional dynamics in lower dimension.  It would be
better if the similar approximation can be done for any continuous nonlinear signal. This might be helpful
to understand the approximate dynamics behind the generation of that signal.However, no such study is
available for a continuous nonlinear signal, whose dynamical model is not known. In the present article an
attempt has been made to show that the above study can also be done for a nonlinear EMG signal [26]



without having any knowledge of its dynamics. In fact, we have reconstructed a proper 3D chaotic
attractor from a nonlinear continuous EMG signal under suitable choice of time-delay and successfully
approximated the chaotic dynamics of the signal [26] by a chaotic 2D Poincaré map for a suitable
Poincaré section of the reconstructed attractor. However, the chaotic nature of the map ceases to exist if
the Poincaré section is not suitably chosen. Thus it may be be concluded that the chaotic nature of a signal
may be revealed through construction of its chaotic 2D Poincaré map only. In other words, the continuous
chaotic dynamics may be approximated by a discrete dyanmics in form of chaotic Poincaré map directly
from a continuous real life signal without having any dynamical model behind its generation.
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