Applied Mathematics and Computation 244 (2014) 16-31

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Efficient VaR and Expected Shortfall computations for nonlinear @ CrossMark
portfolios within the delta-gamma approach

Luis Ortiz-Gracia ®*, Cornelis W. Oosterlee ™¢

2 Centre de Recerca Matematica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona), Spain
> CWI - Centrum Wiskunde & Informatica, NL-1090 GB Amsterdam, The Netherlands
€ Delft University of Technology, Delft Institute of Applied Mathematics, 2628 CD Delft, The Netherlands

ARTICLE INFO ABSTRACT

Keywords: We present four numerical methods to compute the Value-at-Risk and Expected Shortfall
Market risk risk measure values of portfolios with financial options. The numerical methods are based
Delta-gamma approximation on either wavelets or Fourier cosine approximations and belong to the class of Fourier

Value-at-Risk
Expected Shortfall
Fourier transform
Haar wavelets

inversion methods. We show that the risk measures can be efficiently calculated in terms
of accuracy and CPU time. Besides, we provide a theoretical result about the shape of the
resulting probability density. This a priori knowledge, allows us to enhance the efficiency
and effectiveness of the proposed methods. Finally, we assess the accuracy of the approach
in the presence of convexity or concavity properties of the financial portfolios.
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1. Introduction

A problem of paramount importance in market risk management is the estimation of a profit and loss distribution of a
portfolio over a specified time horizon and the associated risk measures. Value-at-Risk (VaR) has become an important mea-
sure for estimating and managing portfolio market risk [10]. VaR is defined as a certain quantile of the change in value of a
portfolio during a specified holding period. While the basic concept of VaR is simple, many complications can arise in prac-
tical use. An important complication is caused by nonlinearity in the portfolio payoff structure. This problem arises for all
portfolios that include assets with nonlinear payoffs, such as option positions. For such nonlinear portfolios, VaR can not
be computed directly from a risk factor distribution. Instead, the risk factor distribution first needs to be converted into a
profit and loss distribution for the portfolio. VaR is then computed from this profit and loss distribution.

The four defining properties of a coherent risk measure are widely treated in [1]. One of these properties is the sub-addi-
tivity condition. The VaR measure fails to satisfy this condition, however the measure is widely used in practice. In contrast,
the Expected Shortfall (ES) risk measure satisfies the four properties of a coherent risk measure. When distributions are nor-
mally, or close to normally, distributed, it can be shown that VaR and ES are quite close and behave similarly. However, as
soon as a distribution is characterized by a long tail behavior, the similarity between VaR and ES does not hold any more. In
this case, employing the VaR measure may lead to an underestimation of risk.

To evaluate the risk measures, Monte Carlo simulation is often used, i.e. first simulating changes in the risk factors of a
portfolio, then the portfolio is re-evaluated and the change in the portfolio’s value is estimated. Obtaining accurate VaR esti-
mates can be computationally expensive as there may be a large number of instruments in the portfolio and when the con-
fidence level is high, a large number of simulations may be required to obtain accurate estimates of the tail probability.
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Here, we adopt the delta-gamma approximation [3,7,13] as an alternative approach to avoid the Monte Carlo method. This
approach is based on the assumption that the change in portfolio value is a quadratic function of the changes in the risk fac-
tors. Typically, the changes in the risk factors are assumed to be normally distributed, although some authors [8] have con-
sidered heavy-tailed risk factors and modeled them by means of the multivariate t distribution. This distribution can be used
under stress test scenarios, where peak losses can occur more frequently.

Under any of the two assumptions on the changes in the risk factors, the characteristic function of the change in portfolio
value, i.e. the Fourier transform of the corresponding density, is known in closed form. Fourier techniques to invert this char-
acteristic function in a market risk context have been introduced since the work of [16,5], and were used more recently by
[18,2]. In all these works, one has to compute an infinite integral numerically for each point of the probability density func-
tion (PDF) (or cumulative distribution function (CDF)).

Our contributions within the delta-gamma approach in the present paper are as follows. On the one hand, we present four
numerical methods to efficiently recover the PDF and the CDF from the characteristic function. On the other hand, we derive
a useful result about the shape of the density function to be recovered and another result about the maximum profit and loss
in our portfolio. We also provide insight in the convexity and concavity features of the portfolio. By this, the density function
can be characterized in terms of its unimodal or bimodal behavior. The numerical methods rely on the truncation of the
entire real line to perform Fourier inversion. With the a priori knowledge of the density shape, this inversion can be done
more efficiently. Furthermore, since the delta-gamma approach is a quadratic approximation, convex or concave portfolios
are accurately approximated.

Our approach to invert the Fourier transform within the delta-gamma framework is somewhat different than previous
approaches in the market risk literature. We consider the COS method [6], based on Fourier cosine expansions, and the
Wavelet Approximation (WA) method [11,14,15]. Within the COS approach, we recover the PDF without performing any
numerical integration (for the cases that we consider here), so that the speed of the method is impressive. The analytic
expression that we obtain allows us to integrate (analytically) the PDF to derive the CDF. The VaR is then computed using
a root-finding method and we also provide a formula for the ES. We also consider a second variant of the COS method, called
filtered-COS [17], which is sometimes used to remove wiggles associated to Gibbs phenomena that may arise when approx-
imating some functions with discontinuities.

Furthermore, we employ an approach based on wavelets theory (see, for instance, [4]). Regarding the WA, we apply two
different approximations, presented in [15], the WA®” and the WA" methods, where the second one adaptively determines
the range of truncation for Fourier inversion. We provide a methodology for computing the VaR and ES from the PDF and also
from the CDF in the Wavelet Approximation framework. While in the COS method the coefficients of the density are com-
puted without numerical integration, within the WA approach the density coefficients are recovered by means of finite inte-
grals that are computed numerically. The main advantage of the WA approach, based on compactly supported basis
functions, compared to the COS approach, with its global basis functions, is that coefficients can be selectively calculated
to compute the VaR value, making the wavelet algorithm very fast. As shown in [11], the VaR can be obtained by computing
at most m coefficients associated to the CDF, where m is the scale of approximation. Summarizing, we present two very accu-
rate and fast approaches based on Fourier inversion that can be combined as well (computing the VaR by the WA method
and the ES by the COS method, for example).

The paper is organized as follows. In Section 2 we present the delta-gamma approximation to measure market risk mea-
sures for portfolios with financial options. In Section 3 we review the Wavelet Approximation and the COS methods to
recover a function from its Fourier transform. In Section 4 we present the methodology to compute the VaR and the ES
by means of the inversion methods considered in the earlier section. Furthermore, we study in detail the shape of density
functions and some features about convex portfolios. Section 5 is devoted to numerical experiments, and Section 6
concludes.

2. The delta-gamma approximation

Let Fx(x) := P(X < x) be the CDF of a random variable X and fx(x) its PDF.

Suppose the current value of a portfolio is V(t), the holding period is At, and the value of the portfolio at time ¢ + At is
V(t + At). The change in the portfolio value during the holding period is AV, where AV = V(t + At) — V(). If we hold a short
position on the underlying assets, the VaR(«) risk measure, associated with a given probability o, is defined by the relation,

P(AV < VaR(x)) = a. (1)

Typically, in practice, At ranges from one day to two weeks and o > 0.95, often o« = 0.99.
By definition, the Expected Shortfall risk measure at confidence level « is given by,

ES(t) := E(AV|AV > VaR(q)),

or, alternatively,
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We assume that there are p risk factors and that S(t) = (S1(t), ..., S,(t))" denotes the value of these factors at time t. Define
AS = (S(t + At) — 5(t)) to be the change in the risk factors during the interval [t, t + At]. Then, the delta-gamma approximation
is given by,

AV ~ AV, == @At + 6"AS + 1 ASTFAS7 (3)
where © = f)‘{, o = 05 , Lij = 05 os and all partial derivatives are being evaluated at S(t ) .
If P(AV, — @At < x) = o, then P(AV, < x+ OAt) = o, where « € (0, 1). For convenience, we define, AV, := AV, — ©@At.
The following proposition from [12] gives us the characteristic function OffAT/.,‘ under the assumption that AS ~ N(0,X).

Proposition 1. Assume that AS ~ N (0, X) for some positive definite matrix X. Let /1, ..., 2 be the eigenvalues of XT', and let A be
the diagonal matrix with these eigenvalues on the diagonal. There is a matrix C satisfying CC" =% and C'TC = A. Let d = C7s.
Then, the characteristic function corresponding to f~ is given by,

uAv u & P . 1
fA~V7(u) = [E<e”” ) = exp <—22 u u)H(l +iu) 2, 4)

j=1

where u € R.

Remark 1. The Black-Scholes model assumes that log ( i(rAD

) is normally distributed with mean ;At and standard devia-

tion o;V/At, for j = 1,...,p. Thus, there seems to be an 1ncon51stency between the valuation model and the model used for
path simulation. However for small At (as the holding period is),
Si(t + At) AS; ( AS; >
————=1+—"->exp
Si(t) Si(t) Si(t)

which is log-normally distributed if AS;, the jth component of AS, is normally distributed. In that case, AS; follows a normal
distribution with mean ;At and standard deviation S;(t) - 6;v/At. We can approximate the mean by zero.

Remark 2. Observe that in the univariate case (p = 1), we have,

n n n 2
AV, = le Vit + le Tinsty le 6‘5”1 (ASP,

where n represents the number of assets in the portfolio, x; is the amount of asset i and v; the value of asset i.
In this work we restrict ourselves to the univariate case. The methods presented in this work recover the density function
from the Fourier transform and this transform is of dimension one even if we consider the multivariate case, i.e., p > 1.
For our numerical techniques insight into the unimodality of the distribution to be approximated is very useful.

Definition 1. A distribution with probability density function f is called unimodal if a unique M exists so that f is non-
decreasing on (—oo, M) and non-increasing on (M, +oo). The value M is called the mode of the distribution. A distribution is
bimodal if it has only two modes.

Note that a distribution with non-increasing (respectively non-decreasing) PDF also falls under unimodal distribution by
taking M to be the left (respectively right) end point of the support of the density function. Under this convention, it is pos-
sible for the density function to be infinite, or even undefined at M. Note that the support of the considered distributions
need not be finite.

3. Numerical inversion methods
In this section we present the WA®? method [14] and the COS method [6] to recover the density function f[A from its
Fourier transform. Recall that based on Proposition 1, the characteristic function for the density fA~V_ is available. For the WA

method, we present a second variant called the WA® method [15], avoiding the a priori choice of an interval for the approx-
imation. Regarding the COS method we also present another variant called filtered-COS [17]. This alternative method may be
helpful when dealing with the so called Gibbs phenomenon.

3.1. The Wavelet Approximation method
3.1.1. The WA™" method

Let us consider a probability density function f € L*(R) associated to a certain continuous random variable X, and its Fou-
rier transform, i.e.

! The delta approximation reads AV ~ AV; := @At + T AS.



L. Ortiz-Gracia, C.W. Oosterlee / Applied Mathematics and Computation 244 (2014) 16-31 19

fw = [ e (x)dx. (5)

00

We can expect that the mass in the tails of f decays to zero at infinity, so it can be approximated in a finite interval [a, b], by

fo(x) = {f("% if x € [a.b]

0, otherwise.
To determine the interval of integration [a, b], we consider the approximation,
[a,b] := [K1 — Lv/Kz, K1 + LV/i2 ], (6)

where x, denotes the nth cumulant? of X and L > 0, as in [6,15]. Later on, in the numerical examples section, we will give fur-
ther details about the choice of L and of [a, b).
Let us approximate f¢(x) ~ f¢ (x) for all x € [a, b], where

2m_1

frfl (X) = kX: Cm.kd’m,k (%) )
=0

with convergence in L*-norm.

The basis functions used here are ¢,,, := 2™?¢(2™x — k), with ¢ the father Haar wavelet, defined by,
1, ifxe[0,1),
0, otherwise.

X)) = Yjo1)(X) = {

The main idea behind the Wavelet Approximation method is to approximate f by ffn and then compute the coefficients
cmk by inverting the Fourier transform. Proceeding this way, we have [14],

no= 7 [ (Qn(re)du @)
0
and,
Cmk = % / R(Qu(re™)) cos(ku)du, k=1,...,2™" -1, (8)
0

where r # 1 is a positive real number and,

287 Ef (i log(2)) log(2)
W@ ="

In practice, both integrals in (7) and (8) can be easily computed by means of the Trapezoidal Rule (see [14] for details).

3.1.2. The WA® method
The main drawback of the WA®® method is that we do not have an estimate of the mass of the density which is lost when
truncating the interval. Here, we also discuss an adaptive method that allows us to control the mass of the density recovered.
Let f be a probability density function, as in Section 3.1.1. We can approximate f(x) by f,(x), for all x € R, where,

fn®) = Cmibmi(x), J =0,
kez
with convergence in the [?-norm. Note that the coefficients cm are different from those in Section 3.1.1. For convenience, we
however keep the same notation as in the previous section.
Let us consider the finite sum,

ky
5@ = cnkbmi®), 9)
k=Kk,

where ki < ky,kq,k; € Z.
Substituting (9) into Fourier transform expression (5), following similar steps as in the previous section and after some
algebraic manipulations, we get,

iy =7 [ RQnlre®))du. (10

and,

2 The cumulants are the power series coefficients of the cumulant generating function x(s) = log [E(eSX).
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/ R(Qq(re™)) cos(ku)du, k=1,... k, —ki,
0

Cmk+k ~ —%
m,Ky+ TLI”‘

where Q,,(z) =z % - Q},(z) with,

2% (2™ - log(2)) log(2)
(z-1) '

Qn(2) =

We need to choose integers k; and k, to recover the density function without loosing significant accuracy.
To select an appropriate k;, let us assume first that the density is unimodal (Definition 1). In this case k; can be chosen

such that, f;, <§—;) < €wl, Where € is a predefined tolerance error so that f(x) < € for all x < 5

We can then start the WA® algorithm by considering an initial seed, k; = |2™ - a|, where a is defined in expression (6) and
|x] denotes the greatest integer less than or equal to x. Although we rely on the cumulants to facilitate the work, we could
choose a random value as the initial seed. We update value k; until the condition fm ? < € is satisfied. The algorithm
allows us to immediately calculate the area below the computed density (as a by-product) and we can derive k, by comput-
ing the coefficients ¢y, .« until the area is approximately one. In case we can not assume unimodality, we recompute k; (if
necessary) to go further towards the left side.

3.2. The COS and filtered-COS methods

3.2.1. The COS method
We briefly describe the methodology developed in [6] for solving an inverse Fourier integral.? For a function f supported on
a finite interval [a, b] € R, the Fourier-cosine series expansion reads,

+ iAk cos (kn _a>

with,

bZTa /abf(x) cos (an)dx. (11)

Since any real function has a cosine expansion when it is finitely supported, the derivation starts with a truncation of the
infinite integration range in the inverse Fourier integral expression (5). Due to the conditions for the existence of a Fourier
transform, the integrands have to decay to zero at +co and we can truncate the integration range in a proper way without
losing accuracy.

Suppose [a,b] € R is chosen such that the truncated integral approximates the infinite counterpart very well, i.e.,

Fiow = [ empax = [ enpood =T w). (12)

Here, ﬁ denotes the approximation of the characteristic function on a finite interval.
Comparing equation (12) with the cosine series coefficients of f(x) on [a,b] in (11), we see that,

2 ~ [ km kax
me=p i (Fi(5g)e %),

where % denotes the real part of the argument. It then follows from (12) that A, ~ A, with,

2 . km _jkar
Az (7 () )
In the COS method A, is replaced by Ay in the series expansion of f(x) on [a, b], and the series summation is truncated, so that,
+ZAk cos <kn—a> (13)

The COS method converges exponentially in N when approximating smooth functions, but many terms are needed when the
function or its first derivative presents discontinuities in the domain of approximation.

3 Here,
From = [ e

represents the characteristic function, and hence the Fourier transform of a density function f(x), because the sign of the exponent is different in the def-
inition of the Fourier transform, compared to (5).



L. Ortiz-Gracia, C.W. Oosterlee / Applied Mathematics and Computation 244 (2014) 16-31 21

3.2.2. The filtered-COS method

When Fourier techniques are employed to specific cases with non-smooth functions, the Gibbs phenomenon may become
apparent which seriously impacts the efficiency and accuracy of the valuation. Although the limit of the partial sums repre-
sents the original function exactly, in the finite case there is an overshoot at a jump discontinuity. In the case of a jump dis-
continuity we may have pointwise convergence almost everywhere, but no uniform convergence. The local effect of the
Gibbs phenomenon results in oscillations near the jumps, but there also is a global effect: although the error decays away
from the jumps, the decay rate is only first order. Thus, the existence of one or more discontinuities drastically reduces
the convergence rate over the whole domain, and spectral accuracy is lost.

Filtering may remove the Gibbs phenomenon away from a discontinuity, and the error depends on the distance to the
discontinuity. Since the approximation will be smoothened, convergence in the vicinity of a discontinuity will not improve.
The technique is carried out in Fourier space and the idea is to pre-multiply the expansion coefficients by a decreasing func-
tion in such a way that the coefficients decay faster. Here we provide the definitions of filters of order p;, [9],

Definition 2 (Fourier space filter of order py). A real and even C*([0, 1]) function $(n) is called a filter of order py, if,

1. 5(0)=1and $(0) =0, 1 << p; — 1,
2.5(n)=0for |y =1,
3.3() e (!, e (=00, 00).

Conditions 2 and 3 imply $§(1) =0, 0 < £ < p; — 1.

Filtering does not affect the total mass of the resulting approximation (which should be one for a probability density),
since the first coefficient is never altered. We will employ a psth order spectral filter called the exponential filter, which is
defined as follows,

$(n) = exp(—onP),

where p; must be even. §(1) =e™*, so the formal requirements of a ps;th order filter do not hold. However, we use
o = —log €n, as in [9], where €, represents the machine epsilon, so that §(1) = €, ~ 0 within machine precision.
The filtered-COS formula for numerical Fourier inversion [17], equivalent to (13), reads,

Ao B/ ok \x xX—a
filter (y,\ _ 710 -
1 (x) = 3 5(0)+k§:15<N—1)A"COS (knb—a)'

For each of the four numerical methods discussed, WA®?, WA®, COS and filtered-COS, we have provided criteria to truncate
the entire real line to perform the numerical inversion in case that we do not have any knowledge about the shape of the
density to be recovered. However, as we will show in the next section by a theoretical study of the density’s shape, these
algorithms can be enhanced.

4. Value-at-Risk and Expected Shortfall computation

This section is devoted to the computation of the VaR value (1) and the Expected Shortfall (2) by means of the WA and
COS methods, within the delta-gamma approximation. For sake of clarity and simplicity, we focus on the WA®? and the COS
methods and omit details for WAF and filtered-COS, since minor modifications in the first two methods lead to these
methods.

4.1. Value-at-Risk

We present two variants for computing the VaR value, where one of the variants is based on the probability density func-
tion fg/h_ and the other is based on the cumulative distribution function F e The first variant recovers the density from the
characteristic function and then integrates the density for obtaining the VAR. The second directly approximates the CDF. For
the COS method, both choices lead to an accurate VaR approximation in similar CPU time, so we present only the approx-
imation based on the PDF. However, we will show in the numerical experiments, that WA®® is more efficient for the second
variant. R N

Let us consider the characteristic function f 5. corresponding to the density function f[vﬁ Since f o€ [*(R) also
f[v., € [?(R), so that f[v“ can be well approximated in a finite interval [a, b]. Taking this into account and integrating by parts,
we' can consider, !

as an approximation to the characteristic function of CDF F o Once this characteristic function is available, we can recover
the CDF directly from it. ’
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4.1.1. VaR computation based on the PDF
We first assume that we have recovered a density function f ~ from its characteristic function f ~ , by means of the

WA 4 method, where m is the scale of approximation. Let £} be the recovered density (for clarity in the exposmon we drop
the subscript AVA. and use simply 7 instead). That is,

21

fwa Zcmk(/)mI(( )
Then, if we denote by F, the cumulative distribution function of AV,, we have,
= [ smdy=Frw = [ femy

Expanding the expression above, gives us,

FPe= > o / dme

k: X ¢ supp

Ddx+ 3 cm,k/ D (o) %, (14)

k: x € supp ¢k

where supp ¢, = [ax, bx), with gy = a +2%:¢-k and b, = a + %2 (k+1).
In this case the basis functions do not overlap in the interval of approximation. Then, the second sum in (14) consists only
of one term and the expression for the cumulative function can be obtained in a straightforward way,

F(x) = b «+ 2%, k(x a—k(b_a)>, (15)

v 2"

where k is the only value for which x € [ag, by).

Let us define VaR,,(«) as the VaR value calculated by the WA*?) method at confidence level o.

Let k; be the value of k so that 2 m“ ’,ﬁ;ocm‘k is closest to o. Then, we take for the VaR value the midpoint of interval [ay,, by,),
that is,

VaR,, (o )7a+b

i - (2ks +1). (16)
Finally, the VaR value associated to the CDF of AV, reads,
VaR,, (o) := VaRp () + OAL. (17)

Let now fF"S be the recovered density function of ANVV by using the COS method with N terms, that is,
[ (x) = + ZA" cos (kn —a)
Following similar steps as before, and after some basic calculus, we find,
R = /: Feos(x)dx = %Ao(x —a)+ nfl % sin (kn b%q) (18)

We define VaRy(«) as the VaR value calculated by the COS method with N terms at a confidence level o.. We calculate this
value by means of a root-finding technique that solves the equation,

Fs™ (VaRy (%)) = o,

followed by VaRy(ct) := VaRy (o) + OAL.
4.1.2. VaR computation from the CDF
We here assume that we have recovered the cumulative distribution function F ~ from its characteristic function CD

A
by means of the WA‘”’ method, with m the scale of approximation. Let FWa be the recovered CDF (for simplicity, we use the
same notation as in the previous section), i.e.,

2Mm-1

F?(x Zcm k(/)mk(x Z)

We can apply a bisection method so that \Taﬁm(oc) can be calculated in at most m iterations (see [11] for details), yielding,
VaRn(®) = a + 2o 2k 1),

for certain k; € {0,...,2™ — 1}, and the VaR value associated to the CDF of AV, is found as in (17).
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4.2. Expected Shortfall

Also here we distinguish the case where ES is based on the PDF from the case where ES is computed based on the CDF. For
the COS method we present only the approach based on the PDF, as in the previous section for VaR computation.

4.2.1. ES computation from the PDF
Let ES;() be the Expected Shortfall computed by means of the WA“?! method, that is,

ES(0) ~ ES(20) i —— / m Xf1° (X — ©AL)dx.
V.

B 1-ua aRpm (o)
1 . by, +OAt . 2Mm-1 by+OAt
ESm () =1 2%Cni, / xdx + 22 Z Cmk / xdx
— o VaRp (2) Pt a+OAL

m-2 2"-1
-2 (cm.kx ((be, +©AD? = (VaRu()*) + >~ cusl(bi + OAL’ — (a+ @Atf))
k=ks+1

We define ESy (o) as the Expected Shortfall calculated by the COS method with N terms, as
1 e Cos 1 b+@at Ao N1 X—OAt—a
ES(a) ~ ESy(2t) := /v Xf,” (x — ©®At)dx /v X{ 5+ ZAk cos (knﬁ> dx

1—a Jvary T =0 Jvary(a) k=1

1 b-a VaRy(a) — @At — a)

= Ao b+ ®AL)? — (VaRy())? NilZ VaR in ( &
~ o (104 0A07 - (VaRue)?) Y |- VaRa o sin (kR =

-y

4.2.2. ES computation from the CDF
If we us consider ES definition (2), and integrate by parts, then,

] - +0o0
ES(a) = T |:XFAV(X)\ZR(“> 7/ FAV(x)dx],

VaR(o)

where F,y is the CDF associated to AV.
We define Fjy (x) := F;”(x — ®At), where F}* is the CDF calculated in Section 4.1.2 and approximate Fy by F)°,

1 b—a b—a %
ES(a) ~ ESm(®) 1= 1— |b+ OAL — oVaRn (%) — - Cnsy =g > Cmal-
- 22 22 5

4.3. Suitability of the delta-gamma approximation

We study the suitability of the delta-gamma approach for portfolios of options with several underlying assets. As pointed
out by [3], in the one-dimensional case, when the portfolio is convex or concave over the likely range of prices of the under-
lying then the portfolio value can be accurately approximated by a quadratic function of the price of the underlying and,
consequently, the delta-gamma approach performs well. For many option positions, however, the portfolio value may have
convex as well as concave regions in the range of likely prices of the underlying. In this case, a quadratic approximation may
not provide a satisfactory fit and the delta-gamma approximation may be less reliable.

Let us consider a portfolio V(S1(¢), ..., Sp(t)), as in Section 2, where the changes in the risk factors are normally distributed.
Let D be an open convex set in RP. Following the theory of convex (concave) functions, if we assume that V is twice contin-
uously differentiable, then V is convex (concave) if and only if Hess(V) is positive (negative) semi-definite in D, with Hess(V)
the Hessian associated to V. On the other hand, quadratic form (3) is convex (concave) if and only if I" is positive (negative)
semi-definite. Since Hess(V) = I', we can expect that the delta-gamma approach approximates accurately in those cases in
which V'is a convex (or concave) portfolio.

The natural questions arising are: what happens when V (and hence the quadratic form) is indefinite? Can we expect
accurate VaR and ES values when using the delta-gamma approach in these cases? To answer these questions let us assume
that V can be decomposed into a sum of one-dimensional subportfolios,

V(S1(6);- - 5p(6) = Vi(S1) + -+ + Vip(Sp), (19)

where each V;(5;) is either convex or concave. Observe that if our main portfolio V contains options written on one asset only,
decomposition (19) in one-dimensional subportfolios is always possible. The assumption here is regarding the convexity or
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concavity. Let us also assume that the changes in the risk factors are uncorrelated. We can then decompose the p-dimensional
delta-gamma approach (3) as,

AV, = zp:Av{,,
j=1

where AV) := @At + JAS; + 1T7AS?, and © =71 5/ = 3—;17 I = % All partial derivatives are evaluated at S(t).
Since AS = (ASy,...,AS,) ~N(0,%) and AS;,j=1,...,p are unéorrelated, then AS;,j =1,...,p, are independent. As a con-
sequence, AV’},,j =1,...,p, are independent, and

fAV; :fAv; oo *fAV,‘”,'

We assume that all subportfolios are either convex or concave and then fyy;, can be accurately approximated by fi,., for all
j=1,...,p.So,

fAV.’; :fAvl * ... *fAV_", :’fAV1 * ... *fAVP :fA\/7

where the last equality holds because S;,j =1,...,p are independent. We illustrate this fact in the numerical examples
section.

Finally, we can conclude that if the one-dimensional subportfolios are convex/concave and the changes in the risk factors
are uncorrelated, then the risk measures associated to the main portfolio can be appropriately computed by means of a p-
dimensional delta-gamma approach.

4.4. Monotonic features of the delta-gamma density

It is in general a difficult task to check whether a density function is unimodal or not directly from its characteristic func-
tion. However, within the delta-gamma approach, the characteristic function f o of density fA~ can be seen as the product
of the characteristic functions of certain known densities. So, at least in the on’e—dimensionaYtase, we can extract useful
information from characteristic function f - which allows us to know in advance whether density f[v“ is unimodal or
not, thus facilitating the application of the numerical algorithms from Section 3. ’

Let us start by considering the linear decomposition (see [18] for details),

~ 1
AV, =Qo + EZAija
i€l
where J := {j € {1,...,p}; 4 # 0}, Qo is normally distributed with mean u, = —%Zjej i and variance ¢, = Zj#djz. and Q; has

4

a non-central chi-squared distribution with one degree of freedom and non-centrality parameter {; := ‘/iz Moreover, the vari-
J

ables Qy,Q;,j € J are independent. In this case,
fA“\’/-,- :fQO >l<f;71(21 *...*f%pqp, (20)

where fy,, ﬁjQ ,j €], are the probability density functions of the random variables Qo,;le, j €], respectively.
2

Following [19], for all j € J, a unique value { € (3, 4-00) exists, so that fo, is decreasing if and only if {; < ¢, i.e, fo, has a

unique mode at zero. Furthermore, fo, is bimodal if and only if {; > {, that is, fo, has a mode at zero and another mode in

(0, +00).

Remark 3. The way to compute { is explained in [19] in the general case that a random variable is non-central chi-squared
distributed with v degrees of freedom and non-centrality parameter ¢. In this case, the expression for its density is given by,

=2

Fit9) =3¢ % () Tl VB0,

where [, (x) is the modified Bessel function of the first kind given by,

0 2k+v
I(x) = ZL
k=0

kKGv+k+1)
Here G denotes the gamma function. Defining r, (x) = % and,
&E-2
(O =rEt+Vv—4)——————, £>4-v, ve(0,2),
8(¢) =ryvel ) Erv_d) (0,2)

a unique &, € (4 — v, +o0) exists, so that g, (¢,) = 0. Then, the non-central chi-squared density with v > 0 degrees of freedom
and non-centrality parameter ¢ > 0 decreases if and only if 0 < v <2 and ¢ < ¢,. The density is bimodal if and only if
0<v<2and ¢ > ¢,. The reported values in [19] are v=1 and ¢, = 4.217.
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So, we know that { = 4.217. From now on, we consider the case p = 1. Then, we can state the following theorem and cor-
ollary for the one-dimensional case,

Theorem 1. With the same notation as before, let f, 10, be the density function of random variable 4 3-Q;. Then,
(a)If 21 > 0and {; < then qul is decreasing in (0, +o0), and has only one mode at zero.
(b)If 21 >0and {; > ¢, then le is bimodal and has one mode at zero and another at (0, +o0).
(c)If A1 <0and {; <, thenf, is increasing in (—oo,0), and has only one mode at zero.

(d)If 21 <0and {; > ¢, then jz1 is bimodal and has one mode at zero and another at (—oo,0).

Proof 1. Observe that,

M 2 2 .
F%Ql (%) = P<7Q1 < x> = P(Ql < ZX> =Fq, (Zx>, if 41 >0,
M 2 .
F’iQ (X):P<—Q]§X>7P<Q1 /—X>:1—FQ1<—X>, if M <0.
2% 2 M ).1

We can derive for the probability density function,

2 2 P
f%]Ql (X) = A_lf& <ZX>7 if L > 0,

and,

and,
2 2 .
f%]Ql (X) :—ZfQ] <ZX>, if 4 <O.

Since fy, : (0,+00) — R, then f, 0,+x) — R,if1; >0 arldf,Q i (—00,0) — R, if 2; < 0.1f{; < { then fy, is decreasing with
only one mode at zero. Then, 1?’0 < X1 < Xy and,

2 2 2 e
Fio, 00 = 2for (501) = T (720) =Fy 000 1 ia >0,

A1

since fo, is decreasing and = > 0. For 4; <0, if x; < x, < 0, then,
2 2 2 2 .
i )=~ 2fa (le) < 2hu(F) ~fyg ). i >0,

since % < 0. This completes the proof of a) and c).

If {; > { then fy, is bimodal. We consider the modes of f,, located at zero and m;, where m; > 0. The density fy, is
decreasing in the intervals (0, m.) and (m;, +o0o) and increasing in (m.,m, ), where m, € R,0 < m. < my. The proof of (b) and
(d) is now straightforward by applying a similar procedure as in (a) and (c) for the intervals defined before. O

Corollary 1. With the same notation as before, let f& be the density function of random variable AT/.,. Then,

(a)If 21 >0and {; < then f~v is decreasing in ({4,,, +oc), and has only one mode at t, <O0.
(b) If 21 > 0and {; > ¢, then jA~V° is bimodal and has one mode at p,, < 0 and another at (p,,, +o0).
(c)If 41 <0and {; < then va,, is increasing in (—oc, [y, ), and has only one mode at p,, > 0.
(d)If 21 <0and {; > ¢, then & is bimodal and has one mode at p,, > 0 and another at (—oo, Uy, ).

2
147

Proof2 Forp=1 f~ 7fQ0 *fIQ , where the density of random variable Q, is a Dirac delta function, since y, = —3 s-and
= 0. Then,
f;vvm = (o +Fyq,)(¥) = Uy, “Jar) (1) = [ Fyq, (=250~ g, )k = Fyq, (7 ~ I,

We observe that the convolution product is a translation of the density function f1 , and by Theorem 1 we complete the
proof. O

We illustrate the four cases of Corollary 1 in Fig. 1, where u, = —2 in the cases (a) and (b) and y, =2 in (c) and (d).
A consequence of Corollary 1 is that within the delta-gamma framework, the VaR and ES values are bounded below or
above depending on the aggregate gamma Greeks, that is, I';; = U;—z" and S; is the only underlying asset in the one-dimen-
sional case. When T’y ; is negative, we know a priori that the maximum likely loss in our portfolio is Hq, + OAL (recall that
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0.14 T T T T T T

Fig. 1. Illustration of the four cases in Corollary 1. Top left: (a), top right: (b), bottom left: (c) and bottom right: (d).

AV = V(t+ At) — V(t) and then positive values mean losses and negative values mean profits). Furthermore, when I’y ; is
positive, then the maximum likely profit is 1, + ®At. We state these facts in the following corollary,

Corollary 2. Let I'y; be as in Section 2 and let VaR(x), ES(o) be the risk measures associated to the delta-gamma approach (3),
€ (0,1). Then,

(a)If T'11 >0, then ES(a) > VaR(a) > uq, + OAL, for all o € (0,1);
(b)IfT'11 <0, then VaR(x) < ES(ar) < g, + OA, for all o € (0,1).

Proof 3. The proof follows directly from Corollary 1, since 4, is the only eigenvalue of XI'" in the delta-gamma approach
(3). O

5. Numerical examples

In this section we carry out tests to assess the performance of the methods presented previously. In order to
keep a reasonable number of tables and figures, we mainly focus on the COS and WA®? approximations for the numerical
experiments. We show the performance of the filtered-COS and WA® in some difficult cases. Although these last two meth-
ods work out well in all the proposed examples, they do not provide additional advantages when dealing with smooth
densities.

Here we consider two portfolios of options written on the same underlying asset S(t) as in [3],
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Portfolio 1. The portfolio is composed of one short European call and half a short European put with maturity 60 days and
time horizon 1 day.

Portfolio 2. The portfolio is composed of one short European call and half a short European put with maturity 60 days and
time horizon 10 days.

For both portfolios we assume that the value of the underlying asset at time t is 100 with volatility level ¢ = 0.3, interest
rate 0.1 and the strike price 101 for each option. We assume a zero dividend yield.

We restrict ourselves to the univariate case, that is, we have only one risk factor (p = 1), since the methods presented
apply in the same form to the multivariate case (only the characteristic function changes). Hence, we consider here,

= (ste ) r- ix,f’”’ C =S(t)oVAL, a_zn:x,a”'

where ¢ is the volatility associated to risk factor S(t).
For the interval of integration [a, b] within the COS and WA®” methods, we use the general rule-of-thumb (6). Following
[13] we then have,
1 1
==tr(l'y), ==
Ki=5 tr(l'2), 5
We could benefit from the information provided by Corollary 1 here, since in the two first portfolios p = 1. However, we
choose to use the general interval which can be applied also when p > 1. We will apply Corollary 1 specifically in combina-
tion with the WA® method.

tr((FE)z) + 0738, (1)

Remark 4. Regarding the WA® method, the strategy to recover a density is clearer with the shapes in Fig. 1. In cases (a) and
(b) we can start the algorithm by considering k; = |2™ - Hq,]- For (c) and (d) we can follow the general procedure explained
in Section 3.1.2. For these two last cases, we can stop the algorithm either following the general criteria (the area under the
function is approximately one) or when k, = [2™ - Ha, -

Also for the other numerical methods the choice on integration interval facilitates when the assumptions of the theorem
and corollary apply.

We use a bisection method to compute the VaR value by the COS method from the CDF F;"S with stopping condition,

FS** (VaRy(a)) — or| < €cos,

where €, is a pre-defined tolerance error. Regarding the WA™? method, we consider r = 0.9995 in (10) and 2™ subintervals
when applying the Trapezoidal Rule, where m is the scale of approximation (for a detailed description of the choice of the
parameters r and m, we refer the reader to [14]). The number of trading days is fixed to 365. For comparison, we use so-called
partial Monte Carlo (PMC) simulations (i.e. MC simulation within the delta-gamma approach) and full Monte Carlo (FMC), to
evaluate the whole portfolio, both methods with 10° scenarios.*

Fig. 2 shows the density for Portfolio 1 recovered by the WA“? method at scale m = 10 as well as the COS method with
N = 1024 terms. Fig. 3 presents the density for Portfolio 2 (left) and a zoom over the vicinity of the non-smooth part (right
side). In the right side plot, we have also used a filtered-COS method with exponential filters of orders p, = 8,10. As we can
observe, using the filtered-COS the oscillations are dampened away from the point of irregularity. Moreover, for p; < 6, the
approximation gets too smooth near the conflicting point. We have computed the VaR and the ES values getting more accu-
rate values when using p; = 10. A possible explanation is that we loose a significant part of the density in the peaked zone
when using low order filters. Anyway, filtered-COS with p; = 10 has a similar behavior as COS without filters when comput-
ing the risk measures, concluding that in this case, the oscillations away from the singular point have very little impact on
the final results.

Table 1 presents the relative errors when computing the VaR and ES values for Portfolio 1 by means of the COS method
with the number of terms (i.e. scale of approximation) ranging from 32 (scale 5) to 256 (scale 8), and using several tolerances
for the error when applying the bisection method. We observe significant improvement in the accuracy when decreasing the
tolerance error, as expected. We finally choose €, = 1074, since a smaller epsilon leads to an increase in CPU time.

Table 2 presents the relative errors when computing the VaR and ES values for Portfolio 1 by means of the WA®? and COS
methods with the number of terms ranging from 32 to 256. In the case of the wavelets-based method, we recover the coef-
ficients from the PDF (WA PDF) and directly from the CDF (WA CDF). Regarding the COS method we consider €.,, = 10~*. We
also provide the CPU time. As we can observe from the table, although both methods are accurate, the WA (CDF) version is
extremely fast for computing the VaR value. Despite this, COS is faster in the case that we wish to compute both risk mea-
sures. The reason is that the calculation of one coefficient for the WA (CDF) methods is more CPU-time involved than the

4 The programs have been coded in C language and run under Linux OS on a personal computer Intel DG45ID motherboard with Intel Core2Quad Q9550
2.83 GHz processor and 8 GB SDRAM. In the measurement of the CPU time, we also have considered the computation of the Greeks.
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Fig. 3. Density for Portfolio 2 (left) and zoom (right).
Table 1

Relative errors for Portfolio 1 for VaR and ES values calculated with the COS method at confidence level o = 0.99 with L = 5. The reference values are:
0.903111819 (VaR), 0.964605146 (ES). These values have been computed as the average between the values obtained with the COS method using
N = 4000, €cos = 10, and the WA*?' method with m = 12.

N €cos = ]073 €cos = 1074 €cos = 1075 €cos = ]076

VaR ES VaR ES VaR ES VaR ES
32 5.53e-3 5.96e—-2 5.80e—4 4.10e—-3 2.71e-4 6.92e—4 2.13e-4 5.38e-5
64 5.53e-3 6.12e-2 5.80e—4 5.80e-3 1.16e—4 6.96e—4 5.80e-5 5.94e-5
128 5.53e-3 6.15e—-2 5.80e—4 5.94e-3 3.87e-5 8.72e—4 3.87e-5 2.27e-5
256 5.53e-3 6.14e-2 5.80e—4 5.93e-3 3.87e-5 8.67e—4 3.87e-5 1.90e-5

computation of one coefficient for the COS method, and we need many of them when calculating the ES with the WA (CDF)
variant.

We show in Table 3 the VaR and ES values for Portfolio 2 evaluated at different percentiles. In this case, we have focused
on the WA (CDF) variant and we have simply called it WA. The results show very accurate values at low and high loss levels.
We also can observe an overestimation of the risk measured with the VaR and Expected Shortfall within the delta-gamma
approach.

The WA® method can be used in an accurate way to recover the densities associated to Portfolio 1 and Portfolio 2, as
shown in Fig. 4. For this purpose we have considered €,,; = 10~*. The algorithm will be stopped when the mass of the com-
puted density reaches 1 — €. Table 4 shows the truncation values k; and k.
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Table 2

29

Relative errors for Portfolio 1 for VaR and ES values calculated at confidence level o = 0.99 with L = 5 and €., = 10~*. The reference values are: 0.903111819
(VaR), 0.964605146 (ES). These values have been computed as the average between the values obtained with the COS method using N = 4000, €.os = 10°%, and
the WA?' method with m = 12. The CPU times are also provided.

Number of terms (scale WA (PDF) WA (CDF) Ccos CPU (milliseconds)
m) WA (PDF) WA (CDF) CoS
VaR ES VaR ES VaR ES VaR VaR+ES VaR VaR+ES VaR VaR+ES

32 (5) 2.53e—2 4.00e-1 2.53e-2 1.89e-2 5.80e-4 4.10e-3 0.28 0.35 0.18 0.26 030 0.31

64 (6) 6.49e—2 9.06e—1 1.43e-2 3.96e-3 5.80e—4 580e-3 084 1.13 038 0.67 0.61 0.64
128 (7) 5.53e-3 6.75e-2 5.53e-3 1.01e-3 5.80e-4 594e-3 2.75 3.83 0.77 1.88 123 130
256 (8) 1.54e-2 1.80e-1 4.37e-3 3.08e-4 5.80e-4 593e-3 9.80 14.06 1.58 5.83 249 262

Table 3

VaR and ES calculated at several percentiles for Portfolio 2 with L = 5. The parameters for COS method are: N = 256 and €.,s = 10~*. The risk measures with the
WA method have been computed directly from the CDF at scale m = 8.

Percentile WA Ccos PMC FMC
VaR ES VaR ES VaR ES VaR ES
10 —2.3523 0.5255 —2.3436 0.5257 —2.3688 0.5239 —2.4785 0.4523
20 —1.0902 0.7975 —1.0891 0.7975 —1.0844 0.8044 -1.1510 0.7288
30 -0.3188 1.0094 -0.3298 1.0093 -0.3333 1.0061 —0.3607 0.9365
40 0.2421 1.1847 0.2219 1.1846 0.2070 1.1798 0.1985 1.1023
50 0.6629 1.3327 0.6535 1.3325 0.6415 1.3305 0.6289 1.2389
60 1.0135 1.4575 1.0020 1.4573 1.0039 1.4565 0.9569 1.3477
70 1.2939 1.5599 1.2863 1.5600 1.2862 1.5592 1.2126 1.4320
80 1.5043 1.6381 1.5081 1.6367 1.5073 1.6371 1.3962 1.4941
90 1.6445 1.6895 1.6508 1.6867 1.6527 1.6874 1.5054 1.5308
1 T T T T T T T T T T
6| i
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Fig. 4. Density recovered by means of the WA® for Portfolio 1 (left) and Portfolio 2 (right).
Table 4
Truncation values when using the WA® method.
Scale Seed X U ()] ky x="k Ifn()] ko x=k [fin ()|
Portfolio 1
6 -167 -2.54 6.05e—4 -196 -3.00 8.87e-5 261 1.08 9.24e-3
Portfolio 2
8 —2452 -8.91 1.36e-3 -3279 -12.14 9.99e-5 3544 1.70 2.19

Remark 5. Regarding Portfolio 1, we compute /; = —0.1205 < 0,{; = 17.1836 > {, g, = 1.0355 as explained in Section 4.4.
Although we observe only one peak, following Corollary 1, the density function is bimodal, with one mode in (—o0c, 1.0355)
and another at i, = 1.0355. The second mode is so small that in practice it is not observed and can be neglected in this case.
It is worth mentioning that we should add u,, + @At = 1.1025 to be in the domain of fav, (as we did in Fig. 4) instead offA~

If we follow the general criteria (related to the mass of the density) the algorithm stops at x = 1.08 and the density evaluated
at this point is 9.24 - 1073, in perfect agreement with the theory.
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Fig. 5. Portfolio value (green) as a function of the underlying assets and delta-gamma approximation (blue) for Portfolio 3. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5

VaR and ES values for Portfolio 3 at confidence level oo = 0.9.
Method VaR ES
FMC 32.9846 45.3541
PMC 32.4927 44.8006

The second portfolio is a somewhat more interesting case. On the one hand, the peak is sharper than the one observed in
Fig. 3. This fact can be interpreted as a more accurate recovery of the density. On the other hand, the algorithm stops at
x = 1.7046 where the value of the density is 2.19. We have calculated the maximum loss value for the density by means of
PMC simulation, obtaining the value 1.7050. Again, all these facts are in accordance with the theory developed in Section 4.4,
since 41 = —1.2052 < 0,{; = 1.7184 < {, uy, = 1.0355 and Hq, + OAt = 1.7050, and then the density is increasing in
(—o0,1.7050), once we have added ®At.

Let us now consider the following portfolio composed of options written in two different, uncorrelated underlying assets,

Portfolio 3. The portfolio is composed of 10.25 short European calls written on the underlying asset S; and 5.5 long
European calls written on the underlying asset S, with maturity 60 days and time horizon 10 days.

With this example we aim to illustrate the theoretical work done in Section 4.3 about the suitability of the delta-gamma
approach. We assume that the value of the underlying assets at time t are S; = 90, S, = 130 both with volatility 0.2, interest
rate 0.1 and strike prices K; = 90 for the options written on S; and K, = 125 for the options written on S,. We assume a zero
dividend yield.

We observe that the portfolio V(S;(t),S2(t)) = V1(S1) + V2(S2) is neither convex nor concave, since the Hessian,

2
-10.25 % 0

0 5.5<’)ZV

Z
53

Hess(V) =

is indefinite, as ‘5%’ > 0and ?)ZT‘Z/ > 0 for all (51,S,). However, we observe that V; is concave in S; and V is convex in S, and the
1 2

delta-gamma approximation is accurate in this case. We plot in Fig. 5 the portfolio value and the delta-gamma approxima-
tion and we report in Table 5 the VaR and the ES values at 0.9 confidence level. As we observe, the delta-gamma approxi-
mation is very accurate in a neighborhood of the initial value (S;,S,) = (90, 130).

6. Conclusions

We have investigated in this work the efficiency of the WA®?, COS, WA® and filtered-COS methods within the delta-
gamma framework, to compute the Value-at-Risk and the Expected Shortfall measures in a nonlinear portfolio composed
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of options. Regarding the wavelet approaches, we have recovered the risk measures from the probability density function
and from the cumulative distribution function. Both procedures give us very accurate results, however, in the second case,
the algorithm is faster since fewer coefficients are needed to perform the Fourier inversion. Regarding the COS method, we
recover the probability density function and then integrate (analytically) to determine the cumulative distribution function,
after which we employ a root-finding method to calculate the risk measures. The filtered-COS method with exponential filter
gives us the same accuracy as the COS method, concluding that, in this case, the oscillations away from the singular point
have very little impact on the final results. The WA® method recovers in an adaptive way the density without fixing an inter-
val for the inversion beforehand, although the method is somewhat more CPU time consuming.

We also have stated a useful theorem and two corollaries about the shape of the delta-gamma density and the maximum
profit and loss for the one-dimensional case. The numerical experiments carried out with the WA® method are in accordance
with the theory developed in Section 4.4. The problem for the p-dimensional case is more involved and it is subject of future
research.

We have seen that if a p-dimensional portfolio is neither convex nor concave, but can be decomposed in several convex
(or concave) subportfolios made of options written on one underlying asset, then the delta gamma approach is highly
accurate.
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