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Abstract

An initial-boundary value problem for the n-dimensional (n > 2) time-dependent Schrödinger equa-
tion in a semi-infinite (or infinite) parallelepiped is considered. Starting from the Numerov-Crank-
Nicolson finite-difference scheme, we first construct higher order scheme with splitting space averages
having much better spectral properties for n > 3. Next we apply the Strang-type splitting with
respect to the potential and, third, construct discrete transparent boundary conditions (TBC). For
the resulting method, the uniqueness of solution and the unconditional uniform in time L2-stability
(in particular, L2-conservativeness) are proved. Owing to the splitting, an effective direct algorithm
using FFT (in the coordinate directions perpendicular to the leading axis of the parallelepiped) is
applicable for general potential. Numerical results on the 2D tunnel effect for a Pöschl-Teller-like
potential-barrier and a rectangular potential-well are also included.
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Keywords: the time-dependent Schrödinger equation, the Crank-Nicolson finite-diffe-

rence scheme, higher-order scheme, the Strang splitting, discrete transparent boundary
conditions, stability, tunnel effect

1 Introduction

The time-dependent Schrödinger equation with several space variables is crucial in
quantum mechanics and electronics, nuclear and atomic physics, wave physics, etc. Often
it should be solved in unbounded space domains.

Several approaches were developed and investigated for solving problems of such kind,
in particular, see [1, 2, 3, 6, 16, 18]. One of them exploits the so-called discrete transpar-
ent boundary conditions (TBCs) at artificial boundaries [3, 11]. Its advantages are the
complete absence of spurious reflections in practice as well as the rigorous mathematical
background and stability results in theory.

The discrete TBCs for the Crank-Nicolson finite-difference scheme, the higher order
Numerov-Crank-Nicolson scheme and a general family of schemes on an infinite or semi-
infinite strip were constructed and studied respectively in [3, 7, 8], [17] and [21, 22]. All
these schemes are implicit, so to implement them, solving of specific complex systems of
linear algebraic equations is required at each time level.
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The splitting technique is widely used to simplify numerical solving of the time-
dependent Schrödinger and related equations, in particular, see [4, 5, 13, 14, 15, 19].
The known Strang-type splitting with respect to the potential has been recently applied
to the Crank-Nicolson and the Numerov-Crank-Nicolson scheme with the discrete TBCs
in 2D case in [10, 20].

Higher order methods are important due to their ability to reduce computational costs
essentially, and the Numerov-Crank-Nicolson scheme can be written in n-dimensional case
as well. But we show that, for n > 3, the Numerov space operators lose their important
spectral properties existing for n = 2 so that the scheme becomes impractical.

In this paper, in the spirit of [21, 22], we first split these operators (in space) and recover
the properties without reducing the higher order, for any n > 2. We second apply the
Strang-type splitting in potential in time also conserving the higher order; the resulting
scheme can be called “double-(space-time)-splitting”. For this scheme on an infinite space
mesh in the semi-infinite parallelepiped, we prove the unconditional uniform in time L2-
stability together with the mass conservation law using combination of techniques from
[9, 10, 17].

The discrete TBCs allow to restrict rigorously solutions of the schemes on infinite
space meshes to finite ones; they can be written in several forms. Our form of the
discrete TBC and its derivation for the “double-splitting” scheme follow [7, 9, 21, 22].
This form simplifies the whole study and is computationally stable. Notice that the
discrete TBC is non-local and involves the discrete convolution in time together with
the discrete Fourier operators in space directions perpendicular to the leading axis of the
parallelepiped. Exploiting an approach from [20] and suitable results from [9], we derive
the uniqueness of solution to the “double-splitting” scheme with the discrete TBC and
then its uniform in time L2-stability (from the former stability result for the infinite space
mesh). In particular, it is L2-conservative.

Owing to the Strang-type splitting, an effective direct algorithm is considered to im-
plement the method (for general potential) similar to those constructed in [10, 20]. It
uses the fast Fourier transform (FFT) in the perpendicular directions and a collection of
independent 1D discrete Schrödinger problems at each time level.

The corresponding 2D numerical results on the tunnel effect for a Pöschl-Teller-like
potential-barrier and a rectangular potential-well are included. In the case of the potential-
barrier, we compare the “double-splitting” scheme with the Numerov-Crank-Nicolson-
Strang scheme from [20] and find that their errors are very close. In the case the rectan-
gular well, we present the behavior of the solution. In both cases we check that rather
rough space meshes can be actually used (due to the higher order in space) despite the
large space derivatives or non-smoothness of the solution.

2 The Schrödinger equation in a semi-infinite parallelepiped and
its approximations of higher order in space

We consider the multidimensional time-dependent Schrödinger equation

i~
∂ψ

∂t
= − ~ 2

2m0

∆ψ + V ψ for x = (x1, . . . , xn) ∈ Π∞, t > 0, (2.1)
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where ∆ is the n-dimensional Laplace operator for n > 2, Π∞ := (0,∞) × Π1̂ is a semi-
infinite parallelepiped, with Π1̂ := (0, X2)×· · ·×(0, Xn). Hereafter i is the imaginary unit,
~ > 0 and m0 > 0 are physical constants, ψ = ψ(x, t) is the unknown complex-valued

wave function and V (x) is a given real potential. We also set c~ := ~ 2

2m0
for convenience.

We impose the following boundary condition, condition at infinity and initial condition

ψ(·, t)|∂Π∞ = 0, ‖ψ(x1, ·, t)‖L2(Π1̂) → 0 as x1 →∞, for any t > 0, (2.2)

ψ|t=0 = ψ0(x) in Π∞. (2.3)

We also assume that V (x) is constant and ψ0(x) vanishes when x1 is sufficiently large:

V (x) = V∞, ψ0(x) = 0 for x ∈ [X0,∞)× Π1̂, (2.4)

for some X0 > 0.
We introduce a uniform mesh ωh,∞ on Π∞ with nodes xj = (j1h1, . . . , jnhn), j1 > 0,

0 6 j2 6 J2, . . . , 0 6 jn 6 Jn and steps h1 = X1

J1
, . . . , hn = Xn

Jn
, where X1 > X0

and 2h1 6 X1 − X0. Let ωh,∞ be its internal part consisting in the nodes xj, j1 > 1,
1 6 j2 6 J2 − 1, . . . , 1 6 jn 6 Jn − 1 and let Γh,∞ := ωh,∞\ωh,∞ be its boundary.
Hereafter h = (h1, . . . , hn), |h| is the length of h and j = (j1, . . . , jn).

In the direction xk, we exploit the backward, forward and central difference quotients

∂̄kWj :=
Wj −Wj−1

hk
, ∂kWj :=

Wj+1 −Wj

hk
,
◦
∂kWj :=

Wj+1 −Wj−1

2hk

as well as the Numerov average in xk

sNkWj :=
1

12
Wj−1 +

5

6
Wj +

1

12
Wj+1 =

(
I +

h2
k

12
∂k∂̄k

)
Wj,

where I is the unit operator.
We introduce also a non-uniform mesh ω τ in time on [0,∞) with nodes 0 = t0 <

t1 < · · · < tm < . . . , where tm → ∞ as m → ∞, and steps τm = tm − tm−1. Let
ωτ := ω τ\{0} and τmax = supm>1 τm. We exploit the backward difference quotient, the
symmetric average and the backward shift in time

∂̄tY
m =

Y m − Y m−1

τm
, stY

m =
Y m−1 + Y m

2
, Y̌ m = Y m−1.

The simplest approximations of the Laplace operator in dimensions n and n − 1 (ex-
cluding xk) are

∆h = ∂1∂̄1 + · · ·+ ∂n∂̄n, ∆h,k̂ =
∑

16`6n, ` 6=k

∂`∂̄`.

The Numerov-type approximation of the Laplace operator and the n-dimensional average
are given by

∆hN = ∆h +
n∑
k=1

h2
k

12
∆h,k̂ ∂k∂̄k, sN = I +

h2
1

12
∂1∂̄1 + · · ·+ h2

n

12
∂n∂̄n,
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and the following formula holds

∆hN =
n∑
`=1

(
∂`∂̄` +

∑
16k6n, k 6=`

h2
k

12
∂`∂̄`∂k∂̄k

)
=

n∑
`=1

sN ̂̀∂`∂̄`, (2.5)

with sNk̂ = I +
∑

16`6n, ` 6=k
h2`
12
∂`∂̄`.

We begin with an approximation for the Schrödinger equation (2.1) of the Numerov
type in space and of the Crank-Nicolson type (i.e. two-level symmetric) in time given by

i~sN ∂̄tΨ = −c~∆hNstΨ + sN (V stΨ) on ωh,∞ × ωτ . (2.6)

The corresponding approximation error

i~sN ∂̄tψ + c~∆hNstψ − sN (V stψ) = O
(
τ 2

max + |h|4
)

is of higher 4th order in |h| and 2nd order in τmax, for ψ smooth enough.
Let us first check some important properties of ∆hN and sN . For 1 6 p1 6 J1 −

1, . . . , 1 6 pn 6 Jn − 1, we set

s(p)(x) = sin
πp1x1

X1

. . . sin
πpnxn
Xn

, with p := (p1, . . . , pn).

We have

sNs
(p) = λp[sN ]s(p), −∆hNs

(p) = λp[−∆hN ]s(p), −∆hs
(p) = λp[−∆h]s

(p) on ωh,∞,

with the eigenvalues

λp[sN ] = 1− 1

3

(
sin2 πp1x1

2X1

+ · · ·+ sin2 πpnxn
2Xn

)
,

λp[−∆hN ] = λp[sN 1̂]λ(1)
p1

+ · · ·+ λp[sNn̂]λ(n)
pn , λp[−∆h] = λ(1)

p1
+ · · ·+ λ(n)

pn ,

where λ
(k)
p =

(
2
hk

sin πphk
2Xk

)2

and λp[sNk̂] is the (n − 1)-dimensional version of λp[sN ] for

1 6 k 6 n.
Clearly λp[sN ] 6 1 and λp[−∆hN ] 6 λp[−∆h] for any n.
If n = 2, then 1

3
6 λp[sN ] and 2

3
λp[−∆h] 6 λp[−∆hN ].

If n = 3, then 0 < λp[sN ] and 1
3
λp[−∆h] 6 λp[−∆hN ] for any p, but λp[sN ] = O (|h|2)

for p = (J1 − 1, . . . , Jn − 1), i.e. sN is almost degenerate.
If n > 4, then even λp[sN ] < 0, in particular, for the same p = (J1− 1, . . . , Jn− 1) and

sufficiently small |h|, and thus there exists no c > 0 such that an inequality cλp[−∆h] 6
λp[−∆hN ] holds uniformly in p and h. Therefore the properties of sN for n > 3 and those
of ∆N for n > 4 are not natural, in contrast with the case n = 2.

In order to construct operators with better properties, we suggest now to split the
operators sNk̂ in (2.5) and sN and to introduce

∆̄hN = sN 1̂ ∂1∂̄1 + · · ·+ sNn̂ ∂n∂̄n, with sNk̂ =
∏

16`6n, ` 6=k

sN`, and sN = sN1 . . . sNn.
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(Note that ∆̄hN = ∆hN for n = 2.)
Then we pass from the discrete equation (2.6) to the following one

i~sN ∂̄tΨ = −c~∆̄hNstΨ + sN (V stΨ) on ωh,∞ × ωτ (2.7)

with the splitting average operators. Clearly sN = sN +O (|h|4), and due to formula (2.5)
one has also ∆̄hN = ∆hN +O (|h|4). Consequently the approximation error for the discrete
Schrödinger equation (2.7) is of the same order O (τ 2

max + |h|4). Notice that, for n = 2
and constant V , discrete equation (2.7) is a particular case of one studied in [21, 22].

On the other hand, now one checks immediately that

sNs
(p) = λp[sN ]s(p), −∆̄hNs

(p) = λp[−∆̄hN ]s(p) on ωh,∞,

with the eigenvalues satisfying(
2

3

)n
6 λp[sN ] 6 1,

(
2

3

)n−1

λp[−∆h] 6 λp[−∆̄hN ] 6 λp[−∆h] for any n.

We supplement the discrete equation (2.7) with the boundary and initial conditions

Ψ|Γh,∞×ωτ = 0, Ψ0 = Ψ0
h on ωh,∞. (2.8)

Hereafter the compatibility condition Ψ0
h|Γh,∞ = 0 is assumed.

We further apply the known Strang-type splitting in the potential to the new scheme
(2.7), (2.8) and get the following three-step scheme

i~
Ψ̆m −Ψm−1

τm/2
= ∆V

Ψ̆m + Ψm−1

2
on ωh,∞, (2.9)

i~sN
Ψ̃m − Ψ̆m

τm
= −c~∆̄hN

Ψ̃m + Ψ̆m

2
+ sN

(
Ṽ

Ψ̃m + Ψ̆m

2

)
+ Fm on ωh,∞, (2.10)

i~
Ψm − Ψ̃m

τm/2
= ∆V

Ψm + Ψ̃m

2
on ωh,∞, (2.11)

with the boundary and initial conditions

Ψ̆m|Γh,∞ = 0, Ψ̃m|Γh,∞ = 0, Ψm|Γh,∞ = 0, (2.12)

Ψ0 = Ψ0
h on ωh,∞, (2.13)

for any m > 1, where ∆V := V − Ṽ and the auxiliary 1D potential Ṽ = Ṽ (x1) satisfies

Ṽ (x1) = V∞ for x1 > X0. In the simplest case, Ṽ (x) = V∞ (but a non-constant Ṽ
is necessary when extending the results to the case of an infinite parallelepiped with
different limit values V±∞ of V (x) as x1 → ±∞).

We have added the free term Fm into (2.10) to study stability in more detail below.
The construction of this splitting is similar to the case of the 2D schemes without

averages [10] and with the Numerov average [20]. Note that we have omitted operators
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sN arising in the course of splitting on both sides of (2.9) and (2.11). Clearly equations
(2.9) and (2.11) are simply reduced to the explicit formulas

Ψ̆m = EmΨm−1, Ψm = EmΨ̃m, with Em :=
(

1− iτm
4~

∆V
)
/
(

1 + i
τm
4~

∆V
)
. (2.14)

The main equation (2.10) is similar to the original one (2.7) on the time level m but it is

essentially simplified by replacing V (x) by Ṽ (x1). The functions Ψ̆ and Ψ̃ are auxiliary
unknowns while Ψ is the main one.

From (2.14) and (2.12) we get immediately

|Ψ̆m| = |Ψm−1|, |Ψm| = |Ψ̃m| on ωh,∞; (2.15)

moreover, since ∆Vj = 0 for j1 > J1 − 1, we simply have

Ψ̆m
j = Ψm−1

j , Ψm
j = Ψ̃m

j for j1 > J1 − 1. (2.16)

This splitting modifies the scheme (2.7), (2.8) only in time and is symmetric in time
due to steps (2.9) and (2.11). Thus, concerning the approximation error, it reduces neither
the 4th order in |h| nor the 2nd order in τmax. This can be checked also more formally
similarly to [10, 20].

3 Stability of the splitting higher order scheme on an infinite
space mesh

Let Hh be a Hilbert space of mesh functions W : ωh,∞ → C such that W |Γh,∞ = 0 and

∞∑
j1=1

J2−1∑
j2=1

. . .
Jn−1∑
jn=1

|Wj|2 <∞

endowed with the following mesh counterpart of the inner product in L2(Π∞)

(U,W )Hh :=
∞∑
j1=1

J2−1∑
j2=1

. . .
Jn−1∑
jn=1

UjW
∗
j h1 . . . hn.

We only need the first assumption (2.4) in all this section.

Proposition 3.1. Let Ψ0
h, F

m ∈ Hh for any m > 1. Then there exists a unique solution
to the splitting scheme (2.9)-(2.13) such that Ψm ∈ Hh for any m > 0, and the following
L2-stability bound holds

max
06m6M

‖Ψm‖Hh 6 ‖Ψ0
h‖Hh +

2

~

(
3

2

)n M∑
m=1

‖Fm‖Hh τm for any M > 1. (3.17)

Moreover, in the particular case F = 0, the following mass conservation law holds

‖Ψm‖2
Hh

= ‖Ψ0
h‖2

Hh
for any m > 1. (3.18)
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Proof. We first rewrite the main equation (2.10) as a suitable operator equation in Hh.
We set ΛkW := −∂k∂̄kW on ωh,∞ and ΛkW := 0 on Γh,∞, for 1 6 k 6 n. Then

Λk, sNk = I − h2
k

12
Λk, sN = sN1 . . . sNn, sNk̂ =

∏
16`6n, ` 6=k

sN`

and −∆̄hN = sN1Λ1 + · · ·+ sNnΛn are bounded self-adjoint operators in Hh. Moreover

(sNkW,W )Hh >
2

3
‖W‖2

Hh
for any W ∈ Hh

(for k = 1, see [9] taking there the particular space average with a parameter θ = 1
12

),

therefore the inverse operator s−1
Nk exists and is bounded∥∥s−1

Nk

∥∥
L(Hh)

6
3

2
. (3.19)

Therefore we can consider (2.10) as an operator equation in Hh. In the spirit of [17], we
apply s−1

N = s−1
N1 · · · s

−1
Nn to it and obtain

i~
Ψ̃m − Ψ̆m

τm
= Ah

Ψ̃m + Ψ̆m

2
+ s−1

N Fm in Hh, (3.20)

where Ah := c~
(
s−1
N1Λ1 + · · ·+ s−1

NnΛn

)
+ Ṽ I. Since Λk and sNk commute, so do Λk and

s−1
Nk, and consequently Ah is a bounded self-adjoint operator in Hh.

We rewrite equation (3.20) in another form(
I + i

τm
2~

Ah

)
Ψ̃m = Bm :=

(
I − iτm

2~
Ah

)
Ψ̆m − iτm

~
s−1
N Fm.

Since the operator I + i τm
2~ Ah is invertible, the equation has a unique solution Ψ̃m ∈ Hh

provided that Ψ̆m, Fm ∈ Hh. This implies the existence of a unique solution of the
splitting scheme such that Ψm ∈ Hh for any m > 0.

We can now follow the lines of [10]. Note first that the pointwise equalities (2.15) imply

‖Ψ̆m‖Hh = ‖Ψm−1‖Hh , ‖Ψm‖Hh = ‖Ψ̃m‖Hh . (3.21)

Multiplying the operator equation (3.20) by Ψ̃m+Ψ̆m

2
, separating the imaginary part of the

result and using the property Ah = A∗h, we get

~
2τm

(
‖Ψ̃m‖2

Hh
− ‖Ψ̆m‖2

Hh

)
= Im

(
s−1
N Fm,

Ψ̃m + Ψ̆m

2

)
Hh
.

Applying equalities (3.21), multiplying both sides by 2τm
~ and summing up the result over

m = 1, . . . ,M , we obtain

‖ΨM‖2
Hh

= ‖Ψ0
h‖2

Hh
+

2

~

M∑
m=1

Im
(
s−1
N Fm,

Ψ̃m + Ψ̆m

2

)
Hh
τm. (3.22)
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Owing to (3.19) and (3.21) we have

‖Ψm‖2
Hh

6 ‖Ψ0‖2
Hh

+
2

~

M∑
m=1

‖s−1
N Fm‖Hh

1

2
(‖Ψ̃m‖Hh + ‖Ψ̆m‖Hh)τm

6 ‖Ψ0‖2
Hh

+
2

~

(
3

2

)n M∑
m=1

‖Fm‖Hhτm max
06m6M

‖Ψm‖Hh .

This inequality directly implies bound (3.17). Also (3.18) follows from (3.22).

4 The splitting higher order scheme on a finite space mesh

The splitting scheme (2.9)-(2.13) is not practically implementable because of the infi-
nite number of unknowns on each time level. We now intend to restrict its solution to a
finite space mesh ωh := {xj ∈ ωh,∞; 0 6 j1 6 J1}. Let ωh := {xj ∈ ωh,∞; 1 6 j1 6 J1− 1}
and ∂ωh = ωh\ωh be its internal part and boundary, and Γ1h := {xj; j1 = J1, 1 6 j2 6
J2 − 1, . . . , 1 6 jn 6 Jn − 1} and Γh = ∂ωh\Γ1h be the boundary parts. Let ωh1̂ and
ωh1̂ be (n − 1)-dimensional versions of ωh and ωh (excluding the direction x1) as well as
ωh1 := {j1h1; 1 6 j1 6 J1 − 1} (so that ωh = ωh1 × ωh1̂).

By definition, the discrete transparent boundary condition (TBC) is a boundary con-
dition on Γ1h which admits to accomplish the above mentioned restriction.

To write down the discrete TBC, we need operators

s±N1Wj =
5

12
Wj +

1

12
Wj±1, sN,1̂k :=

∏
26`6n, ` 6=k

sN`,

so that sN1 = s−N1 + s+
N1 and sNk̂ = sN1sN 1̂k, for 2 6 k 6 n.

We also exploit the direct and inverse discrete Fourier sine transforms in direction xk

P (q) = (FkP )(q) :=
2

Jk

Jk−1∑
j=1

Pj sin
πqj

Jk
, 1 6 q 6 Jk − 1,

Pj =
(
F−1
k P (·))

j
:=

Jk−1∑
q=1

P (q) sin
πqj

Jk
, 1 6 j 6 Jk − 1.

The corresponding eigenvalues of −∂k∂̄k and sNk are λ
(k)
q and σ

(k)
q = 1− 1

3
sin2 πqhk

2Xk
∈ (2

3
, 1).

Given a functionW : ωh → C, denote byWJ1 its trace on Γ1h. Let Ψm
J1

= {Ψ0
J1
, . . . ,Ψm

J1
}

be the vector function. Given functions R,Q: ω τ → C, we denote by

(R ∗Q)m :=
m∑
p=0

RpQm−p, m > 0,

their discrete convolution product. Let the time mesh be uniform with a step τ > 0 below.
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Proposition 4.1. Let Fm = 0 and Ψ0
h = 0 on ωh,∞\ωh for any m > 1 and Ψ0

h

∣∣
j1=J1−1

= 0.

The solution to the splitting scheme (2.9)-(2.13) such that Ψm ∈ Hh for any m > 0
satisfies the following three-step splitting scheme on the finite space mesh ωh

i~
Ψ̆m −Ψm−1

τ/2
= ∆V

Ψ̆m + Ψm−1

2
on ωh ∪ Γ1h, (4.1)

i~sN
Ψ̃m − Ψ̆m

τ
= −c~∆̄hN

Ψ̃m + Ψ̆m

2
+ sN

(
Ṽ

Ψ̃m + Ψ̆m

2

)
+ Fm on ωh, (4.2)

i~
Ψm − Ψ̃m

τ/2
= ∆V

Ψm + Ψ̃m

2
on ωh ∪ Γ1h, (4.3)

with the boundary and initial conditions

Ψ̆m|Γh = 0, Ψ̃m|Γh = 0, Ψm|Γh = 0, (4.4)

D1h(Ψ̃
m, Ψ̆m) := c~sN 1̂∂̄1

Ψ̃m + Ψ̆m

2
− h1s

−
N1

{
i~sN 1̂

Ψ̃m − Ψ̆m

τ

+
[
c~
(
sN 1̂2∂2∂̄2 + · · ·+ sN 1̂n∂n∂̄n

)
− V∞sN 1̂

] Ψ̃m + Ψ̆m

2

}
= c~SmrefΨ̃

m
J1

on Γ1h, (4.5)

Ψ0 = Ψ0
h on ωh, (4.6)

for any m > 1.
The operator on the right in the discrete TBC (4.5) is given by

SmrefΦ
m := F−1

2 . . .F−1
n

[
σ(2)
q2
. . . σ(n)

qn Rq ∗ Φq
]m
, (4.7)

for any Φ: ωh1̂ × ω τ → C such that Φ0 = 0, with Φm := {Φ0, . . . ,Φm} and

Φq := (Fn . . . (F2Φ)(q2) . . . )(qn), q = (q2, . . . , qn).

The discrete convolution kernel in (4.7) has the form

Rq = R [V∞,q] , with V∞,q = V∞ + c~

(λ(2)
q2

σ
(2)
q2

+ · · ·+ λ
(n)
qn

σ
(n)
qn

)
, (4.8)

where R[V∞] can be computed recurrently by

R0[V∞] = c1, R1[V∞] = −c1κµ, (4.9)

Rm[V∞] =
2m− 3

m
κµRm−1[V∞]− m− 3

m
κ2Rm−2[V∞] for m > 2. (4.10)

Here the coefficients c1,κ and µ are defined by

c1 = −|α|
1/2

2
e−i(argα)/2, κ = −ei argα, µ =

β

|α|
∈ (−1, 1),

α = 2a+
2

3
h2

1a
2 6= 0, argα ∈ (0, 2π), β = 2 Re a+

2

3
h2

1|a|2, a =
V∞
2c~

+ i
~
τc~

.
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Proof. Clearly it is sufficient to derive the discrete TBC (4.5) for the solution of the
splitting scheme (2.9)-(2.13) under the above assumptions on Ψ0

h and F .
Due to property (2.8), equations (2.9)-(2.11) are reduced on ωh,∞\ωh and for m > 1

to the equation

i~sN ∂̄tΨ =
(
−c~∆̄hN + V∞sN

)
stΨ on (ωh,∞\ωh)× ωτ . (4.11)

Also the boundary and initial conditions (4.4) and (4.6) imply that

Ψm|Γh,∞\Γh = 0 for m > 1, Ψ0 = 0 on {j1h1}∞j1=J1−1 × ωh1̂ (4.12)

The discrete TBC (4.5) takes the following form

c~sN 1̂∂̄1stΨ
m − h1s

−
N1

{
i~sN 1̂∂̄tΨ

m +
[
c~
(
sN 1̂2∂2∂̄2 + · · ·+ sN 1̂n∂n∂̄n

)
− V∞sN 1̂

]
stΨ

m
}

= c~SmrefΨ
m
J1

on Γ1h. (4.13)

Similarly to [7, 9, 22], we first construct the discrete TBC in the following symmetric
form with respect to x1

◦
∂1

{
c~sN 1̂stΨ

m +
h2

1

12

[
i~sN 1̂∂̄tΨ

m +
[
c~
(
sN 1̂2∂2∂̄2 + · · ·+ sN 1̂n∂n∂̄n

)
− V∞sN 1̂

]
stΨ

m
]}

= c~SmrefΨ
m
J1

on Γ1h, for any m > 1. (4.14)

Using the elementary formulas
◦
∂1 = ∂̄1 + h1

2
∂1∂̄1 and

h21
12

◦
∂1 = −h1s

−
N1 + h1

2
sN1 and equation

(4.11) on Γ1h, we see that the discrete TBC (4.13) is equivalent to (4.14).
Now following [3, 7, 10, 22], we apply the operator F2 . . .Fn to equations (4.11) and

(4.13). Dividing the result by σ
(2)
q2 . . . σ

(n)
qn , we obtain that a function P := (F2 . . .FnΨ)q

satisfies the 1D Numerov-Crank-Nicolson scheme for the 1D Schrödinger equation with
constant coefficients

i~sN1P =
(
−c~∂1∂̄1 + V∞,qsN1

)
stP on {jh1}∞j=J1 × ω

τ , (4.15)

with zero initial data
P 0 = 0 on {j1h1}∞j1=J1−1, (4.16)

see (4.12), and the boundary condition, for any m > 1

◦
∂1

[
c~stP

m +
h2

1

12

(
i~∂̄tPm − V∞,qstPm

)]∣∣∣∣
j=J1

=
c~

σ
(2)
q2 . . . σ

(n)
qn

(
F2 . . .FnSmrefΨ

m
J1

)q
. (4.17)

As it was calculated in [9] (taking there θ = 1
12

), solutions of (4.15), (4.16) satisfy

◦
∂1

[
c~stP

m +
h2

1

12

(
i~∂̄tPm − V∞,qstPm

)]∣∣∣
j=J1

= c~ (R [V∞,q] ∗ PJ1)
m , (4.18)

for any m > 1, where R [V∞] can be computed by the recurrent relations (4.9), (4.10).
(Actually the formulas from [9] are slightly modified and refined from misprints; also the
recently checked fixed sign in the formula for c1 is taken into account.) This was done in
[9] under suitable conditions on P valid here due to the stability bound (3.17).
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Comparing (4.17) and (4.18) leads to

1

σ
(2)
q2 . . . σ

(n)
qn

(
F2 . . .FnSmrefΨ

m
J1

)q
= (R [V∞,q] ∗ P )m ,

and after multiplying by σ
(2)
q2 . . . σ

(n)
qn and applying F−1

2 . . .F−1
n , we get formula (4.7).

The form of the discrete TBC follows our previous studies [7, 8, 9, 10] allowing to
ensure both stability of schemes and the stable numerical implementation of the discrete
TBCs; moreover, for n = 2 they are equivalent to those constructed in [21, 22] in the
particular case θ = 1

12
. Notice that the following important summation identity coupling

the operators in the main equation (4.2) and the discrete TBC (4.5) holds(
i~sN

Ψ̃m − Ψ̆m

τ
+c~∆̄hN

Ψ̃m + Ψ̆m

2
−sN

(
Ṽ

Ψ̃m + Ψ̆m

2

)
,W
)
ωh
−
(
D1h(Ψ̃

m, Ψ̆m)J1 ,WJ1

)
ωh1̂

=
(
sN 1̂

(
i~

Ψ̃m − Ψ̆m

τ
− Ṽ Ψ̃m + Ψ̆m

2

)
,W
)
ωhN1×ωh1̂

+ c~

(
sN 1̂∂̄1

Ψ̃m + Ψ̆m

2
, ∂̄1W

)
ω̃h

+ c~

(
−
(
sN 1̂2∂2∂̄2 + · · ·+ sN 1̂n∂n∂̄n

)Ψ̃m + Ψ̆m

2
,W
)
ωhN1×ωh1̂

(4.19)

for any W : ωh → C such that W |j1=0 = 0. Here we have used the collection of L2-mesh
inner products

(U,W )ωh :=

J1−1∑
j1=1

. . .
Jn−1∑
jn=1

UjW
∗
j h1 . . . hn, (U,W )ωh1̂

:=

J2−1∑
j2=1

· · ·
Jn−1∑
jn=1

Uj2,...,jnW
∗
j2,...,jn

h2 . . . hn,

(U,W )ω̃h := (U,W )ωh + (UJ1 ,WJ1)ωh1̂
h1,

(U,W )ωhN1×ωh1̂
:= (sN1U,W )ωh +

(
s−N1UJ1 ,WJ1

)
ωh1̂

h1. (4.20)

According to [9] (taking there θ = 1
12

), the sesquilinear form (4.20) is Hermitian and
positive definite on functions U,W : ωh → C such that U |Γh = W |Γh = 0. In what
follows, we need the norms ‖ · ‖ωh and ‖ · ‖ω̃h associated to the first and third of these
inner products.

The summation identity (4.19) appears after rearranging terms on its left-hand side
and summing by parts with respect to x1 in the term c~sN 1̂∂1∂̄1.

Lemma 4.1. The operator Smref satisfies the inequality [7]

Im
M∑
m=1

(SmrefΦ
m, stΦ

m)ωh1̂
τ > 0 for any M > 1, (4.21)

for any function Φ: ωh1̂ × ω τ → C such that Φ0 = 0.

11



Proof. Following [7], we use formula (4.7) and standard properties of F2, . . . ,Fn and get

(SmrefΦ
m, stΦ

m)ωh1̂
=
X2 . . . Xn

2n−1

J2−1∑
q2=1

. . .

Jn−1∑
qn=1

σ(2)
q2
. . . σ(n)

qn (Rq ∗ Φq)m (stΦ
m)∗ .

Consequently

Im
M∑
m=1

(SmrefΦ
m, stΦ

m)ωh1̂
τ

=
X2 . . . Xn

2n−1

J2−1∑
q2=1

. . .

Jn−1∑
qn=1

σ(2)
q2
. . . σ(n)

qn Im
M∑
m=1

(R[V∞q] ∗ Φq)m (stΦ
m)∗ τ. (4.22)

The result follows from the similar 1D inequality proved in [9] (taking there θ = 1
12

).

By construction, the splitting scheme (4.1)-(4.6) on the finite space mesh has a solution.
Let us prove its uniqueness; notice that we do not need any restrictions on τ to this end
(in contrast to [20]). Let Ψ0

h

∣∣
j1=J1−1, J1

= 0 below.

Proposition 4.2. The solution of the splitting scheme (4.1)-(4.6) on the finite space
mesh is unique. It satisfies the following L2-stability bound

max
06m6M

‖Ψm‖ω̃h 6 ‖Ψ0
h‖ω̃h +

2

~

(
3

2

)n M∑
m=1

‖Fm‖ωhτ for any M > 1. (4.23)

Proof. Assume that there exist two solutions of the scheme (4.1)-(4.6) and denote by Y
their difference. Clearly Y satisfies the homogeneous scheme (4.1)-(4.6), with F = 0 and
Ψ0
h = 0.
In order to establish uniqueness, it is sufficient to prove that if Y 0 = 0, . . . , Y m−1 = 0,

then Y m = 0. Under this assumption Y m satisfies a homogeneous equation

i
~
τ
sNY

m = −c~
2

∆̄hNY
m +

1

2
sN(Ṽ Y m) on ωh, (4.24)

together with the homogeneous boundary conditions

Y m|Γh = 0, D1h (Y m, 0) = c~SmrefY
m
J1

on Γ1h, (4.25)

where Ym = {0, . . . , 0, Y m}, with 0 appearing m times.

Following [20], applying the summation identity (4.19) in the case Ψ̃m = Y m, Ψ̆m = 0
and W = Y m, and using (4.24) and (4.25), we get(

sN 1̂

(
i
~
τ
Y m − 1

2
Ṽ Y m

)
, Y m

)
ωhN1×ωh1̂

+
c~
2

(
sN 1̂ ∂̄1Y

m, ∂̄1Y
m
)
ω̃h

+
c~
2

(
−
(
sN 1̂2 ∂2∂̄2 + · · ·+ sN 1̂n ∂n∂̄n

)
Y m, Y m

)
ωhN1×ωh1̂

+c~
(
SmrefY

m
J1
, Y m

J1

)
ωh1̂

= 0. (4.26)

Let Hh1̂ be the space of functions P : ωh1̂ → C such that P = 0 on ∂ωh1̂ = ωh1̂\ωh1̂ en-
dowed with the inner product (·, ·)ωh1̂ . Setting AP = 0 on ∂ωh1̂ for A = sN 1̂, −sN 1̂2 ∂2∂̄2,...,
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−sN 1̂n ∂n∂̄n, we see that these operators are self-adjoint and positive definite in Hh1̂.
Therefore taking the imaginary part in (4.26), we obtain

~
τ

(sN 1̂Y
m, Y m)ωhN1×ωh1̂

+ c~ Im
(
SmrefY

m
J1
, Y m

J1

)
ωh1̂

= 0.

Owing to Lemma 4.1 we get

~
τ

(sN 1̂Y
m, Y m)ωhN1×ωh1̂

6 0,

and finally the above positive definiteness of (4.20) and sN 1̂ implies that Y m = 0.
Bound (4.23) follows directly from the previous L2-stability bound (4.2) in the case of

the infinite space mesh since now Ψ0
h = 0 and Fm = 0 on ωh,∞\ωh for any m > 1.

For F = 0, bound (4.23) means that ‖Ψm‖2
ω̃h

6 ‖Ψ0
h‖2

ω̃h
for any m > 1.

Note that, in order to prove uniqueness of the solution, we have crucially exploited a
very particular case of inequality (4.21) (see also (4.22)), namely

0 6 Im
(
F−1

2 . . .F−1
n

[
σ(2)
q2
. . . σ(n)

qn R
0
qY

mq
J1

]
, Y m

J1

)
ωh1̂

=
X2 . . . Xn

2n−1

J2−1∑
q2=1

. . .
Jn−1∑
qn=1

σ(2)
q2
. . . σ(n)

qn ImR0
q

∣∣Y mq
J1

∣∣2 ,
for any Y m

J1
: ωh1̂ → C, which is equivalent to the inequality ImR0

q > 0 for any q.
The splitting scheme on the finite space mesh (4.1)-(4.6) can be effectively implemented

(similarly to [10, 20]). Applying the operator F2 . . .Fn to the main equation (4.2) and

the discrete TBC (4.5) and dividing the results by σ
(2)
q2 . . . σ

(n)
qn , we get a collection of

independent 1D problems in x1, for each Ψ̃mq

i~sN1
Ψ̃mq − Ψ̆mq

τ
= −c~∂1∂̄1

Ψ̃mq + Ψ̆mq

2
+ sN1

(
Ṽq

Ψ̃mq + Ψ̆mq

2

)
+

Fmq

σ
(2)
q2 . . . σ

(n)
qn

on ωh1,

(4.27)

Ψ̃mq
∣∣∣
j1=0

= 0, (4.28)

[
c~∂̄1

Ψ̃mq + Ψ̆mq

2
− h1s

−
N1

(
i~

Ψ̃mq − Ψ̆mq

τ
− V∞,q

Ψ̆mq + Ψ̃mq

2

)]∣∣∣
j1=J1

= c~

(
Rq ∗ Ψ̃q

J1

)m
,

(4.29)

where Ṽq := Ṽ + c~

(
λ
(2)
q2

σ
(2)
q2

+ · · ·+ λ
(n)
qn

σ
(n)
qn

)
and we have taken into account (4.1) and (4.7).

Given Ψm−1, the direct algorithm for computing Ψm is divided into five steps.

1. To compute Ψ̆m = EmΨm−1 on ωh ∪ Γ1h (see (2.14)).

2. To compute Ψ̆mq =
(
Fn . . .

(
F2Ψ̆m

)(q2)
. . .
)(qn)

and Fmq =
(
Fn . . .

(
F2F

m
)(q2)

. . .
)(qn)

,
for 1 6 q2 6 J2 − 1, . . . , 1 6 qn 6 Jn − 1.
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3. To compute Ψ̃mq by solving the independent 1D problems (4.27)-(4.29) for 1 6 q2 6
J2−1, . . . , 1 6 qn 6 Jn−1 (this includes the computation of the discrete convolutions

on the right of (4.29) so that Ψ̃1q
J1
, . . . , Ψ̃m−1q

J1
have to be stored).

4. To compute Ψ̃m = F−1
n . . .F−1

2 Ψ̃mq.

5. To compute Ψm = EmΨ̃m on ωh ∪ Γ1h (see (2.14)).

Steps 1 and 5 need O (J1 . . . Jn) arithmetic operations while Steps 2 and 4 require
O (J1 . . . Jn log2 (J2 . . . Jn)) operations by using FFT provided that J2 = 2k2 , . . . , Jn = 2kn ,
where k2, . . . , kn are integers. Step 3 needs O((J1 +m)J2 . . . Jn) operations.

The total amount of arithmetic operations equals O ((J1 log2 (J2 . . . Jn) +m) J2 . . . Jn)
orO((J1 log2 (J2 . . . Jn) +M) J2 . . . JnM) in order to compute the solution Ψm respectively
at time level m or at all time levels m = 1, . . . ,M .

Notice that the above analysis is easily extended to the case of the problem in a
parallelepiped infinite in x1 in both directions, with setting the discrete TBC at the left
artificial boundary x1 = 0 as well. Its form similar to (4.29) is as follows[
−c~∂1

Ψ̃mq + Ψ̆mq

2
− h1s

+
N1

(
i~

Ψ̃mq − Ψ̆mq

τ
− V∞,q

Ψ̆mq + Ψ̃mq

2

)]∣∣∣
j1=0

= c~

(
Rq ∗ Ψ̃q

0

)m
,

(4.30)
for any m > 1 and q (for brevity, we suppose that V (x) = V∞ also for x1 6 h1 though

clearly V±∞ could be different). Here Ψ̃0 = {Ψ̃0|j1=0, . . . , Ψ̃
m|j1=0}.

5 Numerical experiments

The above presented direct algorithm has been implemented for n = 2. We solve the
initial-boundary value problem in the infinite strip R× (0, X2) taking the computational
domain ΠX × [0, T ], with ΠX = [0, X1]× [0, X2], and set ~ = 1 and c~ = 1.

We respectively modify our scheme (4.1)-(4.6) enlarging ωh ∪ Γ1h by Γ0h := {0} × ωh1̂

in (4.1) and (4.3) as well as replacing Γh by Γh \ Γ0h in (4.4) and posing the left discrete

TBC (4.30). We can put Ṽ = 0 and ∆V = V .
Let the initial function be the standard Gaussian wave package

ψ0(x) = ψG := exp
{
ik(x1 − x(0)

1 )− |x− x
(0)|2

4α

}
on R2.

We set its parameters k = 30
√

2 (the wave number), α = 1
120

and x(0) = (1, X2

2
) like in

[10, 20]. The modulus and the real part of ψG can be seen on Figure 3, for m = 0.

Example A. We first consider a modified Pöschl-Teller [12] potential-barrier

V (x) =
α2

0c1

cosh2 α0(x1 − x∗1)

depending only on x1 and set α0 = 6, c1 = 47 and x∗1 = 2. Though the potential is
smooth, its derivatives in x1 are rather large. Let (X1, X2) = (4, 4.2), then both V and
ψG are sufficiently small outside ΠX , and let also T = tM = 0.05.
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J1 EC EL2 RC RL2

200 0.340E−2 0.330E−2 – –
400 0.851E−3 0.810E−3 3.99 4.07
800 0.213E−3 0.202E−3 3.99 4.01

1600 0.531E−4 0.505E−4 4.01 4.00

J2 EC EL2 RC RL2

32 0.410E−2 0.310E−2 – –
64 0.853E−3 0.807E−3 4.81 3.84

128 0.213E−3 0.202E−3 4.00 3.99
256 0.531E−4 0.506E−4 4.01 3.99

Table 1: The difference between the solutions of two schemes in maximum in time C and L2 space norms
for redoubling J1 and (J2,M) = (128, 1000), or redoubling J2 and (J1,M) = (800, 1000).

(J1, J2) EC EL2 RC RL2

(400, 64) 0.340E−2 0.320E−2 – –
(800, 128) 0.213E−3 0.202E−3 15.96 15.84
(1600, 256) 0.193E−4 0.129E−4 11.03 15.66

Table 2: Example A. The difference between the solutions of two schemes in maximum in time C and L2

space norms for redoubling (J1, J2) and M = 1000.

This example was solved using the Numerov-Crank-Nicolson scheme with the same
Strang splitting in potential in [20] on various meshes. The wave package is divided by
the barrier into two comparable reflected and transmitted parts moving in opposite x1-
directions and leaving the computational domain. In particular, it was found that values
(J1, J2,M) = (400, 64, 1000), i.e. h1 = 10−2, h2 ≈ 6.56 · 10−2 and τ = T

M
= 5 · 10−5, are

suitable to build correct graphs of the solution; finer meshes allowed to compute much
more precise numerical solutions.

Here we study the difference between the numerical solutions of the Numerov-Crank-
Nicolson-Strang scheme and the above one. In Tables 1 and 2, we present their maximum
in time C and L2 space norms EC and EL2 on refining space meshes together with the
corresponding ratios RC and RL2 . Notice that the difference is estimated theoretically as
O(h2

1h
2
2). So it is natural that RC and RL2 are rather close to 4 for redoubling J1 or J2

and to 16 for redoubling (J1, J2).
The typical graphs in time of the absolute and relative differences in C and L2 norms

between the numerical solutions of two schemes are given on Figure 1 for (J,K,M) =
(800, 128, 1000).

Example B. Following [10, 20], we second consider the rectangular potential

V (x) =

{
Q for x ∈ Π := (a, b)× (c, d)

0 otherwise

depending both on x1 and x2. We set Π = (1.6, 1.9) × (0.7, 2.1) and Q = −9000 so now
the potential is a well (in contrast to [10, 20]). We choose (X1, X2) = (3, 2.8) so that
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Figure 1: Example A. The absolute (left) and relative
(right) differences in C and L2 norms between the solu-
tions of two schemes for (J1, J2,M) = (800, 128, 1000)
in dependence with time

0 0.005 0.01 0.015 0.02 0.027
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

 

 

C−norm
L

2
−norm

0 0.005 0.01 0.015 0.02 0.027
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

 

 

C−norm
L

2
−norm

Figure 2: Example B. The absolute (left) and relative
(right) differences in C and L2 norms between the nu-
merical solutions for (J1, J2,M) = (600, 64, 2400) and
(1200, 128, 4800) in dependence with time

Π ⊂ ΠX and ψG is small outside ΠX . Let also T = tM = 0.027. This example is more
complicated since the well is discontinuous and thus the corresponding exact solution is
non-smooth.

We take (J1, J2) such that the vertices of Π belong to the mesh and, following [20],
exploit the averaged mesh potential

Vhj1,j2 =


V (xj) for j1h1 6= a, b and j2h2 6= c, d

Q/2 for j1h1 = a, b but j2h2 6= c, d, or for j2h2 = c, d but j1h1 6= a, b

Q/4 for (j1h1, j2h2) = (a, c), (a, d), (b, c), (b, d)

for any j1 and j2.
The numerical solution Ψm is computed for (J1, J2,M) = (600, 64, 2400), i.e., h1 =

5 · 10−3, h2 = 4.375 · 10−2 and τ = 1.125 · 10−5. We check that these values are suitable
by computing the change in the solution when redoubling (J1, J2,M), see Figure 2. The
modulus and the real part of Ψm together with the normalized well are presented on
Figures 3 and 4, for some selected time levels. Once again the wave package is divided (now
by the well) into the reflected and transmitted parts, but now the process is more tricky
and the reflected part consists in two fragments. Notice (as usual) the more complicated
behavior of the real part and the complete absence of the spurious reflections from the
artificial left and right boundaries where the discrete TBCs are posed.

On the last Figure 5, the graphs of the total kinetic and potential energies are presented.
Here we calculate them as

Ekin := c~

(
‖∂̄1Ψ‖2

ω̃h
+

J1∑
j1=1

J2∑
j2=1

|∂̄2Ψj1,j2|2h1h2

)
for n = 2, Epot := (VΨ,Ψ)ω̃h .

The left and the right graphs correspond respectively to Example B and the related
example from [10, 20] for the rectangular barrier with Π = (1.6, 1.7) × (0.7, 2.1) and
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m = 0 m = 416

m = 616 m = 818

Figure 3: Example B. The modulus and the real part of the numerical solution Ψm, m = 0, 416, 616 and 818

Q = 1500. Their behavior is in complete accordance with the physical sense of the
examples.
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m = 1056 m = 1318

m = 1800 m = 2400

Figure 4: Example B. The modulus and the real part of the numerical solution Ψm, m = 1056, 1318, 1800 and
2400
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