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ABSTRACT 
 

The exact solution of the anti-symmetric quadratic truly nonlinear oscillator is derived from the first 

integral of the nonlinear differential equation which governs the behaviour of this oscillator. This 

exact solution is expressed as a piecewise function including Jacobi elliptic cosine functions. The 

Fourier series expansion of the exact solution is also analyzed and its coefficients are computed 

numerically. We also show that these Fourier coefficients decrease rapidly and, consequently, using 

just a few of them provides an accurate analytical representation of the exact periodic solution. Some 

approximate solutions containing only two harmonics as well as a rational harmonic representation 

are obtained and compared with the exact solution. 
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1. Introduction 

Nonlinear oscillator models have been widely used in many areas, not only in mechanics but 

also in other branches of physics, mathematics or engineering. There is a large variety of 

approximate methods commonly used for solving nonlinear oscillatory systems [1,2]. In 

conservative nonlinear oscillators the restoring force is not dependent on time, the total 

energy is constant [2,3] and any oscillation is stationary. An important feature of the 

solutions for conservative oscillators is that they are periodic and range over a continuous 

interval of initial values [4]. Conservative truly nonlinear oscillatory systems are modelled 

by differential equations for which the restoring force has no linear approximation at x = 0 

[4]. In this paper we consider a conservative truly nonlinear oscillator for which the 

nonlinear function is an anti-symmetric quadratic function, f (x) = sgn(x)x2 . In recent years 

some examples of this class of truly nonlinear oscillators have been analyzed [4,5] and 

several techniques have been used to obtain analytical approximate solutions, such as 

harmonic balance, rational harmonic balance, parameter expansion, iteration or averaging 

methods. Recently, Cveticanin and Pogány [6] obtained an exact solution in the form of Ateb 

function for this class of conservative truly nonlinear oscillators. However, in the present 

paper we derive the exact solution of this type of oscillator and we obtain the Fourier series 

expansion of this exact solution. Some approximate solutions containing only two harmonics 

as well as a rational harmonic representation are obtained and compared with the exact 

solution. It may be concluded that the former are more accurate than the latter since after the 

second Fourier coefficient the signs of the coefficients alternate between negative and 

positive, whereas all the Fourier coefficients of the rational harmonic solution are positive.  

  

2. Formulation and solution method 

The anti-symmetric quadratic truly nonlinear oscillator is a conservative single-degree-of-

freedom oscillatory system governed by the following second-order differential equation 

 d2x
dt2

+ sgn(x)x2 = 0  (1) 

with initial conditions 

  x(0) = A
          

dx
dt
(0) = 0  (2) 
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where x and t are the non-dimensional displacement and time. This system corresponds to a 

truly nonlinear oscillator [4] and is an example of a non-smooth oscillator for which 

f (x) = sgn(x)x2  is a non-smooth function of the non-dimensional displacement x. The 

nonlinear function f(x) is also odd, i.e. f (−x) = − f (x)  and satisfies x f (x) > 0  for 

x∈ [−A,A] , x ≠ 0, where A > 0 is the oscillation amplitude. All the solutions to the anti-

symmetric quadratic oscillator are periodic [4] and this system oscillates around the 

equilibrium position x = 0 and the period, T, and periodic solution, x, are dependent on A.  

The system equations are 

 dx
dt
= y

              
dy
dt
= −sgn(x)x2  (3) 

and the differential equation for the phase-plane trajectories is 

 dy
dx

= −
sgn(x)x2

y
 (4) 

Eq. (1) is a conservative system and has the following first integral 

  

1
2
y2 + 1

3
sgn(x)x3 = 1

3
A3 ≥ 0  (5) 

which defines a family of bounded and simple closed curves in the phase-plane which are 

“oval” shaped as we can see in Figure 1 [4]. The x-axis is the “zero” null-cline and the y-axis 

is the “infinite” null-cline. These null-clines divide the phase-plane into four open regions, 

each coinciding with a quadrant of the plane and in each quadrant, the sign of the derivative, 

dy/dx, has a definite value.  

Let u = x/A, then we can rewrite Eqs. (1) and (2) as 

 d2u
dt2

+ Asgn(u)u2 = 0  (6) 

 u(0) =1
           

du
dt
(0) = 0  (7) 

Integrating Eq. (3) and using the initial conditions in Eq. (4), we arrive at 

  

1
2
du
dt

!

"
#

$

%
&

2

+
1
3
Asgn(u)u3 = 1

3
A  (8) 
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Solving for du/dt we obtain 

  

du
dt
= ±

2A
3

1− sgn(u)u3  (9) 

and this can be written as 

 2A
3
dt = ± du

1− sgn(u)u3
 (10) 

where the sign (±) is chosen taking into account the sign of du/dt in each quadrant (Figure 1). 

The time it takes from point (1,0) to point (u, du/dt) in the lower half-plane of the phase 

space is 

  
t(u) = − 3

2A
dz
1− z31

u

∫  (11) 

The period of oscillation is four times the time taken by the oscillator to go from u = 1 to u = 

0, T = 4t(0). Therefore 

  
T = 2 6

A
1

1−u3
du

0

1

∫  (12) 

and after some simplifications it is possible to obtain [4,7-9] 

 T (A) = 2
1/6[Γ(1/ 3)]3

π A
=
25/2

31/4 A
K 2− 3

4

$

%
&
&

'

(
)
)=

25/2

33/4 A
K 2+ 3

4

$

%
&
&

'

(
)
) ≈
6.86926

A
 (13) 

where Γ(z) is the Euler gamma function and K(m) is the complete elliptic integral of the first 

kind defined as [10] 

 
    

€ 

K(m) =
dθ

1−msin2θ0

π / 2

∫  (14) 

where m is the parameter and k ≡ m  is the elliptic modulus. From Eq. (10) we obtain t as a 

function of u for the following cases (Figure 1): 

(I) Trajectory P1 → P2 (0 ≤ t ≤ T/4 and 1 ≥ u ≥ 0), u is positive and du/dt is negative: 

 2A
3

dt
0

t

∫ = −
dz

1− z31

u

∫  (15) 
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(II) Trajectory P2 → P3 (T/4  ≤ t ≤ T/2 and 0 ≥ u ≥ −1), u is negative and du/dt is negative: 

 2A
3

dt
T /4

t

∫ = −
dz

1+ z30

u

∫  (16) 

(III) Trajectory P3 → P4 (T/2 ≤ t ≤ 3T/4 and −1 ≤ u ≤ 0), u is negative and du/dt is positive: 

 2A
3

dt
T /2

t

∫ =
dz

1+ z3−1

u

∫  (17) 

(IV) Trajectory P4 → P1 (3T/4 ≤ t ≤ T and 0 ≤ u ≤ 1), u is positive and du/dt is positive: 

 2A
3

dt
3T /4

t

∫ =
dz

1− z30

u

∫  (18) 

Integrating Eqs. (15)-(18) we can obtain the exact solution for the anti-symmetric quadratic 

nonlinear oscillator. From Eq. (15) it follows for trajectory P1 → P2: 

 

2A
3
t = dz

1− z3u

1

∫  (19) 

The value of the integral in Eq. (19) is [11, page 260, formula 3.139, integral 2] 

 dz

1− z3u

1

∫ =
1
31/4
F (β ,m)   (20) 

where 

 β = arccos 3−1+u
3+1−u

"

#
$
$

%

&
'
'  (21) 

 m = k 2 = sin2 5π
12
"

#
$

%

&
'=
2+ 3
4

 (22) 

and F(β,m) is the incomplete elliptic integral of the first kind defined as follows [10] 

 F (β ,m) = dθ

1−msin2θ0

β

∫  (23) 

Therefore, from Eqs. (19)-(23) it follows that 

 

2A
3
t = 1
31/4
F arccos 3−1+u

3+1−u

"

#
$
$

%

&
'
',
2+ 3
4

"

#
$
$

%

&
'
'

 (24) 
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The inverse function of the incomplete elliptic integral of the first kind, F-1(τ,m), is given by 

the Jacobi amplitude, am(τ,m) [12] 

 F −1(τ ,m) = β = am(τ ,m)   (25) 

whose cosine is the Jacobi cosine function, cn(τ,m) [12] 

 cosβ = cos(am(τ ,m)) = cn(τ ,m)   (26) 

From Eqs. (24)-(26) we can write 

 

3−1+u
3+1−u

= cn 2A
31/4

t, 2+ 3
4

"

#
$
$

%

&
'
'  (27) 

Solving for   

€ 

x = Au  gives  

  x1(t) = A− 3A

1− cn 2A
31/4

t, 2+ 3
4

"

#
$$

%

&
''

1+ cn 2A
31/4

t, 2+ 3
4

"

#
$$

%

&
''

(

)

*
*
*
*
*

+

,

-
-
-
-
-

 (28) 

which is valid for trajectory P1 → P2. Eq. (28) coincides which that obtained by Mickens [4, 

page 33, Eq. (2.2.3)], however he does not present the values of the solution for the other 

trajectories in the phase-plane (P2 → P3, P3 → P4 and P4 → P1). 

From Eq. (16) it follows for trajectory P2 → P3: 

 

2A
3
t − T
4

"

#
$

%

&
'= −

dz

1+ z30

u

∫  (29) 

where T is given by Eq. (13). Let z = –y, then Eq. (30) becomes 

 2A
3
t − T
4

"

#
$

%

&
'=

dy
1− y30

−u

∫ =
dy
1− y30

1

∫ −
dy
1− y3−u

1

∫  (30) 

The values of the two integrals on the right-hand side of Eq. (30) are 

 dy
1− y30

1

∫ =
[Γ(1/ 3)]3

24/3π 3
=
2
35/4
K 2+ 3

4

%

&
'
'

(

)
*
*=

2A
3
T
4

 (31) 



 7 

 dy
1− y3−u

1

∫ =
1
31/4
F arccos 3−1−u

3+1+u

#

$
%
%

&

'
(
(,
2+ 3
4

#

$
%
%

&

'
(
(  (32) 

where Eq. (22) has been taken into account. Substituting Eqs. (31) and (32) into Eq. (30) 

gives 

 2A
3
t − T
2

"

#
$

%

&
'= −F arccos 3−1−u

3+1+u

"

#
$
$

%

&
'
',
2+ 3
4

"

#
$
$

%

&
'
'  (33) 

After some simplifications, the solution for P2 → P3 can be written as follows 

  x2 (t) = −A+ 3A

1− cn 2A
31/4

t − T
2

"

#
$

%

&
',
2+ 3
4

"

#
$$

%

&
''

1+ cn 2A
31/4

t − T
2

"

#
$

%

&
',
2+ 3
4

"

#
$$

%

&
''

(

)

*
*
*
*
*

+

,

-
-
-
-
-

 (34) 

where we have taken into account that cn(z,m) = cn(−z,m). We can easily verify that for 

trajectory P3 → P4 we obtain the same value for the solution given in Eq. (34) is obtained. 

From Eq. (18) it follows for trajectory P4 → P1: 

 

2A
3
t − 3T
4

"

#
$

%

&
'=

dz
1− z30

u

∫  (35) 

which can be written as follows 

 2A
3
t − 3T
4

"

#
$

%

&
'=

dz
1− z30

1

∫ −
dz
1− z3u

1

∫  (36) 

and taking into account Eqs. (24) and (31) we can finally obtain 

 2A
3
(t −T ) = − 1

31/4
F arccos 3−1+u

3+1−u

"

#
$
$

%

&
'
',
2+ 3
4

"

#
$
$

%

&
'
'  (37) 

and the solution for trajectory P4 → P1 becomes 

  x3(t) = A− 3A

1− cn 2A
31/4

(t −T ), 2+ 3
4

"

#
$$

%

&
''

1+ cn 2A
31/4

(t −T ), 2+ 3
4

"

#
$$

%

&
''

(

)

*
*
*
*
*

+

,

-
-
-
-
-

 (38) 
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Therefore, the exact solution of Eq. (1) for the first period (0 ≤ t ≤ T) can be written as the 

following piecewise function  

 x(t) =

x1(t), 0 ≤ t ≤ T
4

x2 (t),
T
4
≤ t ≤ 3T

4

x3(t),
3T
4
≤ t ≤T

"

#

$
$
$

%

$
$
$

  (39) 

where x(t) is a continuous function over the entire domain, and x1(t), x2(t) and x3(t) are given 

in Eqs. (28), (34) and (38), respectively. Introducing the new variable h = t/T and taking into 

account that u = x/A, we can re-write Eqs. (28), (34), (38) and (39) as follows 

 u(t) =

u1(h), 0 ≤ h ≤ 1
4

u2 (h),
1
4
≤ h ≤ 3

4

u3(h),
3
4
≤ h ≤1

"

#

$
$
$

%

$
$
$

  (40) 

where 

 u1(h) =1− 3
1− cn Mh,m( )
1+ cn Mh,m( )
"

#
$
$

%

&
'
'

  (41) 

 u2 (h) = −1+ 3
1− cn M h− 1

2( ),m( )
1+ cn M h− 1

2( ),m( )
"

#

$
$

%

&

'
'
  (42) 

 u3(h) =1− 3
1− cn M (h−1),m( )
1+ cn M (h−1),m( )
"

#
$
$

%

&
'
'
  (43) 

In these equations, m = k 2 = 2+ 3
4 ≈ 0.933013  (see Eq. (22)), and parameter M is defined as 

(see Eq. (13)) 

 M =
2A
31/4

T (A) = 8
3
K 2+ 3

4

!

"
#
#

$

%
&
& ≈ 7.3815  (44) 

Eqs. (40)-(43) can be easily generalized for any period, p, as follows 
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 u( p) (h) =

u1
( p) (h), p−1≤ h ≤ p− 1

4

u2
( p) (h), p− 1

4
≤ h ≤ p− 3

4

u3
( p) (h), p− 3

4
≤ h ≤ p

#

$

%
%
%

&

%
%
%

 (45) 

where 

 u1
( p) (h) =1− 3

1− cn M (h− p+1),m( )
1+ cn M (h− p+1),m( )
"

#
$
$

%

&
'
'

 (46) 

 u2
( p) (h) = −1+ 3

1− cn M h− p+ 1
2( ),m( )

1+ cn M h− p+ 1
2( ),m( )

"

#

$
$

%

&

'
'

 (47) 

 u3
( p) (h) =1− 3

1− cn M (h− p),m( )
1+ cn M (h− p),m( )
"

#
$
$

%

&
'
'

 (48) 

where p =1, 2, 3, … is related to the first−, second−, third−, ..., period, respectively. 

Comparing Eqs. (40)-(43) and Eqs. (45)-(48) we can see that u(h) ≡ u(0) (h) ,     

€ 

u1(h) ≡ u1
(0) (h), 

    

€ 

u2(h) ≡ u2
(0) (h) , and     

€ 

u3(h) ≡ u3
(0) (h) . Figure 2 gives the periodic solution u(h) for the time of 

one period. This figure was plotted using Eqs. (40)-(43) in their respective regions.  

 

3. Fourier series expansion of the exact solution 

Since the nonlinear function sgn(u)u2 is an odd function of u, the periodic solution u(h) in 

Eq. (40) can be represented by a Fourier series containing only odd multiples of 2πh, i.e.  

 u(h) = a2n+1 cos (2n+1)2πh"# $%
n=0

∞

∑   (49) 

where 

 a2n+1 = 2 u(h)
0

1

∫ cos (2n+1)2πh#$ %&dh = 8 u1(h)0

1/4

∫ cos (2n+1)2πh#$ %&dh  (50) 

This equation allows us to obtain the values of the coefficients a2n+1 of the Fourier series 

expansion of the exact periodic solution u(h). The integral in Eq. (50) must be computed 



 10 

numerically and this was done with the help of symbolic computation software such as 

MATHEMATICA. 

We computed some of the coefficients of the Fourier series expansion of the exact solution 

and their values are shown in Table 1. From this table it may be seen that the Fourier 

coefficients decrease rapidly and, consequently, the use of just a few terms in the Fourier 

series expansion in Eq. (49) provides an accurate analytical representation of the exact 

periodic solution in Eq. (40). The first two Fourier coefficients are positive and from the 

second Fourier coefficient on, the signs of the coefficients alternate between negative and 

positive. We also calculated the ratio of neighbouring coefficients and the results are shown 

in Table 2. The first two ratios indicate the dominance of the lower harmonics in the periodic 

solution. In fact, from Tables 1 and 2 we conclude that using only two harmonics, it would 

be possible to construct an accurate analytical approximate solution to Eq. (1), as we shall 

see in the next section. 

 

4. Some analytical approximate solutions 

In this section, we present some simple analytical approximate solutions for the system 

described in Eq. (1). As the exact solution has an infinite number of harmonics (see Eq. 

(49)), we can truncate this series expansion considering analytical approximate solutions 

with a finite number of harmonics. From Tables 1 and 2 we conclude that there are two 

dominant harmonics, a1 and a3, and therefore consider only the cases in which one or two 

harmonics are present in the approximate solution, which correspond to the first and the 

second approximation, respectively. In order to have a global estimation of the accuracy of 

each approximate solution, L2 norm errors were calculated as follows [13] 

 L2 = u(h)−uapp (h)
2
dh

0

1

∫  (51) 

where u(h) is the exact solution given in Eq. (40) and uapp(h) is the approximate solution. We 

assume that the period of all approximate solutions is the exact period given in Eq. (13). 

In the first approximation of motion, only one harmonic is considered. This is the simplest 

analytical approximate solution and can be written as 

 ua1(h) = cos(2πh)  (52) 
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where the amplitude satisfies the first of the initial conditions in Eq. (7). For this 

approximate solution the value of the “L2 error” is L2 = 0.025467. 

When the first two harmonics are considered, the solution corresponds to the second 

approximation. We consider three different cases. In the first, we assume that the amplitude 

for the first harmonic is the first coefficient (Table 1, a1 = 0.974801) in the Fourier series 

expansion given in Eq. (49) and the amplitude for the second harmonic is obtained taking 

into account the first of the initial conditions in Eq. (7). Then, we can write this second 

approximation as follows 

 ub2 (h) = a1 cos(2πh)+ (1− a1)cos(6πh)   (53) 

for which the amplitude of the second harmonic is 0.025199. The value of the “L2 error” for 

this approximate solution is L2 = 0.00059425. 

A second approximate solution can be built up assuming that the amplitude for the second 

harmonic is the second coefficient (Table 1, a3 = 0.025724) in the Fourier series expansion 

given in Eq. (49) and the amplitude for the first harmonic is obtained taking into account the 

first of the initial conditions in Eq. (7). This corresponds to the equation 

 uc2 (h) = (1− a3)cos(2πh)+ a3 cos(6πh)  (54) 

Now the amplitude of the first harmonic is 0.974276 and L2 = 0.00059425. This means that 

Eqs. (53) and (54) give identical results. 

In order to obtain a better second analytical approximate solution we consider the following 

equation 

 ud 2 (h) = qcos(2πh)+ (1− q)cos(6πh)  (55) 

where     

€ 

0 < q <1. The optimum value for q is calculated by minimizing the L2-norm. In 

Figure 3 we plotted the L2-norm as a function of q for the approximate solution given in Eq. 

(55). The minimum value of L2 is 0.00053322 which is obtained when q = 0.974539. We can 

conclude that the second approximate solution given in Eq. (55) with q = 0.974539 (1 – q = 

0.025461) is slightly better than the approximate solutions given in Eqs. (54)-(55). As can be 

seen, in the last approximation, neither the amplitude of the first harmonic nor that of the 

second one coincides with the first or the second exact Fourier coefficients, respectively. 

However, this approximate solution is the most accurate.  
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Finally, it was shown that a rational harmonic representation provides an excellent 

approximation to the solution of conservative nonlinear oscillatory systems with high 

accuracy [2,5,14]. This rational representation not only provides accurate results but also 

approximates all the harmonics of the exact solution of a given differential equation. Taking 

this into account, we consider the following approximation to the exact solution of Eq. (1) 

[13] 

 ue2 (h) =
(1− r2 )cos(2πh)
1+ r2 − 2rcos(4πh)

 (56) 

where     

€ 

0 < r <1. Eq. (56) satisfies the initial conditions in Eq. (7) independently of 

parameter r. The optimum value for r is also calculated by minimizing the L2-norm and in 

Figure 4 we plotted the L2-norm as a function of r for the approximate solution given in Eq. 

(56). The minimum value of L2 is 0.0010905 which is obtained when r = 0.025745. As can 

be seen, even though the rational approximation in Eq. (56) approximates all the harmonics 

of the solution, this approximation is not as accurate as that given in Eq. (55), which only 

contains the first two harmonics. 

For comparison, in Figure 5 we present the differences between normalized exact and 

approximate solutions, ∆ = u – uapp, as a function of h, for the four approximate solutions 

considered previously. 

At this point it is necessary to ask the following question: why does the rational harmonic 

representation in Eq. (56) not give as accurate results as the two-harmonics representation in 

Eq. (55)? In order to answer this question, we firstly consider the Fourier series expansion of 

the rational harmonic solution given in Eq. (56), which can be written as follows 

 
ue2 (h) = e2n+1 cos (2n+1)2πh"# $%

n=0

∞

∑   (57) 

The general expression of the coefficients of this Fourier series expansion was calculated as 

follows [13] 

 
e2n+1 = (1− r)r

n   (58) 

For r = 0.025745, the first two coefficients are e1 = 0.974255 and e3 = 0.0250822, 

respectively. As we obtained 0 < r < 1, from Eq. (58) it follows that all the coefficients of the 

Fourier series expansion of Eq. (56) are positive, i.e.,     

€ 

e2n+1 > 0  (n = 0, 1, 2, ...). However, 

from Table 1 we can see that from the second Fourier coefficient, a3, on the signs of the 
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Fourier coefficients alternate between negative and positive (a1 > 0, a3 > 0, a5 < 0, a7 > 0, a9 

< 0, a11 > 0, ...). Thus, the rational harmonic representation in Eq. (56) does not approximate 

correctly all the harmonics of the exact solution. From Eqs. (49) and (50) it follows that 

 
a2n+1=−0.00052462

n=2

∞

∑ < 0  (59) 

However, substituting r = 0.025745 in Eqs. (57) and (58) gives 

 
e2n+1 = 0.00066281>0

n=2

∞

∑   (60) 

From the above it may be concluded that, for 0 < r < 1, the rational harmonic representation 

in Eq. (56) will give more accurate results than the two-harmonic representation when all the 

coefficients of the Fourier series expansion of the exact solution of a conservative nonlinear 

oscillator were positive. However, this affirmation needs further research. 

 

6. Conclusions 

The exact solution of the anti-symmetric quadratic truly nonlinear oscillator was obtained as 

a piecewise function involving Jacobi elliptic functions and this solution was valid for all 

periods of the motion. This function is therefore more complete than the equation obtained 

by Mickens [4], which is only valid for the first quarter of the first oscillation period. The 

Fourier series expansion of the exact solution was numerically calculated and it was possible 

to draw two conclusions. First, the Fourier coefficients decrease rapidly and, consequently, 

the use of just a few terms in the Fourier series expansion provides an accurate analytical 

representation of the exact periodic solution, and second, the signs of the Fourier coefficients 

of the exact solution, from the second coefficient on, alternate between negative and 

positive. This treatment could be applied to analyse of observed data relies on nonlinear 

dynamics [15]. Some simple approximate solutions containing only two harmonics were 

analyzed and discussed and the best of them was calculated. In addition, an approximate 

rational harmonic representation was obtained and, surprisingly, even though this rational 

representation approximates all the harmonics of the exact solution, it does not give as 

accurate results as the two-harmonic approximate solution.  
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FIGURE CAPTIONS 

 

Figure 1.- Trajectories in the phase plane for the anti-symmetric quadratic nonlinear 

oscillator.  

 

Figure 2.- Plot of the exact solution for the first period for the anti-symmetric quadratic 

nonlinear oscillator. 

 

Figure 3.- L2 norm as a function of q for the approximate solution given in Eq. (55). 

 

Figure 4.- L2 norm as a function of r for the approximate solution given in Eq. (56). 

 

Figure 5.- Differences between normalized exact (Eq. (40)) and approximate solutions, 

  

€ 

Δ = u − uapp, as a function of h, for the four approximate solutions considered (circles, Eq. 

(53); triangles, Eq. (54); squares, Eq. (55); rhombus, Eq. (56)). 

 

 

 

 

TABLES 

 

Table 1. Values for the first eight coefficients of the Fourier series expansion of the exact 

solution. 

 

Table 2. Ratios of each pair of neighbouring Fourier coefficients. 
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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Table 1.  

 

a1 0.974801 a9 –0.0000410429 

a3 0.0257238 a11 0.0000150565 

a5 –0.000638861 a13 –0.00000653164 

a7 0.000144662 a15 0.00000319375 
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Table 2.  

 

a3/a1 0.0263887 a11/a9 –0.366848 

a5/a3 –0.0248354 a13/a11 –0.433809 

a7/a5 –0.226438 a15/a13 –0.488965 

a9/a7 –0.283715 a17/a15 –0.534833 

 

 

 

 

 

 

 


